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Abstract. We present a scheme for the theory of phase transitions in open dissipative

systems, and show that its demands are fulfilled by quantum stochastic models of open systems,

such as the laser.

1. Introduction. Phase transitions far from equilibrium abound in physics [1-3],

chemistry [3] and biology [4], and are indeed crucial to fundamental questions concerning

the generation of ordered and chaotic structures in the natural sciences. The quantum

theory of these transitions, however, is still rather undeveloped at the level of mathe-

matical physics, being confined to a few special models, such as those of a laser [5-7], a

plasma [8] and a cell [9].

The object of this article is to propose a scheme for a general, if rudimentary, frame-

work for such a quantum theory, and to provide a concrete example where it is fully

realised.

We shall start, in Section 2, by formulating our schemes for the theories of phase

structures both of equilibrium states of conservative systems and non-equilibrium states of

open dissipative ones, within the terms of the algebraic framework of quantum statistical

mechanics. In Sections 3 and 4, we shall provide a resume of how our scheme for non-

equilibrium phase structures is fulfilled by a recent and new version of the Dicke- Hepp-

Lieb laser model, that was formulated [6] in terms of quantum dynamical semigroups

and stochastic processes. Specifically, we shall present the main features of the model in

Section 3, and in Section 4 we shall describe our results [6, 7] on its transitions between

normal, coherent and chaotic phases. We shall conclude, in Section 5, with a brief

discussion of our main conclusions and of how they may be extended to other models.
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2. General consideration of phase structures

2.1. The generic model. We take this to be a quantum dynamical system Σ =

(A,S, T ), where

(a) A is a ⋆-algebra of observables;

(b) T is a representation of either R in Aut(A) or of R+ in the completely pos-

itive contractions of that algebra, according to whether the system is conservative or

dissipative; and

(c) S is a space of states on A, that is stable under the action of the dual of the T .

The physical interpretation of the triple (A,S, T ) is encapsulated by the specifications

that the expectation value of an observable A (∈A) in the state ω (∈S) is ω(A) and that

the evolute of that observable at time t is At = T (t)A. In general, Σ corresponds to an

infinitely extended system of particles of one or more species, and the construction of

(A,S, T ) may be effected by standard procedures [10-12].

We shall now outline the description of both equilibrium and non- equilibrium phases

of this generic model.

2.2. Equilibrium phases of conservative systems. This subsection consists of a sketch

of our scheme, presented in Chapter 4 of [12], for the description of these phases.

We assume that there is a set, x̂ = (x̂1, . . . , x̂m), of linearly independent macroscopic

observables of Σ, that are the global spatial averages of densities of locally conserved

quantities (energy, particle number, momentum, etc.),* which satisfies the following com-

pleteness condition. Given the expectation value, x, of x̂, there is precisely one state, ωx,

of the system that maximises its global entropy density.** We denote by X the subset of

Rm comprising the range of the expectation values of x̂ : in fact, X is convex.

Thus, ωx is the thermal equilibrium state for which the expectation value of x̂ is x.

We define s(x) to be the entropy density of state, and f to be its Legendre transform:

this is the function of the thermodynamic conjugates, θ = (θ1, . . . , θm) (∈Rm), of the

xj ’s given by the standard formula

f(θ) = supx
(

s(x) − x.θ
)

. (2.2)

In fact, the supremum here is actually attained, and the value of θ at a maximal point,

x, is

θ =
∂s(x)

∂x
. (2.3)

We denote by Θ the subset of Rm, given by the range of the function ∂s/∂x, i.e., of the

variable θ. Thus, Θ may be regarded as the macroscopic ’control space’. Note that the

thermodynamic variables given by the components of θ (∈Θ) are the inverse temperature,

chemical potential, etc.

The phase structure of the system is related to the differentiability of f in the following

way (cf. Chapter 4 of [12]). A point θ of Θ corresponds to one or several points x of

* These are ’observables at infinity’, as defined by Lanford and Ruelle [13].

