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Abstract. We review recent results on interface states in quantum statistical mechanics.

1. Introduction. When a statistical mechanics model has more than one homoge-

neous (translation invariant or periodic) Gibbs state, it is interesting to ask whether there

are also non-homogeneous phases such as domain wall states. In a domain wall state, also

called interface state, different regions are found in a different equilibrium phase (up to

small fluctuations) and are separated by a transition region of essentially finite width.

That such Gibbs states exist for certain models is well-known since the seminal work of

Dobrushin [5] on the interface states of the three-dimensional Ising model.

It is usually quite obvious that the Gibbs state of a finite volume with suitable bound-

ary conditions will have an interface-like structure. The main issue is then whether or

not this interface is stable in the thermodynamic limit, e.g., is there a bound on the fluc-

tuations of its position uniform in the volume? For the three-dimensional Ising model,

Dobrushin showed that the answer to this question is positive for temperatures below a

certain critical value. Subsequently, this has been shown to happen in many more classical

spin models. In general one expects the critical temperature for interfaces to be strictly

smaller that the critical temperature for the existence of multiple homogeneous phases.

The general phenomenon is that with increasing temperatures the thermal fluctuations

become stronger and eventually destroy the stability of the interface. This is the so-called

roughening transition.

As it is the thermal fluctuations that limit the stability of interfaces in classical mod-

els, one may think that in quantum mechanical models the existence of a stable interface

is even more precarious as quantum mechanics is an additional source of fluctuations.

In many respects quantum fluctuations are not unlike thermal fluctuations, but there
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are some important differences. The first one is that, in contrast to thermal fluctuations,

quantum fluctuations may respect local conservation laws. This is important in the study

of interfaces at zero temperature (ground states). The second difference is that quantum

fluctuations cannot be interpreted independent from the energy. In fact, they have pre-

cisely to do with off-diagonal matrix elements of the Hamiltonian. For this reason, their

contribution to the entropy is generally not independent from corrections to the energy.

This coupling between energy and entropy is what makes the statistical mechanics of

quantum models quite a bit more complicated than their classical counterparts. At the

same time quantum models show a wider variety of behaviour. E.g., quantum fluctuations

may, in certain cases, actually stabilize the interface. This is the main theme of this brief

review paper.

Recently, two quantum models with interfaces have been investigated in detail: the

XXZ Heisenberg ferromagnet and the Falicov-Kimball model. The first is a quantum spin

system on the lattice Zd with the following local Hamiltonians:

HΛ = −
∑
{x,y}⊂Λ
|x−y|=1

1

∆
(S1
xS

1
y + S2

xS
2
y) + S3

xS
3
y , (1)

where Λ is any finite subset of Zd, ∆ ≥ 1, and S1
x, S

2
x, S

3
x are the standard spin S matrices

at the site x ∈ Zd. We will give more precise definitions and describe the mathematical

setup in the next section.

The Falicov-Kimball model, introduced independently by Falicov and Kimball [11] as

an approximation of a two-band Hubbard model, and by Kennedy and Lieb [10] as a

simple model of crystallization. The Falicov-Kimball model consists of two subsystems

defined on the same lattice Zd: “ions”, described by the Ising-type variables W (x) ∈
{0, 1}, x ∈ Zd, and “electrons”, described by a set of fermion creation and annihilation

operators c+x , cx, x ∈ Zd. Each have their chemical potential, µi and µe respectively. The

ions and electrons interact via an on-site Coulomb term as in the Hubbard model. The

local Hamiltonians are

HΛ = −
∑
{x,y}⊂Λ
|x−y|=1

(c+x cy + c+y cx)− µe

∑
x∈Λ

c+x cx − µi

∑
x∈Λ

W (x) + 2U
∑
x∈Λ

W (x)c+x cx. (2)

We will be interested in the half-filled case, i.e., µi = µe = U . The models with interaction

U and −U are then mathematically equivalent. Therefore, we can assume U > 0.

In the following sections we present some recent results on interface states for these

two models.

