DILATION THEOREMS FOR COMPLETELY POSITIVE MAPS AND MAP-VALUED MEASURES

EWA HENSSZ-CHĄDZIŃSKA, RYSZARD JAJTE and ADAM PASZKIEWICZ

Faculty of Mathematics, Łódź University
ul. Banacha 22, 90-238 Łódź, Poland
E-mail: ewahensz@math.uni.lodz.pl, rjajte@math.uni.lodz.pl, adampasz@math.uni.lodz.pl

Abstract. The Stinespring theorem is reformulated in terms of conditional expectations in a von Neumann algebra. A generalisation for map-valued measures is obtained.

1. Introduction. Traditionally, each dilation theorem is obtained by a construction of a ‘huge’ (Hilbert) space \(\mathcal{H} \) containing a given space \(H \) in the following manner. A system \(\psi(\cdot) \) of operators in \(H \) or transformations of an algebra acting in \(H \) can be represented in the form

\[
\psi(\cdot) = P_H \Phi(\cdot) P_H |_H \quad (1.1)
\]

where \(\Phi(\cdot) \) is more regular than \(\psi(\cdot) \). Throughout, \(P_H \) denotes the orthogonal projection of \(\mathcal{H} \) onto \(H \).

The most impressive results in this theory are effects of sophisticated indexing of linear bases of \(\mathcal{H} \) and a ‘magic touch’ of scalar product. Theorems of B. Sz.-Nagy [9] and K.R. Parthasarathy [5] are excellent examples of such approach.

Dealing with operator algebras it seems to be most natural and physically meaningful to use the conditional expectation \(E \) [7, p.116] instead of \(P_H(\cdot)P_H \) (cf L. Accardi, M. Ohya [1]).

In the paper we follow both ideas. Roughly speaking we represent a completely positive map-valued measure via the following dilation. Namely, any completely positive map turns into multiplication by a projection in such a way that the map-valued measure is ‘dilated’ to a spectral measure (Section 2).

1991 Mathematics Subject Classification: 46L50, 28B05.

Key words and phrases: dilation, von Neumann algebra, completely positive map, map-valued measure.

Research supported by KBN grant 2P03A 048 08.

The paper is in final form and no version of it will be published elsewhere.
The outstanding theorem of Stinespring [6] gives the dilation of a completely positive map \(\psi \) in a \(C^* \)-algebra to its \(* \)-representation \(\Phi \) via formula (1.1). Passing to a \(W^* \)-algebra Stinespring’s theorem can be formulated using a normal conditional expectation \(E \) from a ‘huge’ algebra \(N \) onto \(M \) instead of \(P_H(\cdot)P_H \). Such a new version of Stinespring’s result will be proved in Section 3 together with a dilation theorem for positive map-valued measures.

Section 4 is devoted to a short comparison of the results just mentioned with the previous ones concerning commutative \(W^* \)-algebras.

2. Dilation of completely positive map-valued measure. Let \(M \) be a von Neumann algebra of operators acting in a Hilbert space \(H \). By \(CP(M) \) we shall denote the set of completely positive linear maps in \(M \). Let \((X, \Sigma) \) be a measurable space and \(Q : \Sigma \to CP(M) \) be a \(\sigma \)-additive operator-valued measure (i.e. \(\Sigma \ni \Delta \mapsto Q(\Delta)x \) is \(\sigma \)-additive in the ultra weak topology in \(M \) for each \(x \in M \) with \(Q(X)1 = 1 \).

Theorem 2.1. There exist a Hilbert space \(H \), a natural linear injection \(V : H \to H \), a \(\sigma \)-additive vector measure \(e : \Sigma \to \text{Proj} H \), such that
\[
Q(\Delta)x = V^* e(\Delta)\Phi(x)V, \quad x \in M, \quad \Delta \in \Sigma.
\] (2.1)

Moreover, \(e(\Delta) \) is a central projection in \((\Phi(M) \cup e(\Sigma))'' \).

Proof. Let us consider the algebraic tensor product of vector spaces
\[
H_0 = M \otimes H \otimes SF(X, \Sigma)
\]
where \(SF(X, \Sigma) \) denotes the vector space of simple functions on \((X, \Sigma) \).