** The entropy density is defined as a functional on the state space [10, 12].
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X , and correspondingly to one or several equilibrium states ωx, according to whether

or not f is continuously differentiable there. We assume, in accordance with classical

thermodynamics [14] and results for tractable models, that the set of points where f is

not differentiable constitute surfaces that divide Θ into regions Θ1, Θ2, ..., etc. Thus,

these regions correspond to the different phases of the system, and the phase transitions

arise when their boundaries are crossed.

2.3. Non-equilibrium phases of dissipative systems. We shall now present a scheme

for the description of these phases, that is realised by the laser model of Secs. 3 and 4, as

well as other mean field models indicated in Section 5. This scheme is characterised by

the following conditions.

(I) The dynamical semigroup, T , depends on a set of control variables, θ= (θ1, . . . , θk).

However, by contrast with the conservative case, the θj ’s are not generally of the ther-

modynamic type. For example, they could be parameters that govern the dissipative

properties of the system, e.g. friction constants or strengths of energy pumps or sinks.

We denote by Θ the space whose points are the accessible values of θ.

(II) The system has a set of classical macroscopic observables x = (x1, . . . , xm), which

is complete in the sense that the semigroup T induces an autonomous dynamics of these

variables, i.e., that T (t)x is a function of only x, t and the parameters of the model. Thus,

defining τ(t) to be the restriction of T (t) to x and the functions thereof, and denoting by

X (∈Rm) the range of the expectation values of x, (X, τ) is a classical dynamical system,

K. We assume that it has stable attractors (fixed points, periodic orbits, chaotic orbits),

corresponding to domains Θ1, Θ2, . . . of the control space Θ, and that it undergoes

bifurcations corresponding to transitions between these when θ crosses the boundaries of

these domains [15].

(III) The microscopic dynamics of Σ is driven by the time-dependent macroscopic

variable, τ(t)x = xt, and its microstate is determined by the instantaneous value of this

variable when it lies an attractor of K. We denote this state by ωxt
. We designate the

phases of Σ to correspond to the the domains Θ1, Θ2, . . . of Θ, representing the attractors

of K. Thus, phase transitions occur when the control variable θ crosses the bifurcation

sets given by the boundaries of these domains.

(IV) Although, as pointed out in (I), the variable θ is not generally thermodynamic,

the form of the state ωxt
is governed by a maximum entropy principle. Specifically, this

state maximises the entropy density of the system, subject to the contraints imposed by

the instantaneous values of the macroscopic variables.

N o t e. Since, except for the stable fixed points, the attractors of the classical system

K are not pointwise invariant under the dynamical semigroup τ , the corresponding states,

ωxt
, of Σ are not stationary in time. By contrast, the thermal equilibrium states are, of

course, stationary.

3. The laser model [6]. This model is a dissipative quantum system, Σ, consisting

of a chain of identical atoms interacting with an N -mode radiation field. We build the

model from its constituent parts as follows.
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3.1. The single atom. This is assumed to be a two-state atom or spin, Σat. Its algebra

of observables, Aat, is that of the two-by-two matrices, and is thus the linear span of

Pauli matrices (σx, σy, σz) and the identity, I. Its algebraic structure is provided by the

relations

σ2
x = σ2

y = σ2
z = I; σxσy = iσz, etc. (3.1)

We define the spin raising and lowering operators

σ± =
1

2
(σx±iσy). (3.2)

We assume that the atom is coupled to a pump and a sink, and that accordingly [6] its

dynamics is given by a one-parameter semigroup {Tat(t)|t∈R+} of completely positive,

identity preserving contractions of Aat, whose generator, Lat, is of the following form.

Latσ± = −(γ1∓iǫ)σ±; Latσz = −γ2(σz − ηI), (3.3)

where ǫ(> 0) is the energy difference between the ground and excited states of an atom,

and the γ’s and η are constants whose values are determined by the atomic coupling to

the energy source and sink, and are subject to the restrictions that

0 < γ2≤2γ1; −1≤η≤1. (3.4)

In particular, η is positive or negative according to whether the coupling of the atom to

the pump or the sink is the stronger. In the former case, these couplings drive the atom to

a terminal mixed state with inverted population, i.e. with higher occupation probability

for the excited state than for the ground state.