2. Non-translation-invariant ground states of the XXZ models. We will use

the Local Stability definition of ground state. For a quantum spin system the setting is the

following. The algebra of observables of a single spin is M(2S + 1), the 2S + 1× 2S + 1

matrices with complex entries, where S = 1/2, 1, 3/2, . . . (called the spin), and SU(2)

acts on M(2S + 1) through the adjoint representation of its 2S + 1 dimensional unitary

irreducible representation. The algebra of local observables of a quantum spin system

of spin S on the lattice Zd is defined as follows. For every finite subset Λ ⊂ Zd, the
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observables in Λ are given by

AΛ =
⊗
x∈Λ

A{x}

where, for all x ∈ Zd, A{x} ∼= M(2S + 1). For x ∈ Λ, A{x} is naturally embedded into

AΛ, by tensoring with identity matrices in the factors A{y}, y ∈ Λ \ {x}. In the same

way, AΛ ⊂ AΛ′ , if Λ ⊂ Λ′. The algebra of local observables, Aloc, is defined by

Aloc =
⋃

Λ⊂Zd

AΛ

where the union is over all finite subsets of Zd. Zd acts on Aloc as translation automor-

phisms τx, x ∈ Zd, τx(AΛ) = AΛ+x. A state of the quantum spin system is a linear

functional ω on Aloc satisfying ω(1l) = 1, ω(X∗X) ≥ 0, for all X ∈ Aloc.

We will limit our discussion to translation invariant models with a nearest-neighbour

interaction. This means that the dynamics of the model is determined by a self-adjoint

element h ∈M(2S + 1)×M(2S + 1). The local Hamiltonians are given by

HΛ =
∑
{x,y}⊂Λ
|x−y|=1

hx,y, for finite subsets Λ ⊂ Zd,

where hx,y is a copy of h in A{x,y}.
Definition 1 (Local Stability (LS)). A state ω on Aloc is called a ground state of the

quantum spin system with local Hamiltonians {HΛ}Λ iff

lim
Λ↑Zd

ω(X∗[HΛ, X]) ≥ 0, for all X ∈ Aloc (3)

where [A,B] = AB −BA, for any A,B ∈ Aloc.

The inequality (3) expresses the property that any local perturbation of the state ω

has greater or equal energy than ω. Clearly, the set of solutions of (3) is convex. One can

prove it is a Choquet simplex. Therefore, it is sufficient to determine its extreme points,

which are pure states. So, when we say, e.g., that there exactly two ground states, we

mean there are two pure ground states.

Our main interest is to determine whether or not there are non-translation invariant

solutions to (3). For the one-dimensional ferromagnetic XXZ models we know all solutions

of (3). This has recently been proved in [18]. A similar result in higher dimensions is

completely lacking at this moment.

Before we describe the main results on interface ground states of the XXZ model, let

us first consider the issue of low-lying excitations. One should expect that the excitation

spectrum of local perturbations of an interface ground state differs from the excitation

spectrum found starting from a translation invariant ground state of the same model.

As we shall see, the XXZ models provide instructive examples of this gap reduction

phenomenon. In order to define the excitation spectrum with respect to a ground state,

one needs to define the dynamics of the model on the C∗-algebra obtained by completing

Aloc for the standard norm of bounded linear transformations. Let A denote this C∗-

algebra. By a standard result (see, e.g., [4] or [24]), the following limit exists and defines
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a one-parameter group of automorphisms of A: for all t ∈ IR, A ∈ Aloc,

αt(A) = lim
Λ↑Zd

eitHΛAe−itHΛ .

Suppose ω is a state satisfying (3). Then, by the GNS construction [4], there exists a

Hilbert space Hω, a representation πω : A → B(Hω), and a vector Ωω ∈ Hω, such that

ω(A) = 〈Ωω, πω(A)Ωω〉, for all A ∈ A
and there is a densely defined self-adjoint operator Hω, Hω ≥ 0, such that HωΩω = 0,

and

πω(αt(A)) = eitHωπω(A)e−itHω .

