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Abstract. We show that recently introduced noncommutative Lp-spaces can be used to

constructions of Markov semigroups for quantum systems on a lattice.

1. Introduction. The aim of this paper is to give a brief exposition of explicit con-

structions of some quantum dynamical semigroups of Markov type with a clear physical

interpretation. To define such a semigroup let us consider a von Neumann algebra (M,

‖·‖) (in general,M can be a ∗-algebra with unit 1) which contains aC∗-algebraA with the

same unit. We will be interested in (Markov) semigroups IR+ ∋ t 7→ Pt : M → M such

that: (i) Pt is a strongly continuous map for each t ∈ IR+; (ii) Pt(1) = 1; (iii) Pt(f
∗f) ≥ 0

for any f ∈ M; (iv) Pt preserves a given state ϕ on M, i.e. ϕ(Ptf) = ϕ(f) for any t and

f ; (v) Pt satisfies a detailed balance condition of the form (f, Ptg)Hϕ
= (Ptf, g)Hϕ

where

Hϕ is a Hilbert space containing M with inner product defined by ϕ in such a way that

(1, f)Hϕ
= ϕ(f), and finally, (vi) Pt possesses the Feller property, i.e. Pt(A) ⊂ A.
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To have quantum counterparts of classical Markov semigroups with interesting ergodic

properties we are also interested in quantum Markov semigroups Pt with some additional

properties: i. exhibiting a return to equilibrium Ptf →t→+∞ ϕ(f)1 for f ∈ M, and

ii. having the hypercontractivity property ‖Ptf‖Lp(ϕ) ≤ ‖f‖L2(ϕ) for p > 2, t ≥ T0 where

‖ · ‖Lp(ϕ) stands for a norm on M defining the noncommutative Lp-space while T0 is a

positive constant depending on p.

The paper is organized as follows: in Section 2 we briefly sketch a general strategy for

constructing jump type semigroup dynamics, in Section 3 we review some of the standard

facts on Quantum Spin Systems. Section 4 deals with Quantum Glauber and Kawasaki

types of dynamics, while Section 5 is devoted to the study of existence and ergodicity of

translation invariant Markov semigroups. In Section 6 we present a brief discussion of

quantum diffusion for spin systems. In the final Section 7 we indicate briefly new results

concerning the hypercontractivity in noncommutative Lp spaces.

2. General strategy of construction of jump type dynamics. In this section

we will be concerned with a general construction of jump-type stochastic dynamics (see

[1], [8], [9], [10]), i.e. we want to get a Markov semigroup Pt ≡ etL : M → M, t ∈ IR+

where

L ≡
∑

i

(Ei − 11),

and Ei is a completely positive map on M preserving 1.

To carry out such a construction let us assume that M is a von Neumann algebra, ϕ1

a faithful state on M (in further applications ϕ1 will be taken as a locally normal state).

The modular automorphism related to the pair (M, ϕ1) will be denoted by σ1
t . Let us

define on M the following inner product (cf. [7], [8], [9]):

< f, g >1,s
def
= ϕ1((σ

1
is
2
(f)∗(σ1

is
2
(g)))

where s ∈ [0, 1], and f, g are analytic elements in M for the modular automorphism σ1
t .

The closure of M with respect to the norm induced by the above inner product leads

to a Hilbert space H1,s associated with (M, ϕ1). To simplify notation we will use the

convention

< f, g >1,s= 1
2
≡< f, g >1

Let E0 be a conditional expectation, i.e. E0(f
∗f) ≥ 0, E0(1) = 1, E2

0 = E0. We

define

ϕ2(·)
def
= ϕ1 ◦E0(·).

Suppose ϕ2 is another faithful state on M. Then, the Takesaki theorem implies that E0

commutes with σ2
t (the modular automorphism for (M, ϕ2)) and hence is symmetric in(

H2, 12
, < ·, · >2, 12

≡< ·, · >2

)
.

Let Vt ≡ (Dϕ1 : Dϕ2)t be the Radon-Nikodym cocycle. We remind that, in particu-

lar, σ1
t (f) = V ∗

t σ
2
t (f)Vt. The main difficulty in carrying out the presented construction

of the Markov generator is the existence of analytic extension of IR ∋ t 7→ Vt ∈ M. The

following condition guarantees the desired extension (see [4]):
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Suppose there exists a positive constant c ∈ (0,∞) such that for any 0 ≤ f ∈ M the

following inequalities hold:
1

c
ϕ1 ≤ ϕ2(f) ≤ cϕ1(f).