3.2. The matter. This consists of a chain of copies of Σat, located at the sites of the

one-dimensional lattice Z.We construct the model Σmat of the matter as a C⋆-dynamical

system, (Amat,Smat, Tmat), where Amat is its algebra of quasi-local observables, Smat is

the space of states on Amat and Tmat is a one-parameter semigroup of CP transformations

of this algebra, representing the dynamics of matter, when decoupled from the radiation.

To formulate Amat, we attach to each site, r, of Z a copy, Σr, of Σat, whose algebra

of observables, Ar, and dynamical semigroup, Tr, are isomorphic with Aat and Tat,

respectively. We denote by σr,u the copy of σu at r, for u = x, y, z,±. We then L to be

the family of all finite point subsets of Z, and we assign to each Λ∈L the C⋆−algebra

AΛ := ⊗r∈ΛAr. For Λ⊂Λ′, we identify elements A of AΛ with A⊗IΛ′\Λ (∈AΛ′), thereby

rendering AΛ isotonic w.r.t. Λ. We then Amat to be the completion of the local algebra

Amat,L :=
⋃

Λ∈LAΛ w.r.t. the norm it inherits from the AΛ’s. We denote by A′
Λ the

commutant of A(Λ) in Amat.

We define the elements Tmat(t) of the dynamical semigroup Tmat to be ⊗r∈ZTr(t).

Thus, the generator, Lmat, of this semigroup is given by the formula

Lmat =
∑

r∈Z

Lr, (3.6)

where

Lrσr,± = −(γ1∓iǫ)σr,±; Lrσr,z = −γ2(σr,z − ηI);

and Lr(ArA
′
r) = (LrAr)A

′
r ∀Ar∈Ar, A

′
r∈A

′
r. (3.7)
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We define Σ
(N)
mat = (A

(N)
mat,S

(N)
mat, T

(N)
mat) to be the subsystem of Σmat comprising the

atoms in the segment [−N,N ] of Z. Thus, A
(N)
mat = A[−N,N ], and S

(N)
mat and T

(N)
mat are

the restrictions of Smat and Tmat, respectively, to this algebra. The generator of T
(N)
mat is

therefore

L
(N)
mat =

N
∑

r=−N

Lr. (3.8)

3.3. The radiation. We assume that the radiation field consists of n(< ∞) modes,

represented by creation and destruction operators {a⋆l , al|l = 0, . ., n−1} in a Fock-Hilbert

space Hrad, as defined by the standard specifications that (a) these operators satisfy the

CCR,

[al, a
⋆
m] = δlmI; [al, am] = 0, (3.9)

and (b) Hrad contains a (vacuum) vector Φ, that is annihilated by each of the a’s and is

cyclic w.r.t. the algebra of polynomials in the a⋆’s.

We define the Weyl map z = (z0, . . . , zn−1)→W (z), of Cn into L(Hrad) by the formula

W (z)≡W (z0, . . . , zn−1) = exp[i(z.a+ (z.a)⋆)], with z.a =

n−1
∑

0

zlal. (3.10)

We then define Arad to be the ⋆−algebra of polynomials in the a’s, a⋆’s and the Weyl

operatorsW (z), with z running through Cn. Thus, in view of the CCR (3.9), this algebra

is the linear span of the derivatives, of all orders, of the operatorsW (t0z0, . . . , tn−1zn−1)

w.r.t. the real variables (t0, . . . , tn−1).

We assume that the radiation dynamics is given by the canonical extension to Arad

of Vanheuverszwijn semigroup [16], Trad, of quasi-free CP transformations of the Weyl

algebra of linear combinations of {W (z)|z∈Cn}. The formal generator of this semigroup

is

Lrad =
n−1
∑

l=0

(

iωl[a
⋆
l al, .] + 2κla

⋆
l (.)al − κl{a

⋆
l al, .}

)

, (3.11)

where {., .} denotes anticommutator, and the frequencies, ωl, and the damping constants,

κl, are positive.

3.4. The matter-radiation coupling. We pass now to the formulation of the model

Σ(N), obtained by coupling Σ
(N)
mat to Σrad via a certain dipolar interaction: we pass from

this to the infinite system, Σ, in Section 4.