Let us extend the measure \(Q \) from \(\Sigma \) to a linear mapping on \(SF(X, \Sigma) \) putting
\[
Q(f) = \sum_{\kappa=1}^k c_\kappa Q(\Delta_\kappa) \quad \text{for} \quad f = \sum_{\kappa=1}^k c_\kappa 1_{\Delta_\kappa},
\]
where \(\Delta_\kappa \in \Sigma, \kappa = 1, \ldots, k \).

In the sequel we shall briefly write \(\Delta \) instead of \(1_{\Delta} \). Notice that \(H_0 \) is formed by elements of the form
\[
\xi = \sum_{i=1}^n x_i \otimes h_i \otimes \Delta_i
\] (2.2)
where \(x_i \in M, h_i \in H, \Delta_i \in \Sigma, i = 1, \ldots, n, n = 1, 2, \ldots \).

In the space \(H_0 \) we can define a sesquilinear form \(\langle \cdot, \cdot \rangle \) by
\[
\langle \xi, \eta \rangle = \sum_{i=1}^n \sum_{j=1}^m (Q(\Delta_i \cap \Gamma_j)(y_j x_i) h_i, g_j)
\]
for
\[
\xi = \sum_{i=1}^n x_i \otimes h_i \otimes \Delta_i \quad \text{and} \quad \eta = \sum_{j=1}^m y_j \otimes g_j \otimes \Gamma_j.
\]
The symbol \(\langle \cdot, \cdot \rangle \) denotes here the inner product in \(H \). We shall show that \(\langle \cdot, \cdot \rangle \) is positive.

Indeed, for \(\xi \) of form (2.2) we consider the partition \(\{\sigma_1, \ldots, \sigma_k\} \) of \(\bigcup_{i=1}^n \Delta_i \) given by
\[\langle \xi, \xi \rangle = \sum_{i,j=1}^{n} (Q(\Delta_i \cap \Delta_j)(x^*_i x_i)h_i, h_j) = \sum_{i,j=1}^{n} \left(\sum_{s=1}^{k} e^*_s e^i_s Q(x_s)(x^*_j x_i)h_i, h_j \right) \]

\[= \sum_{s=1}^{k} \sum_{i,j=1}^{n} (Q(x_s)(x^*_j x_i)h^*_i, h^*_j) \]

where \(h^*_i = e^i_s h_i, i = 1, \ldots, n. \)

The complete positivity of \(Q(\sigma_s) \) gives the inequality

\[\sum_{i,j=1}^{n} (Q(\sigma_s)(x^*_j x_i)h^*_i, h^*_j) \geq 0, \quad s = 1, \ldots, k, \]

thus \(\langle \xi, \xi \rangle \geq 0. \) Let us denote \(\|\xi\|_0 = \sqrt{\langle \xi, \xi \rangle} \) and put \(H_1 = H_0 / N \) where \(N = \{ \xi \in H_0 : \|\xi\|_0 = 0 \}. \) Finally, let us set \(H = \overline{H_1}. \)

We define \(V : H \rightarrow H \) by putting \(Vh = [1 \otimes h \otimes X] \) for \(h \in H. \) Then

\[\langle Vh, Vh \rangle = ((Q(X)1)h, h) = (h, h) \]

so \(V \) is an isometry.

Now let us construct a \(* \)-representation \(\Phi \) of the algebra \(M \) in \(H. \) Namely, for \(x \in M \) let us set

\[\Phi(x) : [y \otimes h \otimes \Delta] \mapsto [xy \otimes h \otimes \Delta] \]

where \(y \in M, h \in H, \Delta \in \Sigma. \) \(\Phi(x) \) is well defined. Indeed, we prove the following inequality

\[\left\| \sum_{i=1}^{n} xy_i \otimes h_i \otimes \Delta_i \right\|_0 \leq \|x\| \cdot \left\| \sum_{i=1}^{n} y_i \otimes h_i \otimes \Delta_i \right\|_0 \] \hspace{1cm} (2.3)

for \(y_i \in M, h_i \in H, \Delta_i \in \Sigma, i = 1, \ldots, n, n = 1, 2, \ldots. \) As above, we can write