Then, Vt extends analytically to − 1
2 ≤ Imz ≤ 1

2 and ξ ≡ Vt|t=− i
2
is a bounded operator

in M. Let us note that the above inequalities also guarantee that ϕ2 is a faithful state

provided that ϕ1 has this property. We can now formulate the main result of this section

(cf. [9]):

Theorem 1. Assume that ξ ≡ Vt|t=− i
2
is a bounded operator in M and define

E(f)
def
= E0(ξ

∗fξ).

Then, the generalized conditional expectation E(·) is well defined and it has the following

properties :

E(1) = 1, E(f∗f) ≥ 0, < E(f), g >1=< f,E(g) >1 .

This theorem ensures that the operator given by:

L
def
= E− 11

is a well defined Markov generator.

3. Applications to Quantum Spin Systems. This section contains a brief ex-

position of basic features of quantum systems on a lattice (cf. [3]). We begin with a

definition of the basic C∗-algebra; a C∗-algebra A, with norm || · ||, is defined as the

inductive limit over a finite dimensional complex matrix algebra M. By analogy with the

classical commutative spin systems it is natural to view A as a noncommutative analogue

of the space of bounded continuous functions. To every finite set X of the lattice ZZd,

(which is denoted later on by X ⊂⊂ ZZd), we associate a subalgebra AX of operators lo-

calized in the set X . Let F denote the family of all finite subsets of ZZd. For an arbitrary

subset Λ ⊂ ZZd one defines AΛ to be the smallest (closed) subalgebra of A containing⋃
{AX : X ⊂⊂ ZZd, X ⊂ Λ}. An operator f ∈ A will be called local if there is some

Y ⊂⊂ ZZd such that f ∈ AY . The subset of A consisting of all local operators will be

denoted by A0.

Together with the algebra A we are given the family TrX , X ⊂⊂ ZZd, of normalized

partial traces on A. We recall that the partial traces TrX have all natural properties of

classical conditional expectations. Moreover the family {TrX : X ⊂⊂ ZZd} is compatible

in the similar sense as conditional expectations and one can see that there is a unique

state Tr on A, called the normalized trace, such that

Tr (TrXf) = Tr (f)

for every X ⊂⊂ ZZd, i.e. the normalized trace can be regarded as a (free) Gibbs state in

the similar sense as in the classical statistical mechanics.

A system with an interaction is described using a notion of an interaction potential,

i.e. a family Φ ≡ {ΦX ∈ AX}X⊂⊂ZZd of selfadjoint operators in A. A Banach space of
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potentials satisfying

‖Φ‖n ≡ sup
i∈ZZd

∑

X⊂⊂ZZd

X∋i

|X |n−1‖ΦX‖ < ∞

will be denoted by IBn. The potentials in IB1 will be called Gibbsian. A potential

Φ ≡ {ΦX}X⊂⊂ZZd is of finite range R ≥ 0 iff ΦX = 0 for all X ∈ F , diam(X) > R. The

corresponding Hamiltonian HΛ in Λ ⊂⊂ ZZd is defined by

HΛ
def
= HΛ(Φ) ≡

∑

X⊂Λ

ΦX .

Using the Hamiltonian HΛ we introduce a density matrix ρΛ ≡ e−βHΛ/Tre−βHΛ with

β ∈ (0,∞), and define a finite volume Gibbs state ωΛ by

ωΛ(f)
def
= Tr (ρΛf)

It is known, see e.g. [3], that for β ∈ (0,∞) the limit state ω ≡ limF0 ωΛ (defined with

some exhaustion F0 of the lattice) exists and is faithful on A. For a quantum spin system,

we can also introduce a natural Hamiltonian dynamics defined in a finite volume as the

following automorphism group associated to a potential Φ:

αΛ
t (f) ≡ e+itHΛfe−itHΛ .

With this dynamics one has the following KMS condition for the finite volume state ωΛ:

ωΛ(f
∗g) = ωΛ(α

Λ
−iβ(g)f

∗)

If Φ ∈ IB2, then the following limit exists, [13]:

αt(f) ≡ lim
F0

αΛ
t (f)

for every f ∈A0, where Λ→ZZd through a Fisher sequence F0, where F0 is an increassing

sequence of finite volumes invading all the lattice ZZd. The generator of this automorphism

group αt is given on the local elements by

δΦ(f) ≡ lim
F0

δΦ,Λ(f) ≡ lim
F0

i[HΛ(Φ), f ]

where [F1, F2] ≡ F1F2 − F2F1 stands for the commutator of two operators F1 and F2.