We assume that the algebra of observables of Σ(N) is A(N) := A
(N)
mat⊗Arad. Thus,

A(N), like Arad, is an algebra of both bounded and unbounded operators in the Hilbert

space H(N) := C4N+2⊗Hrad. We identify elements A, R, of A(N), R, with A⊗Irad and

Imat⊗R, respectively.

We assume that the matter-radiation coupling is given by the interaction Hamiltonian

H
(N)
int = i(2N + 1)−1/2

N
∑

r=−N

n−1
∑

l=0

λl(σr,−a
⋆
l exp(−2πilr/n)− h.c.), (3.12)

where the λ’s are real-valued, N−independent coupling constants. Correspondingly, we

define the radiation field, φ(N), of the model by the stipulation that its value at the site
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r is the coefficient of σr,+ in this formula. Thus,

φ(N)
r = −i(2N + 1)−1/2

n−1
∑

l=0

λlalexp(2πilr/n). (3.13)

We now need to define the state space, S(N), and the dynamical semigroup, T (N),

in a way that takes account of the unboundedness both of H
(N)
int and of some of the

elements of A(N). To this end, we start by defining D
(N)
0 to be the space of density

matrices in H(N), with the trace norm topology, and D
(N)
1 to be the subset of its elements,

ρ(N), for which Tr(A⋆ρ(N)A) is finite for all A in A(N). We define S
(N)
1 to be the set

of positive, normalised, linear functionals, ψ(N), on A(N), that are in the one-to-one

correspondence with the D
(N)
1 −class density matrices, given by the standard formula

ψ(N)(A) = Tr(ρ(N)A). We then adopt the formulation of T (N) and S(N) provided by [6],

in which T (N) is constructed as the modification of T
(N)
mat⊗Trad due to the interaction

H
(N)
int , and S(N) is a ’large’ subset of S

(N)
1 that is stable w.r.t. this dynamical semigroup.

Specifically, the construction yields the following results [6].

(1) The density matrices corresponding to S(N) form a dense subset of D
(N)
0 , in the

topology corresponding to the trace norm.

(2) S(N) is stable under the transformations ψ(N)→ψ(N)◦T (N)(t) := ψ
(N)
t .

(3)
d

dt
ψ
(N)
t (A) = ψ

(N)
t (L(N)A) ∀A∈A(N), t∈R+, (3.14)

where

L(N) = L
(N)
mat + Lrad + i[H

(N)
int , .]. (3.15)

3.5. The macroscopic observables. We formulate the macroscopic description of the

model, as in [6], in terms of the global intensive observables

s
(N)
l = (2N + 1)−1

N
∑

r=−N

σr,−exp(−2πilr/n); l = 0, . . . , n− 1 (3.16)

and

p
(N)
l = (2N + 1)−1

N
∑

r=−N

σr,zexp(−2πilr/n); l = 0, . . . , n− 1, (3.17)

together with the operators

α
(N)
l = (2N + 1)−1/2al; l = 0, . . . , n− 1, (3.18)

corresponding to a scaling of the number operators a⋆l al in units of 2N + 1. Thus, by

equns. (3.13) and (3.18), the radiation field may be re-expressed in the form

φ(N)
r = −i

n−1
∑

l=0

λlα
(N)
l exp(2πirl/n). (3.19)

We note that the set of p(N)’s is the same as that of their adjoints, since

p
(N)⋆
0 = p

(N)
0 ; and p

(N)⋆
l = p

(N)
n−l for l = 1, . . . , n− 1. (3.20)
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The setM (N) := {s
(N)
l , s

(N)⋆
l , p

(N)
l , α

(N)
l , α

(N)⋆
l } of macroscopic variables is a Lie algebra

w.r.t. commutation. We simplify our notation by defining x(N)≡(x
(N)
1 , . . . , x

(N)
5n ) to be

the 5n self-adjoint operators, which, by equns. (3.16)-(3.19), comprise the Hermitian and

anti-Hermitian parts of the elements of M (N). It follows from this definition that the

norms of the commutators of the these operators are all O(N−1), which suggests that

their dynamics might become classical when N→∞. In anticipation of such a classical

limit, we introduce a phase space, X = R5n, and, for each point x = (x1, . . . , x5n)∈X,

we define {αl, sl, pl|l = 0, . . . , n− 1} to be the complex numbers related to x in precisely

the same way that the elements of M (N) are to x(N). We define C0(X) to be the space of

bounded continuous functions on X, that tend to zero at infinity.