\[\left\| \sum_{i=1}^{n} y_i \otimes h_i \otimes \Delta_i \right\|_0^2 = \sum_{s=1}^{k} \sum_{i,j=1}^{n} (Q(\sigma_s)(y^*_j y_i)h^*_i, h^*_j), \]

\[\left\| \sum_{i=1}^{n} xy_i \otimes h_i \otimes \Delta_i \right\|_0^2 = \sum_{s=1}^{k} \sum_{i,j=1}^{n} (Q(\sigma_s)(y^*_j x_i y_i)h^*_i, h^*_j). \] \hspace{1cm} (2.4)

For a linear map \(\alpha : M \rightarrow M \) let us denote by \(\alpha^{(n)} \) the map \(\alpha^{(n)} : \text{Mat}_n(M) \rightarrow \text{Mat}_n(M) \) given by the formula

\[\alpha^{(n)}([z_{i,j}]) = [\alpha(z_{i,j})] \]

where \([z_{i,j}]_{i,j \leq n} \in \text{Mat}_n(M). \) \(\text{Mat}_n(M) \) denotes here the \(C^* \)-algebra of all \(n \times n \) matrices \([z_{i,j}]_{i,j \leq n} \) with entries \(z_{i,j} \) in \(M. \)

Now, we follow Takesaki [10, p. 196]. The Schwarz inequality for operators, by the complete positivity of \(Q(\sigma_s), \) gives

\[Q(\sigma_s)^{(n)}(\bar{y}^* \tilde{x}^* \tilde{x} y) \leq \|\tilde{x}\|^2 Q(\sigma_s)^{(n)}(\bar{y}^* \tilde{y}) \] \hspace{1cm} (2.5)
for each $\tilde{x}, \tilde{y} \in \text{Mat}_n(\mathcal{M})$. Setting $\tilde{x} = [\delta_{i,j}]$, $\tilde{y} = [\delta_{i,j}]$, we get $\tilde{y}^* \tilde{x}^* \tilde{y} = [y_i^* x_j y_j]$, $\tilde{y}^* \tilde{x} = [y_i^* y_j]$. Thus, by (2.5) and \(||x|| = ||x|| \), we have

$$\|Q(\sigma_s)(y_i^* x_j y_j)\| \leq \|x\|^2 \|Q(\sigma_s)(y_i^* y_j)\|.$$

Hence

$$\sum_{i,j=1}^n (Q(\sigma_s)(y_i^* x_j y_j) h_i^* h_j^*) \leq \|x\|^2 \sum_{i,j=1}^n (Q(\sigma_s)(y_i^* y_j) h_i^* h_j^*).$$

Finally, by (2.4), we get (2.3). Then \(\sum_{i=1}^n y_i \otimes h_i \otimes \Delta_i ||0 = 0 \) implies \(\sum_{i=1}^n y_i \otimes h_i \otimes \Delta_i ||0 = 0 \) and \(\Phi(x) \) is well defined. Obviously by (2.3), \(\Phi(x) : \mathcal{H} \rightarrow \mathcal{H} \) is a linear bounded operator in \(B(\mathcal{H}) \). It is easy to check that \(\Phi : \mathcal{M} \rightarrow B(\mathcal{H}) \) is a \(*\)-representation \(\mathcal{M} \in \mathcal{H} \).

Now for \(\Delta \in \Sigma \) we define \(e(\Delta) : \mathcal{H} \rightarrow \mathcal{H} \) putting

$$e(\Delta) : [y \otimes h \otimes \Delta'] \mapsto [y \otimes h \otimes (\Delta \cap \Delta')]$$

where \(y \in \mathcal{M}, h \in \mathcal{H}, \Delta' \in \Sigma \). The operator \(e(\Delta) \) is well defined because \(\|\sum_{i=1}^n y_i \otimes h_i \otimes \Delta_i ||0 = 0 \) implies \(\|\sum_{i=1}^n y_i \otimes h_i \otimes (\Delta \cap \Delta_i) ||0 = 0 \). Indeed, let \(\{\sigma_1, \ldots, \sigma_k\} \) be a partition of \(\bigcup_{i=1}^n \Delta_i \) given by \(\Delta, \Delta_1, \ldots, \Delta_k \). Let us put \(\varepsilon_1 = 1 \) when \(\sigma_s \subset \Delta_i \) and \(\varepsilon_2 = 0 \) when \(\sigma_s \cap \Delta_i = \emptyset \). Similarly, let \(\varepsilon_1 = 1 \) when \(\sigma_s \subset \Delta \) and \(\varepsilon_2 = 0 \) when \(\sigma_s \cap \Delta = \emptyset \). Then