The infinite volume state ω is called an (αt, β)-KMS state. By M we will denote the

von Neumann algebra obtained via GNS construction using the state ω, i.e. M ≡ (weak)-

closure{πω(A)}. We denote by ϕ1 the weak extension of ω on M. M can be equipped

with the following inner product:

< πω(f), πω(g) >1≡ lim
Λ↑ZZd

Tr{(̺
1
4

Λf̺
1
4

Λ)
∗(̺

1
4

Λg̺
1
4

Λ)}

where ̺Λ is the density matrix of the (αt, β)-KMS state ω restricted to AΛ with respect

to Tr, i.e. ω(·)|AΛ
= Tr{̺Λ·}. We recall that using Lieb-Epstein concavity results, [5],

[6], one can show that for p ∈ (2,∞)

{‖f‖p,Λ}Λ ≡ {
(
Tr|̺

1
2p

Λ f̺
1
2p

Λ |p
) 1

p }Λ

converges for any f ∈ A0 (as Λ ↑ ZZd). This leads to the well defined family of norms on

M and the well defined inner product on M. Using them, we can define an interpolating
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family of (quantum) ILp(ω), 1 ≤ p ≤ ∞ spaces associated to quantum system on a

lattice, cf. [7]-[10] and [14]. In particular, for p = 2 we have the Hilbert space Hϕ1 with

the above defined inner product.

4.Quantum Glauber and Kawasaki types dynamics. In this section we indicate

how techniques introduced in Sections 2 and 3 may be used in the construction of Markov

semigroups. The first model can be considered as a quantum counterpart of generalized

Glauber dynamics (see also Section 5, Remarks 3 and 4). Again, let M denote the von

Neumann algebra obtained via GNS construction using the state ω. The partial trace

TrX , for X ⊂⊂ ZZd, can be naturally extended to this von Neumann algebra. Namely

E0,X(f) ≡ TrXf
def
=
\
dνX(U)πω(U)∗fπω(U)

where dνX is the Haar measure on the set of all unitaries in AX . Using it we can introduce

the following generalized conditional expectation ([1], [2], [7], [8]):

EX(f)
def
= TrX(γ∗

XfγX)

with some bounded operator γX ∈ M. The next theorem says that this definition is

perfectly legitimate for a class of quantum spin systems. Namely, denoting ϕ2
def
= ϕ1◦E0,X

and by IBexp the following class of potentials:

||Φ||exp ≡ sup
i∈ZZd

∑

X⊂⊂ZZd

X∋i

eε|X|||ΦX || < ∞

for some ε > 0, we have (cf. [9])

Theorem 2. Suppose a system with interaction Φ ∈ IBexp is at high temperatures

|β| < β0, with some β0 > 0 sufficiently small , or the system is one dimensional , has finite

range interaction but its temperature is arbitrary β ∈ (0,∞). Then, for some positive

c ∈ (0,∞)
1

c
ϕ1(f

∗f) ≤ ϕ2(f
∗f) ≤ cϕ1(f

∗f).

Hence, the corresponding Radon-Nikodym cocycles have analytic extension and therefore

γX
def
= (Dϕ1 : Dϕ2)|t=− iβ

2
∈ M. Hence

EX(f)
def
= TrX(γ∗

XfγX)

defines a generalized conditional expectation which is symmetric in Hϕ1 .

Using the above generalized conditional expectation one can define the following ele-

mentary bounded Markov generator:

LX(f) ≡ EX(f)− f

Corollary. The Markov semigroup given on M by

Pt
def
= etLX

satisfies

< Ptf, g >1 = < f, Ptg >1 .
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This corollary gains in interest if one realizes that Pt is a semigroup of selfadjoint

contractions (the last property of Pt follows from the definition of LX and the fact that

EX is a selfadjoint contraction). Namely, for any selfadjoint semigroup of contractions

one has

lim
t→+ ∞

Pt = Q

where Q is an orthogonal projection. In other words, such a dynamics manifests a return

to equilibrium. Let us add that the state ϕ1 is Pt-invariant:

ϕ1(Ptf) =< Ptf,1 >1=< f, Pt1 >1=< f,1 >1= ϕ1(f).