This structure is unique up to unitary equivalence. Therefore, we can define, without

ambiguity, the excitation spectrum of the model with respect to the ground state ω, to

be the spectrum of Hω. One says that ω has a gap if there exists γ > 0, such that

spec(Hω) ∩ (0, γ) = ∅. (4)

The exact gap is the supremum of the set of γ’s for which (4) holds. If no γ > 0 exists

for which (4) is true, one says that the excitation spectrum is gapless (or massless).

This somewhat imprecise terminology does not mean that no gaps exist higher up in the

spectrum.

2.1. Translation invariant ground states. The translation invariant ground states of

the ferromagnetic XXZ models are well-known. If ∆ > 1, there are exactly two of them,

ω↑ and ω↓, determined by

ω↑(S
3
x) = S, ω↓(S

3
x) = −S, for all x ∈ Zd

The isotropic Heisenberg ferromagnet (∆ = 1), also called the XXX model, has an infinite

set of pure translation invariant ground states. They are characterized by the property

that their finite-volume restrictions are supported by the maximal spin representation,

i.e.,

ω(P
(S|Λ|)
Λ ) = 1, for all finite Λ ⊂ Zd

where P
(J)
Λ denotes the orthogonal projection onto the spin-J subspace of

HΛ =
⊗
x∈Λ

C2S+1.

Theorem 2. Let ω be a translation invariant ground state of the d-dimensional spin-S

XXZ ferromagnet with ∆ ≥ 1. The exact gap is given by

γ = 2Sd(1− 1

∆
). (5)

The proof of this theorem is easy and well-known. Due to the symmetry of the models

one only has to consider the case ω = ω↑. One immediately gets a lower bound on the

exact gap equal to (5), by considering any local perturbation of ω↑. That the value given

in (5) is also an upper bound follows from a variational bound using spin waves.
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2.2. Kink and antikink states for d = 1, ∆ > 1. First, we will describe a spanning

set of finite-volume “kink” and “antikink” states and next indicate what the possible

thermodynamic limits are. In the case S = 1/2 proofs can be found in [7]. The formulas

defining the finite-volume states for arbitrary S were first given in [8]. Generalization of

the thermodynamic limits to arbitrary S is straightforward.

It is convenient to define q ∈ (0, 1] such that ∆ = (q + q−1)/2. For all x ∈ IR, define

φ(x) ∈ C2S+1 by

φ(x) =

S∑
m=−S

qx(S−m)

√
(2S)!

(S −m)!S +m)!
|m〉 (6)

where {|m〉 | −S ≤ m ≤ S} is an orthonormal basis of eigenvectors of S3 satisfying

S±|m〉 =
√

(S ∓m)(S ±m+ 1)|m± 1〉
where S± = S1 ± iS2. Consider Λ = [−L,L]. For any x0 ∈ IR we define ψ(L, x0) ∈
(C2S+1)⊗2L+1 by

ψ(L, x0) =

L⊗
x=−L

φ(x− x0). (7)

It is not hard to show that the set of vectors {ψ(L, x0) | x0 ∈ IR} spans the kernel of the

following modification of the local Hamiltonian

Hkink
L = −

L−1∑
x=−L

1

∆
(S1
xS

1
x+1 + S2

xS
2
x+1) + (S3

xS
3
x+1 − S2) + S

√
1−∆−2(S3

x+1 − S3
x). (8)

Note that the last term in the interaction yields a boundary term when summed over an

interval. Therefore,

lim
Λ↑Z

[HΛ, X] = lim
L→∞

[Hkink
L , X], for all X ∈ Aloc

and the set of ground states, i.e., solutions of (3), is not affected by the presence of these

terms.

Next, we describe the set of thermodynamic limits of these finite volume states. First

of all, as is easy to see, the two translation invariant ground states, ω↑ and ω↓, can be

obtained as weak limits of the finite-volume kink states:

ω↑(A) = lim
L→∞

〈ψ(L,−L), Aψ(L,−L)〉
‖ψ(L,−L)‖2

ω↓(A) = lim
L→∞

〈ψ(L,L), Aψ(L,−L)〉
‖ψ(L,L)‖2

ω↑ and ω↓ are pure and mutually disjoint. Any other pure states are mutually equivalent

and disjoint from the two translation invariant states. They can be represented as vector

states in the GNS Hilbert space of any one of them, which we call Hkink. A weak limit

of the kink states is disjoint from ω↑ and ω↓ iff

lim
x→−∞

ω(S3
x) = −S, and lim

x→+∞
ω(S3

x) = +S.
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All weak limits that are disjoint from the translation invariant states are normal, i.e.,

they are represented by a density matrix on Hkink. Complete proofs of these statements

are given by Gottstein and Werner in [7] for the case S = 1/2. Generalization to arbitrary

S is straightforward.