$$\left\| \sum_{i=1}^n (y_i \otimes h_i \otimes (\Delta \cap \Delta_i)) \right\|_0^2 = \sum_{s=1}^k \varepsilon_1 \sum_{i,j=1}^n \varepsilon_2 Q(\sigma_s)(y_i^* y_j) h_i, h_j$$

$$\leq \sum_{s=1}^k \sum_{i,j=1}^n \varepsilon_1^2 \varepsilon_2 Q(\sigma_s)(y_i^* y_j) h_i, h_j = \left\| \sum_{i=1}^n y_i \otimes h_i \otimes \Delta_i \right\|_0^2$$

because, by the complete positivity of \(Q(\sigma_s) \), we have

$$\sum_{i,j=1}^n \varepsilon_1 \varepsilon_2 Q(\sigma_s)(y_i^* y_j) h_i, h_j \geq 0.$$
of the same physical system whereas the construction of a dilation in a bigger algebra means passing to a bigger system enjoying more regular evolution ([3], [2]).

In particular, the physical meaning of Stinespring’s theorem can be enriched if we express the dilation in terms of the conditional expectation in the enlarged algebra. Such a construction, with consequences for map-valued measures, will be done in this section.

It turns out that some natural properties of an equivalence relation in the lattice of projections are crucial.

A basic tool is the comparison theorem for projections ([8], Thm. 4.6).

Theorem 3.1. For any \(p, q \in \text{Proj} \mathcal{N} \), there exists a projection \(e \in \mathcal{N} \cap \mathcal{N}' \) such that \(pe \succ qe \) and \(p(1-e) \prec q(1-e) \).

Clearly, \(p \preceq q \) means \(uu^* = p, u^*u \leq q \) for some partial isometry \(u \in \mathcal{N} \).

The following consequence of the above theorem will be used.

Proposition 3.2. Let \(\mathcal{N} \) be a von Neumann algebra and let \(p \) be a projection in \(\mathcal{N} \) with the central support \(z(p) = 1 \). There exists a system of mutually orthogonal projections \((p_i; i < k_0) \) in \(\text{Proj} \mathcal{N} \), \(k_0 \) being an ordinal number, such that \(p_i \preceq p, \sum_{i < k_0} p_i = 1 \), and \(p_1 = p \).

Proof. We use the transfinite induction, treating \(1, 2, \ldots \) as ordinals. Denote \(e_1 = 0, p_1 = p \). Assume that, for some ordinals \(k \) and for any \(i < k \), projections \(e_i, p_i \in \text{Proj} \mathcal{N} \) satisfying the conditions

\[
\begin{align*}
& e_i \in \mathcal{N}', \\
& (e_i; i < k) \text{ are mutually orthogonal,} \\
& (p_i; i < k) \text{ are mutually orthogonal,} \\
& \sum_{j \leq i} p_j \geq \sum_{j \leq i} e_j, \\
& p_i \preceq p \\
\end{align*}
\]

(3.1)

have already been defined. If \(\sum_{i < k} p_i = 1 \), the construction is complete with \(k_0 = k \).

If not, we consider separately the following two cases.

Case 1. Assume that \(\left(\sum_{j < k} e_j \right)^\perp p \preceq \left(\sum_{j < k} e_j \right)^\perp \left(\sum_{j < k} p_j \right)^\perp \). (*)

Then it is enough to put \(e_k = 0, p_k \) an arbitrary projection in \(\mathcal{N} \) satisfying

\[
\sum_{j < k} e_j \perp p_k \sim \left(\sum_{j < k} e_j \right)^\perp p_k \leq \left(\sum_{j < k} e_j \right)^\perp \left(\sum_{j < k} p_j \right)^\perp
\]

(clearly, \(p \sim q \) means \(p = u^*u, q = uu^* \), for some \(u \in \mathcal{N} \)).