Clearly, it would be desirable to formulate conditions which guarantee the uniqueness of

the limit state. This type of ergodicity will be considered in the next section.

To describe the next example of construction let us take as a true conditional expec-

tation the map E0,X

E0,X(f) ≡ τX(f)
def
=

1

2
(id+ ax)(f)

where the map aX : M → M is so chosen that: 1. a2X = id, 2. aX(πω(f)) = πω(f)

for f ∈ AZZd\X , and 3. TrX(aX(f)) = TrX(f). Define ϕ̃2
def
= ϕ1 ◦ E0,X . To give the

appropriate Markov generator for this type dynamics we need (cf. [10]):

Theorem 3. Suppose a system with interaction Φ ∈ IBexp is at high temperatures

|β| < β0, with some β0 > 0 sufficiently small , or the system is one dimensional , has finite

range interaction but its temperature is arbitrary β ∈ (0,∞). Then, for some positive

c ∈ (0,∞)
1

c
ϕ1(f

∗f) ≤ ϕ̃2(f
∗f) ≤ cϕ1(f

∗f).

Hence, the corresponding Radon-Nikodym cocycles have analytic extension and therefore

ηX
def
= (Dϕ1 : Dϕ̃2)|t=− iβ

2
∈ M. Hence

ΛX(f)
def
= TrX(η∗XfηX)

defines a generalized conditional expectation which is symmetric in Hϕ1 .

Again, this theorem allows us to define a Markov semigroup on M by Pt
def
= etL, with

generator L ≡ ΛX − 11, which satisfies

< Ptf, g >1=< f, Ptg >1 .

Example (Quantum Kawasaki dynamics). Put X ≡ {i, j} where i, j ∈ ZZd and set

aX ≡ ιXc ⊗ Tij

where ιXc is the unit automorphism on πω(AZZd\X), and Tij is the exchange automor-

phism on πω(AX) defined by

Tij(e
l
i ⊗ ekj )

def
= eki ⊗ elj ,

eli⊗ekj , k, l=1, 2, . . . , dimM , is a basis of πω(AX). Obviously, all assumptions for the map

aX (so also for our construction) are satisfied. Therefore, we obtain a Markov semigroup

which can be considered as a quantum counterpart of generalized Kawasaki dynamics.
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We close this section with the following open problem:

Question. Could the high-temperature condition of Theorems 2 and 3 be omitted?

5. Translation invariant Markov semigroups. Using the elementary Markov

generators introduced in the previous section we wish to define

L(X) def
= lim

Λ↑ZZd
L
(X)
Λ ≡ lim

Λ↑ZZd

∑

l∈Λ

LX+l

where LX+j ≡ EX+j − 11 with EX+jf ≡ E0,X+j(ξ
∗
X+jfξX+j) constructed for a system

with (finite range) interaction Φ. In other words we wish to get a translation invariant

Markov semigroup with interesting ergodic properties. To give an example of conditions

implying the existence of the corresponding translation invariant generators we define:

∂k
def
= Tr{k} − 11.

δΨ(f)
def
= limΛ↑ZZd i[HΛ(Ψ), f ], for Ψ ∈ IB2.

d(k,X + j)
def
= the distance between the site k and the set X + j.

Then, we have ([11], [12]):

Theorem 4. Suppose LX+j ≡ TrX+j(ξ
∗
X+j(·)ξX+j)−11 is a Markov generator defined

with the (bounded) operators ξX+j satisfying the following condition:

||∂kξX+j ||M ≤
c

(d(k,X + j) + 1)d+ε

for any k, j ∈ ZZd with some positive constants ε and c. Then, the infinite volume limit

Ptf
def
= lim

Λ↑ZZd
et(L

(X)

Λ
+λδΨ)f

exists for any λ ∈ IR and any local f . Moreover there are positive constants λ0 and c0
such that if c < c0 and |λ| < λ0, then the semigroup Pt is strongly ergodic in the sense

that

|||Ptf ||| ≤ e−mt|||f |||

with some m ∈ (0,∞) independent of f .

If additionally, Ptπω(A) ⊆ πω(A) then

||Ptf − ϕ1(f)1|| ≤ 2e−mt|||f |||

for f ∈ πω(A). Here the seminorm ||| · ||| is defined as follows :

|||f ||| ≡
∑

j∈ZZd

||∂jf ||.