4. Dynamics, phase structure and a non-equilibrium entropy principle. We

formulate the dynamics of the infinite system, Σ, as a limit of that of the sequence of

finite systems, {Σ(N)|N∈N}, subject to the following conditions on their initial states,

ψ(N).

(I.1) The mean photon number is not super-extensive, i.e.,

ψ(N)(a⋆l al) < CN, ∀N∈N, l∈[0, n− 1], (4.1)

where C is a finite constant.

(I.2) The mean and dispersion of each macroscopic observable x
(N)
j , for the state

ψ(N), tend to limits xj and 0, respectively, as N→∞. This macroscopic sharpness is

characteristic of pure phases.

(I.3) There is a (unique) state, ψmat, on Amat, the algebra of observables of the infinite

system Σmat, such that the restrictions ψmat and ψ(N) to A
(N)
mat are identical, for each

N∈N. This condition is satisfied if, for example, ψ(N) = ψ
(N)
mat⊗ψrad, where ψ

(N)
mat is the

restriction of ψmat to A
(N)
mat.

4.1. The macroscopic dynamics. As in [6], we relate the macroscopic evolution of

Σ(N), in the limit N→∞, to the following classical dynamical system.

Definition 4.1. We define K to be the flow in X, whose equation of motion,

dxt
dt

= F (xt), (4.2)

is of the explicit form
dαl,t

dt
= −(iωl + κl)αl,t + λlsl,t, (4.3a)

dsl,t
dt

= −(iǫ+ γ1)sl,t +

n−1
∑

m=0

λmp[l−m],tαm,t (4.3b)

and

dpl,t
dt

= −γ2(pl,t − ηδl,0)− 2

n−1
∑

m=0

λm(αm,ts[l+m],t + αm,ts[m−l],t), (4.3c)

where [l±m] = l±m (mod n).

The following Propositions were proved in [6].
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Proposition 4.2. The equation of motion (4.2 ) (i.e. (4.3 )) has a unique global solu-

tion, corresponding to a one- parameter semigroup of transformations x→τ(t)x(≡xt) of

X, that maps the compacts into compacts.

Proposition 4.3. Let µ
(N)
t be the time-dependent quantum characteristic function on

X, defined by the formula

µ
(N)
t (y) = ψ

(N)
t

(

exp(iy.x(N))
)

∀y∈X, t∈R+. (4.4)

Then, under the initial conditions (I.1-3 ), µ
(N)
t converges pointwise, as N tends to in-

finity, to the characteristic function of the classical Dirac probability measure, δxt
, on

X , with support at xt = τ(t)x. Thus , the macroscopic dynamics reduces to that of the

classical system K.

Commen t. This last Proposition signifies that the macroscopic observables x(N)

reduce to the classical ones x, as N tends to infinity. Correspondingly, the radiative field,

φ(N), reduces to the classical one, φ, whose value at the site r and time t is

φr,t = −i

n−1
∑

l=0

λlαl,texp(2πirl/n). (4.5)

4.2. Phase structure. We see from Proposition 4.3 that, under the initial conditions

(I.1-3), the time-dependent macroscopic properties of the system are governed by the

classical dynamical system K. A study of this system yields the following results [6].

(1) For η less than a certain specified critical value, η1 (> 0), the system has a unique

stable stationary state, corresponding to the fixed point, x0(∈X), given by

αl = 0; sl = 0; pl = ηδl0 ∀l∈[0, n− 1]. (4.6)

(2) As η increases through a certain positive value, η1, the fixed point x0 becomes

unstable, and, by Hopf bifurcation, gives way to a periodic orbit of the form

αl,t = α
(0)
l exp(−i(νt+ θ(0)))δlk; sl,t = s

(0)
l exp((−iνt+ θ(0)))δlk; pl,t = η1δl0, (4.7)

where the selection of the k’th mode and the values of the constants α(0), s(0) and ν are

determined by the parameters of the model, while the phase angle θ(0) is indeterminate.