Case 2. Assume that (*) does not hold. Then we consider the algebra

\[
\mathcal{M} = \left(\sum_{j < k} e_j \right)^\perp \mathcal{N} \left(\sum_{j < k} e_j \right)^\perp = \mathcal{N} \left(\sum_{j < k} e_j \right)^\perp.
\]

(3.2)

Restricting operators to a subspace \(\left(\sum_{j < k} e_j \right)^\perp (H) \), one can treat \(\mathcal{M} \) as a von Neumann algebra with the projections \(\tilde{p} = p \left(\sum_{j < k} e_j \right)^\perp, \tilde{p}_i = p_i \left(\sum_{j < k} e_j \right)^\perp \). By the comparison
theorem there exists a central projection in \(\mathcal{M} \), say \(e_k \), satisfying the conditions
\[
\tilde{p}_k \geq \left(\sum_{j < k} \tilde{p}_j \right)^{\perp} e_k \quad \text{and} \quad \tilde{p}(1_{\mathcal{M}} - e_k) \leq \left(\sum_{j < k} \tilde{p}_j \right)^{\perp} (1_{\mathcal{M}} - e_k).
\]

Since the reduction of \(\mathcal{N} \) to \(\mathcal{M} \) is done by the central projection \(\left(\sum_{j < k} e_j \right)^{\perp} \), \(e_k \) can be obviously treated as a central projection in \(\mathcal{N} \) as well.

Let \(\tilde{p}_k \) be an arbitrary projection in \(\mathcal{M} \) satisfying \(\tilde{p}_k \leq \left(\sum_{j < k} p_j \right)^{\perp} (1_{\mathcal{M}} - e_k) \), \(\tilde{p}_k \sim p(1_{\mathcal{M}} - e_k) \).

We put
\[
p_k = \tilde{p}_k + \left(\sum_{j < k} p_j \right)^{\perp} e_k.
\]

Obviously, we can treat \(p_k \) as a projection in \(\mathcal{N} \). All conditions (3.1) are now satisfied for \(k + 1 \) (instead for \(k \)).

Clearly, \(\sum_{i < k} p_i = 1 \) necessarily for some ordinal \(k \) (since \(\dim H \) is a fixed cardinal).

We shall need the following consequences of Proposition 3.2.

Lemma 3.3. Let \(\mathcal{M} \) and \(\mathcal{N} \) be von Neumann algebras acting in Hilbert spaces \(H \) and \(\mathcal{H} \), respectively, with \(H \subset \mathcal{H} \). Denote by \(P_H \) the orthogonal projection from \(\mathcal{H} \) onto \(H \).

Assume that \(P_H^* \mathcal{M} P_H \subset \mathcal{N} \), the central support \(z(P_H) = 1 \).

Then there exists an isometric injection \(v : \mathcal{H} \to H \otimes K \), for some Hilbert space \(K \) such that
\[
v \mathcal{N} v^* \subset \mathcal{M} \otimes B(K), \quad (3.3)
\]
\[
v \zeta = \zeta \otimes \eta_1, \quad \zeta \in \mathcal{H}, \quad \text{for some } \eta_1 \in K. \quad (3.4)
\]

Proof. Keeping the notation of Proposition 3.2, with \(p = P_H \subset \mathcal{N} \), let us fix a Hilbert space \(K \) with an orthogonal basis \((\eta_j, j < k_0) \). As \(p_i \not\preceq p \), we can use projections \(r_i \leq p_i \) satisfying \(p_i = w_i^* w_i \), \(r_i = w_i w_i^* \) for some partial isometries \(w_i \in \mathcal{N}, i < k_0 \).

Obviously, we can assume that \(w_1 = p \).

Let us take \(v_i \zeta = w_i \zeta \otimes \eta_i, i < k_0, \) for \(\zeta \in \mathcal{H} \). Then we get an isometry
\[
v = \sum_{i < k_0} v_i, \quad v : \mathcal{H} \to H \otimes K.
\]

Formula (3.4) is obvious. It remains to show (3.3) or, equivalently, \(\mathcal{N} \subset v^* \mathcal{M} \otimes B(K)v \).
This can be checked by the commutant technique as follows.