As an application of the above theorem we describe an example of a Markov semigroup

with the Feller property. To this end let Acl⊂A be the smallestC∗-subalgebra containing

{σi ∈ A{i} ≡ M; i ∈ ZZd}. In other words, Acl is the algebra representing the set of

classical observables. To describe classical interactions we take a classical potential

Φcl ≡ {ΦX ∈ Acl}X⊂⊂ZZd .

We note that such an interaction leads to the hamiltonian dynamics (defined in the same

way as described in Section 3) which leaves Acl pointwise invariant, but it is not trivial
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on A. Moreover, using the prescriptions given in Sections 2 and 3, if Φcl ∈ IB1, we can

define a Gibbs state on A and the generalized conditional expectation

EX(f)
def
= TrXγ∗

XfγX

with γX ∈ Acl. Let Ψ be an arbitrary potential of finite range (in general, not a classical

one). We set

LΛ ≡
∑

i∈Λ

(EX+i − 11) + λδΨ

where λ ∈ IR. Now we are in a position to give the promised example of a Markov

semigroup with the Feller property (cf. [11], [12]).

Theorem 5. The Markov semigroup

Pt = lim
Λ↑ZZd

etLΛ ≡ et(L
(X)+λδΨ)

is a well defined dynamical semigroup satisfying

Pt(A) ⊆ A.

Let us give some remarks on the translation invariant Markov semigroups described

in this section:

R ema r k s. 1. Suppose the semigroup etL
(X)

is ergodic. Then Pt ≡ et(L
(X)+λδΨ) is

also ergodic provided that |λ| < λ0 for some λ0 ∈ (0,∞).

2. Suppose the finite range potential Ψ is equal to the classical one Φ. Then, a Gibbs

state corresponding to the potential βΦ is Pt-invariant.

3. Suppose Ψ = Φ. Then, Pt|Acl ≡ etL
(X)

|Acl is the Glauber dynamics.

4. Assume Ψ = Φ. Then, direct calculations show that {LX+j , j ∈ ZZd, X ⊂⊂ ZZd} do

not commute with the modular automorphism group associated with the pair (A, Gibbs

state defined by Φ). Therefore, Pt = et(L
(X)+λδΦ) is a nontrivial extension of Glauber

dynamics.

5. Dirichlet forms associated with L(X) and L(Y ) in the (noncommutative) Hilbert

space H1 ≡ IL2(ϕ1,
1
2 ) are equivalent for any X,Y ⊂⊂ ZZd. Consequently, the strong

ergodicity of etL
(X)

implies IL2-ergodicity of etL
(Y )

for any Y ⊂⊂ ZZd.

6. Set Ψ = 0. Then, we get as a special case the Accardi-Matsui semigroup

Pt ≡ etL

with the generator L =
∑

j∈ZZd Lj , where Ljf ≡ TrX+j(a
∗
X+jfaX+j) − f , and aX+j ≡

TjaX , aX ∈ AY , X ⊂ Y ⊂⊂ ZZd (Tj is the translation automorphism on the lattice).

We close this section with another open problem.

Question. Give an example of quantum interactions Φ satisfying the assumptions of

Theorem 4.

6. Quantum diffusions for spin systems. To describe this type of dynamics let

us denote by αt the hamiltonian automorphism on A which corresponds to a finite range

potential Φ. We need to assume that the following condition is true ([8]).
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Definition. We say that the system (A, αt) possesses the Asymptotic Abelianness

(AA) property iff
+∞\
−∞

||δαt(x)(f)||dt < +∞

for any f in a dense subalgebra Ã in A and for any x ∈ Mj ≡ Tj(M0) where M0 ⊂ Ms.a.

is a finite subset in the self-adjoint part of the matrix algebra M associated with a site

of the lattice.

We can now formulate a result describing the Dirichlet form of Quaegebeur, Stragier,

Verbeure (QSV), [15], Markov generators (cf. [7], [8]).

Theorem 6. Suppose the condition of Asymptotic Abelianness is satisfied. Then, for

any temperature β, any s ∈ [0, 1], and any x ∈ Mj , j ∈ ZZd, there exists a real kernel Ks

(a positive definite function belonging to IL1(IR, dr)) such that

Ex(f, g) =

+∞\
−∞

dudvKs(u− v) < δαu(x)(f), δαv(x)(g) >ωβΦ,s

is a Dirichlet form of a QSV Markov generator in IL2(ωβΦ, s) where ωβΦ is the Gibbs

state determined by the potential Φ and temperature β.