Theorem 3 ([13, 18]). (i) All the ground states in the sense of (3) of the isotropic

ferromagnetic Heisenberg chain (∆ = 1), for any S ≥ 1/2, are translation invariant.

(ii) The set of translations invariant states, kink and antikink states described above,

is the complete set of ground states in the sense (3) of the anisotropic ferromagnetic XXZ

chains (any S ≥ 1/2, ∆ > 1).

The case S = 1/2, ∆ > 1, was proved by Matsui [13], the other cases, including the

isotropic models which are gapless, are in [18].

Theorem 4 ([17],[19]). For d = 1, any S ≥ 1/2, and any ∆ > 1, the XXZ model has

a gap in any of its pure kink and antikink ground states. In the case of S = 1/2 the exact

gap is given by

γ = 1− 1

∆
which is identical to the gap in the translation invariant states. If S ≥ 1 the gap in a kink

or an antikink state is strictly less than in the translation invariant states.

2.3. Diagonal interfaces in higher dimensions. One can show that in any dimension

d ≥ 1 the anisotropic XXZ ferromagnet has ground states with a rigid interface in the

11 · · · 1 direction [19]. If d ≥ 2 these interfaces have gapless excitations. This was first

shown by Koma and Nachtergaele in d = 2 and later generalized by Matsui to all dimen-

sions d ≥ 2 [14].

2.4. Other interfaces in higher dimensions. In three and more dimensions the ex-

istence of ground states (and equilibrium states at sufficiently low temperatures) with

interfaces in the 100 direction can obtained for sufficiently large ∆ by the expansion

technique of Borgs, Chayes and Fröhlich [1, 2].

3. Interface Gibbs states of the Falicov-Kimball model. We will limit the

discussion to the three-dimensional model. In analogy with the situation for the Ising

model we do not expect that interface equilibrium states exist in one or two dimensions.

In dimensions greater than three, on the other hand, there is little doubt that interface

states exist and that there existence can be proved by the same methods as in three

dimensions. Therefore, we now discuss only the three-dimensional model.

Our analysis starts from the Ising-type Hamiltonian that one obtains by, following

[16], integrating out the fermionic variables of the Falicov-Kimball model (2) in their

equilibrium state for a fixed configuration {W (x)}. This can be done unambiguously

as the equilibrium state for the spinless free fermions in a potential is unique. After

performing the transformation

sx = (−1)|x|(2W (x)− 1)
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this leads to an effective Hamiltonian for the variables {sx} with a ferromagnetic nearest

neighbor interaction and a host of other terms that involve multispin interactions of

arbitrary order:

Heff
Λ ({sx}) = −J(U)

∑
{x,y}∩Λ 6=∅
|x−y|=1

sxsy +
∑

B∩Λ 6=∅
|B|≥2

RB(U) (9)

where J(U) = 1/4U +h.o. > 0, where h.o. meaning terms of higher order in U−1 starting

with U−3. RB is translation invariant and can be shown to satisfy a bound of the form∑
B30

|RB |ern(B) <∞ (10)

for some r > 0, and where n(B) is the length of the shortest closed path in the lattice

visiting all sites in B at least once.

3.1. A. The 100 interface. The 100 interface, by which we mean any flat interface

oriented perpendicular to one of the three coordinate directions in the lattice, is essentially

the same as the well-known Dobrushin interfaces. One only has to show that the higher-

order terms in the Hamiltonian (9) do not destroy it. Given the summability property

(10) it is not surprising that this can be done.