We have
\[
p_i \mathcal{N} p_i \cup \{ w_i^*, w_i \} \subset v^* \mathcal{M} \otimes B(K)v, \quad i < k_0. \quad (3.5)
\]

Indeed,
\[
p_i \mathcal{N} p_i = v^*(r_i M r_i \otimes \langle \cdot , \eta_i \rangle \eta_i) v,
\]
\[
w_i = v^*(r_i \otimes \langle \cdot , \eta_i \rangle \eta_i) v,
\]
\[
w_i^* = v^*(r_i \otimes \langle \cdot , \eta_i \rangle \eta_i) v.
\]
For example we check the first equality. Obviously \(p_k \mathcal{N} p_k = w_k^* \mathcal{N} w_k = w_k^* \mathcal{M} w_k \), and for any \(x \in \mathcal{M}, \zeta \in \mathcal{H} \), denoting \(\zeta_j = p_j \zeta, j < k_0 \), we have
\[
v \zeta = \sum_{j < k_0} w_j \zeta_j \otimes \eta_j
\]
and
\[
v^*(r_i x r_i \otimes \zeta, \eta) v \zeta = v^*(r_i x w_i \zeta \otimes \eta) = (w_i \cdot \zeta, \eta) i^*(r_i x w_i \zeta, \eta) = w_i^* x w_i \zeta.
\]
On the other hand, we have
\[
\left(\bigcup_{i < k_0} p_i \mathcal{N} p_i \cup \{ w_i, w_i^* \} \right)' = \mathcal{N}'.
\] (3.6)
The inclusion "\(\supset \)" is obvious. Conversely, let \(y \) commute with all \(p_k \mathcal{N} p_k, w_i, w_i^* \). Any arbitrary \(z \in \mathcal{N} \) can be represented as
\[
z = \sum_{i, j < k_0} p_i z p_j.
\]
We have, since \(w_i z w_j^* \in p_i \mathcal{N} p_i \),
\[
xy = yw_i^* w_i z w_j^* w_j = w_i^* y (w_i z w_j^*) w_j = w_i^* (w_i z w_j^*) y w_j = xy.
\]
Taking commutants on both sides of (3.6) and taking into account (3.5), we get (3.3). \(\blacksquare \)

Proposition 3.4. For any completely positive map \(\alpha \) in a von Neumann algebra \(\mathcal{M} \) acting in a Hilbert space \(\mathcal{H} \) there exists a Hilbert space \(\mathcal{K} \) and a \(* \)-representation \(\Phi : \mathcal{M} \to \mathcal{M} \otimes \mathcal{B} (\mathcal{K}) \) satisfying
\[
\alpha x = \Pi^* \Phi(x) \Pi
\]
where, for \(\xi \in \mathcal{H}, \Pi \xi = \xi \otimes \eta_1 \) for a fixed vector \(\eta_1 \in \mathcal{K}, \| \eta_1 \| = 1 \).