Thus, in optical terms, there is a transition from normal to coherent radiation as η

passes through η1. This entails a breakdown of the gauge symmetry, represented by the

transformations in which the σr,−, al, and correspondingly sl, αl, are all rephased by the

same factor exp(iθ).

(3) The model generically undergoes a further transition from coherent to chaotic

radiation, as η passes through a second critical value, η2(> η1). Specifically, the following

two scenarios, both of which involve gauge symmetry breakdown, are feasible.

(a) There can be a bifurcation, at η = η2, from a periodic orbit to a strange attractor,

as specified in the Ruelle-Takens scheme [15]. This scenario actually realised in the single

mode case [6].

(b) For large n, there could be a succession of bifurcations, corresponding to the

activation of different modes, leading to a chaotic phase along the lines of Landau’s

theory of hydrodynamical turbulence [17].
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Commen t. These results signify that the model satisfies the conditions (I) and (II)

of the scheme of Section 2.3, with η playing the role of the control variable θ. The control

space, Θ, is simply the interval, [−1, 1], over which the value of this variable may range.

4.3. The microscopic dynamics. We take the local microscopic observables to be those

of the matter only, since, as noted in the Comment following Proposition 4.3, the radiation

field of the model reduces to a classical macroscopic one in the limit N→∞.

The following two Propositions were proved in [7]. The first one signifies that, in the

limit N→∞, the microscopic dynamics is simply that of Σmat, under the action of the

classical macroscopic radiation field, φ. The second one substantiates that the model

satisfies the conditions (III), (IV) of Section 2.3.

Proposition 4.4. (i) Under the conditions (I.1-3 ), the microscopic dynamics of the

model corresponds , in the limit N→∞, to a two-parameter family,

{T (s, t|φ)|0≤s≤t; T (s, u|φ)Tµ(u, t|φ) = T (s, t|φ)},

of CP contractions of Amat, in that

limN→∞ψ
(N)

(

T (N)(t)A
)

= ψmat

(

T (0, t|φ)A
)

∀A∈AL, t∈R+. (4.8)

Furthermore, the generator of T is

L(t|φ) :=
∂

∂t
T (s, t|φ)|s=t = Lmat +

∑

r∈Z

[φr,tσr,+ − h.c., .]. (4.9)

Thus ,

T (s, t|φ) = Taexp
(

t\
s

duL(u|φ)
)

, (4.10)

where Ta is the antichronological operator. We define

ψt,mat := ψmat◦T (0, t). (4.11)

Proposition 4.5. (i) Following the exponential decay of transients in the microscopic

relaxation time max(γ−1
1 , γ−1

2 ), ψmat,t reduces to a state, ωst,pt
, which is completely

determined by the instantaneous values of the macroscopic variables st and pt.

(ii) This state, like the classical field , φ, is spatially periodic, with periodicity n.

(iii) Further , it maximises the entropy density of Σmat, as defined on the states with

this spatial periodicity, subject to the constraints imposed by the prevailing instantaneous

values of the macroscopic variables st and pt.

5. Discussion of results. We see from Propositions 4.3 and 4.5, together with the

results described in Section 4.2, that the laser model conforms to the scheme proposed in

Section 2.3 for non-equilibrium phase structures in dissipative systems. It is not difficult

to construct other mean field theoretic models which would yield the same results. For

example, a class of such models is given by equipping Σ
(N)
mat with a self-interaction energy

of the form NF (s(N), s(N)⋆, p(N)), with s(N) and p(N) defined as previously and the

function F carrying no explicit dependence on N .

Although all these models are rather primitive, one might envisage that counterparts

of our results might have at least some measure of validity in the physics of real dissipative
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systems. For example, one might expect a local version of the maximum entropy principle,

given by Proposition 4.5 (iii) to prevail in hydrodynamics, in such a way as to impose

local equilibrium conditions on the states of fluids.
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