Theorem 5 ([6]). There exist constants U0, C, and D, such that for all U > U0, and

β > DU there exists a Gibbs state ω100 of the half-filled three-dimensional Falicov-Kimball

model with the properties

ω100(σx) ≥ mβ − Ce−β/2U if x1 ≥ 1

ω100(σx) ≤ −mβ + Ce−β/2U if x1 ≤ −1

where mβ > 0 is the magnetization in the homogeneous phases at inverse temperature β.

3.2. B. The 111 interface. The standard Ising model does not have a 111 interface

due to the degeneracy of the ground states of the finite-volume Hamiltonians with the

boundary conditions that could be expected to produce it, are of order ecL
2

. This leads

to fluctuations in its position of order
√

logL, [22]. In the case of the Falicov-Kimball

model the 111 interface is stable at sufficiently low temperatures and in this the terms of

order U−3 in the effective Hamiltonian (9) play a crucial role.

The leading coefficients of the relevant terms of order U−3 are such that stepped

interfaces are favored over flat ones as can be seen from the following expressions

hp

(
+ +

+ −

)
= − 16U−3 + h.o

hp

(
+ −
+ −

)
= − 12U−3 + h.o

hp

(
+ −
− +

)
= 0 + h.o

h{x,z}
(

+ − +
)

= 0 + h.o

h{x,z}
(

+ − −
)

= − 2U−3 + h.o
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Here, h.o denotes U−5 and higher powers of U−1. The subscript p denotes a plaquette,

and the reflections and rotations of the spin configurations indicated have the same en-

ergy. The pairs {x, z} are such that |x − z| = 2 and again there are identical terms

for reflected and spin-flipped configurations. That the signs of these terms are such

that a 111 interface is indeed stable, is a consequence of the fermion commutation re-

lations. A Falicov-Kimball model with hard core bosons would not have a stable 111

interface.

Theorem 6 ([6]). There exist constants U0, C, and D, such that for all U > U0,

and β > DU3 there exists a Gibbs state ω111 of the half-filled three-dimensional Falicov-

Kimball model with the properties

ω111(σx) ≥ mβ − Ce−3β/2U3

if x1 + x2 + x3 ≥ 1

ω111(σx) ≤ −mβ + Ce−3β/2U3

if x1 + x2 + x3 ≤ −1

where mβ > 0 is the magnetization in the homogeneous phases at inverse temperature β.

We expect that the Falicov-Kimball model has stable interfaces in other directions as

well, but even higher order terms in the Hamiltonian will play a role, and, consequently

their stability will require even lower temperatures. E.g., we expect that the 112 interface

is stabilized by terms of order U−5. One can expect that the Falicov-Kimball model has

infinite number of interface phase transitions.

4. Outlook. The next step in the study of interfaces in the XXZ models would be

the case of (sufficiently small) positive temperatures. In dimensions 3 and up we expect

that Gibbs states with a domain wall exist for the anisotropic model. The situation of the

isotropic model is less clear. In fact, for the isotropic ferromagnetic Heisenberg model a

proof of the existence of translation invariant ordered phases has not yet been found. For

the XXZ model at finite temperatures we do not have definite results on 111 interface

states at this moment. The results for the simpler, but to some extent similar, Falicov-

Kimball model described in the previous section can be considered as a first step and

work on the XXZ model is now in progress. The existence of 100 interfaces at sufficiently

low temperatures for the anisotropic XXZ ferromagnet in dimensions ≥ 3 follows from the

general results of Borgs, Chayes, and Fröhlich [1, 2], which are obtained by a perturbation

expansion.

Quantum interfaces should exhibit new properties also out of equilibrium. Although

we are just starting to understand how to construct examples of dynamical semigroups

for quantum spin systems, we believe that interfaces could be a good testing ground

for studying these dynamics. The issue of metastable states raises a set of particularly

interesting questions. For the Ising model the theory of metastable states is quite advanced

and very detailed results have recently been obtained by Schonmann and Shlosman [23].

The technical difficulties one is faced with in the quantum case seem quite forbidding,

but interesting progress has been made by Majewski, Olkiewicz and Zegarliński [20, 21].

It would be interesting to investigate the dynamics of domain walls and droplets using

the dynamical semigroups constructed by these authors.
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