To state the next result we need to introduce the following condition, (in which we

adopt the above notation).

Definition. We say that the system (A, αt) possesses the Hyper Asymptotic Abelian-

ness (HAA) property if Ã = A0 and for any f ∈ Ã there exists ǫ > 0 such that

‖δαt(ej)(f)‖ ≤ c(f)(1 + |t|)−
(d+1+ǫ)

2

for every ej ∈ Mj , t ∈ IR where c(f) is a positive constant depending on f .

The existence of translation invariant dynamics of diffusive type is described in (cf.

[7], [8]):

Theorem 7. Suppose the condition of Hyper Asymptotic Abelianness is satisfied.

Then

E(f, g) ≡
∑

j∈ZZd

Eej (f, g)

is a (densely defined) Dirichlet form of a Markov generator L in IL2(ωβΦ, s).

The condition HAA is essential as it allows one to use the finite speed of propagation

estimate of Robinson-Lieb to get a dense domain for E . We close this section with another

open question:

Question. Give an example of quantum interactions Φ for which the corresponding

hamiltonian dynamics satisfies HAA.

7. Hypercontractivity in noncommutative ILp spaces. Given an interpolating

family {Lp(ϕ)}p∈[1,∞) of noncommutative spaces associated to a Gibbs state ϕ one can
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naturally consider stronger notions of contractivity properties of Markov semigroups. In

particular one can define the hypercontractive Markov semigroup by the condition

‖Ptf‖Lq(ϕ) ≤ ‖f‖Lp(ϕ)

for some 1 < p < q < ∞, t ≥ Tp,q, with Tp,q being a positive constant depending

on p and q. The usefulness of this property in the theory of Markov semigroups in the

commutative case is well known. In particular it provides a very strong tool for proving

strong ergodicity of semigroups on infinite dimensional spaces (see e.g. references in [11]

and [14]). Because the semigroup Pt is uniquely defined by its generator L, it is natural

and very useful to express the properties of Pt in terms of L. In the classical Lp spaces

the sufficient and necessary condition for the hypercontractivity is given by the following

Logarithmic Sobolev (LS) inequality:\
f2 ln |f |dµ ≤ c < f, (−L)f > + ‖f‖22 ln ‖f‖2.

In [14] we have begun to study the corresponding infinitesimal description of hypercon-

tractivity; here we restrict ourselves to brief remarks concerning this direction (for a more

detailed account on this subject see [14]). Using the local structure of Lp(ϕ) we define a

curve passing through positive cones L+
p (ϕ) by:

Xf
q (s) = Iq+s,q(f), f ∈ L+

q (ϕ), s ≥ 0.

Here Iq,p denotes the map from L+
p (ϕ) to L+

q (ϕ), which in local spaces Lp(ϕΛ) is much

less trivial than in the commutative case and is given explicitly by:

Iq,p(fΛ) = ρ
−1/2q
Λ (ρ

1/2p
Λ fΛρ

1/2p
Λ )p/qρ

−1/2q
Λ .

Because L+
q+s ⊂ L+

q , we can consider s → Xf
q (s) as a curve in one Banach space Lq(ϕ)

and define

Tq(f) = −q
d

ds
Xf

q (s)|s=0,

if the corresponding derivative exists. Locally we get

Tq(fΛ) = fΛρ
1/2q
Λ (ln ρ

1/2q
Λ fΛρ

1/2q
Λ )ρ

−1/2q
Λ − 1/2q(fΛ ln ρΛ + (ln ρΛ)fΛ).

Hence the noncommutative analogue of the classical LS(c, d) inequality takes the following

form for f ∈ L+
2 (ϕ) :

< f, T2(f) > − ‖f‖22 ln ‖f‖2 ≤ c < f, −Lf > + d‖f‖22.

It is worth pointing out that in the noncommutative case this inequality is a’priori a

weaker condition than the hypercontractivity of the semigroup Pt = etL. This is because

one needs extra Lp regularity of the corresponding Dirichlet form which again is much

less trivial than in the classical case. Nevertheless this inequality already implies useful

properties of the generator L; for example LS(c, d = 0) inequality gives the spectral gap

property for L.

Question. Give an example of quantum interactions Φ for which the corresponding

Markov semigroup is hypercontractive.
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