Proof. Take any Stinespring triple: \((\mathcal{H}, P_H, \Psi) \) where \(\mathcal{H} \supset \mathcal{H}, P_H \) is an orthogonal projection of \(\mathcal{H} \) onto \(\mathcal{H} \), and \(\Psi : \mathcal{M} \to \mathcal{B} (\mathcal{H}) \) is a \(* \)-representation satisfying
\[
\alpha x = P_H \Psi(x) P_H |_{\mathcal{H}}.
\]
Denote \(\mathcal{N} = (\mathcal{M} \cup \Psi(\mathcal{M}))'' \) (obviously, we identify \(\mathcal{M} \ni x \equiv x P_H \in \mathcal{B} (\mathcal{H}) \)). According to the Stinespring's construction [6], [10, p. 195] the projection \(P_H \) has in \(\mathcal{N} \) the central support \(z (P_H) = 1_N \). By Lemma 3.3, there exists a Hilbert space \(\mathcal{K} \), an isometry \(v : \mathcal{H} \to \mathcal{H} \otimes \mathcal{K} \) and a vector \(\eta_1 \in \mathcal{K} \) satisfying (3.3) and (3.4). We set
\[
\Phi(x) = v \Psi(x) v^*, \quad x \in \mathcal{M}.
\]
Then \(\Phi \) is a \(* \)-representation of \(\mathcal{M} \) into \(\mathcal{M} \otimes \mathcal{B} (\mathcal{K}) \). Moreover, as \(\Pi \xi = \xi \otimes \eta_1 \) for \(\xi \in \mathcal{H} \), we have, for any \(x \in \mathcal{M} \),
\[
(\Pi^* \Phi(x) \Pi) \xi = (\Pi^* v \Psi(x) v^*) (\xi \otimes \eta_1) = \Pi^* v \Psi(x) \xi
\]
\[
= \Pi^* v \Psi(x) P_H \xi = P_H \Psi(x) P_H \xi = \alpha(x) \xi
\]
(since \(v^* (\xi \otimes \eta_1), \zeta = \langle \xi, \zeta \rangle, (\Pi^* v \rho, \zeta) = \langle v (P_H \rho + P_H^\perp \rho), \zeta, \eta_1 \rangle = \langle (P_H \rho) \otimes \eta_1, \zeta \otimes \eta_1 \rangle = \langle P_H \rho, \zeta \rangle \) for \(\zeta \in \mathcal{H}, \rho \in \mathcal{H} \), the orthogonality \(v P_H^\perp \rho \perp \zeta \otimes \eta_1 \) is a consequence of (3.4)). \(\blacksquare \)

Now we are in a position to prove dilation theorems in the language of conditional expectations in \(W^* \)-algebras (see [7], Chapter 2 for basic facts).

Theorem 3.5. For any \(W^* \)-algebra \(\mathcal{M} \) and any completely positive map \(\alpha \) in \(\mathcal{M} \) there exist a \(W^* \)-algebra \(\mathcal{N} \), \(\mathcal{N} \ni \mathcal{M} \) (i.e. \(\mathcal{M} \) is a \(W^* \)-subalgebra of \(\mathcal{N} \)) and a \(* \)-representation...
\(\Phi : \mathcal{M} \rightarrow \mathcal{N} \) such that
\[
\alpha x = \mathbb{E}^{\mathcal{M}} \Phi(x), \quad x \in \mathcal{M},
\]
where \(\mathbb{E}^{\mathcal{M}} \) is a normal conditional expectation of \(\mathcal{N} \) onto \(\mathcal{M} \).

Proof. We keep the notation of Proposition 3.4. We identify \(\mathcal{M} \) with \(\mathcal{M} \otimes 1_K \) by a natural isomorphism \(x \equiv x \otimes 1 \).

We define a conditional expectation \(\mathbb{E}^{\mathcal{M} \otimes 1_K} \) by putting, for \(y \in \mathcal{N} = \mathcal{M} \otimes B(K) \)
\[
\mathbb{E}^{\mathcal{M} \otimes 1_K}(y) = (\Pi \ast y \Pi) \otimes 1_K,
\]
where \(\Pi \xi = \xi \otimes \eta \), \(\xi \in H \). It is easy to check that \(\mathbb{E}^{\mathcal{M} \otimes 1_K} \) is a projection of norm one, so conditional expectation [7, p. 116]. Taking \(\Phi \) as in Proposition 3.4, we have
\[
\alpha x = (\Pi \ast \Phi(x) \Pi) \otimes 1_K = \mathbb{E}^{\mathcal{M} \otimes 1_K} \Phi(x),
\]
which is equivalent to (3.7).

Now, keeping notation as in Section 2, our Theorem 2.1 can be rewritten in the following way:

Theorem 3.6. For a \(W^* \)-algebra \(\mathcal{M} \) and for a measure \(Q : \Sigma \rightarrow CP(\mathcal{M}) \), there exists a \(W^* \)-algebra \(\mathcal{N} \), \(\mathcal{N} \supset \mathcal{M} \) (i.e. \(\mathcal{M} \) is a \(W^* \)-subalgebra of \(\mathcal{N} \)) and a spectral measure \(e : \Sigma \rightarrow \text{Proj}\mathcal{N} \) such that
\[
Q(\Delta) = \mathbb{E}^{\mathcal{M}}(e(\Delta) \Phi(x))
\]
for some \(* \)-representation \(\Phi \) of \(\mathcal{M} \) in \(\mathcal{N} \) and a conditional expectation \(\mathbb{E}^{\mathcal{M}} \) of \(\mathcal{N} \) onto \(\mathcal{M} \).

4. Dilations in conditional expectations scheme. In this section we compare our results of Sections 2 and 3 with theorems concerning measures with values being positive operators in \(L_1 \). It turns out that these results can be reformulated to the case of the algebra \(L_\infty \) and then treated as theorems on commutative \(W^* \)-algebras.

In this context, constructing a dilation, we shall try to use most natural transformations (projections) appearing in the \(L_1 \)-space theory, like conditional expectation, indicator multiplication operator etc.

Moreover, we use a conditional expectation \(\mathbb{E}^{\mathcal{M}}_P \) for some probability measure \(P \) (and \(\sigma \)-field \(\mathcal{A} \)) instead of a projection \(P_H : \mathcal{H} \rightarrow H \) (from beyond the Hilbert space \(H \)).

Using here the space \(L_1 \) instead of \(L_\infty \) seems to be a better idea.

Let \((X, \Sigma)\) be a topological Borel measurable space. Let \((M, \mathcal{M}, \mu)\) be a probability space. A map \(Q : \Sigma \rightarrow B(L_1(M, \mathcal{M}, \mu)) \) is said to be a regular positive operator measure (shortly PO-measure) if the following conditions are satisfied:

1. \(Q(\Delta) f \geq 0 \) for \(0 \leq f \in L_1 ; \)
2. \(Q \left(\bigcup_{s=1}^{\infty} \Delta_s \right) f = \sum_{s=1}^{\infty} Q(\Delta_s) f , \) for \(f \in L_1 , \) and pairwise disjoint \(\Delta_i \)'s, the series being convergent in \(L_1(M, \mathcal{M}, \mu) \);
3. \(Q \) is regular in the sense that for each \(\varepsilon > 0 \) and each \(\Delta \in \Sigma \) there exist in \(X \) a compact set \(Z \) and an open set \(V \) such that
\[
\left\{ Q(V - Z) 1_M \, d\mu < \varepsilon , \quad Z \subset \Delta \subset V \right\}
\]

4. $Q(X)1_M \leq 1_M$;
5. $\int_M Q(X)f \, d\mu \leq \int_M f \, d\mu$, $0 \leq f \in L_1$.

We have the following

Theorem 4.1 [4]. Let Q be a regular positive operator measure. Then there exist a ‘huge’ measure space $(\Omega, \mathcal{F}, \mathcal{P})$, a σ-field $\mathcal{A} \subset \mathcal{F}$, a σ-lattice homomorphism $e : \Sigma \to \mathcal{F}$ and two measurable maps $i : \Omega \to M$, $j : \Omega \to M$ such that

$$(Q(\Delta)f) \circ j = \mathbb{E}^P \mathbb{E}_\mathcal{A} 1_{\mathcal{E}(\Delta)} (f \circ i), \quad \Delta \in \Sigma, \quad f \in L_1(M).$$

Theorem 4.2 [4]. There exist a measurable space (Ω, \mathcal{F}), a measurable map $i : \Omega \to M$ (onto), σ-fields $\mathcal{A}, \mathcal{B} \subset \mathcal{F}$, a σ-lattice homomorphism $e : \Sigma \to \mathcal{F}$, a set $\Omega_0 \in \mathcal{F}$ such that, for every PO-measure $Q : \Sigma \to B(L_1(M, \mathcal{M}, \mu))$, there exists a probability measure P on (Ω, \mathcal{F}), for which the following formula holds:

$$(Q(\Delta)f) \circ i = 4\mathbb{E}^P \mathbb{E}_\mathcal{A} 1_{\mathcal{E}(\Delta)} \mathbb{E}_\mathcal{B} 1_{\Omega_0} (f \circ i), \quad \Delta \in \Sigma, \quad f \in L_1(M).$$

For other similar results we refer to [4].

References