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1. Introduction. In the present note, we introduce a general conceptual framework

for so called stochastically positive structures on Weyl algebras, which are described by

some stochastic processes. As a starting point for further development, we analyse in

detail the case of quasi-free states. We completely characterize stochastically positive

quasi-free KMS states and study the properties of corresponding periodic stochastic pro-

cesses. In particular, we show that in that case, all relevant information about KMS

structure is contained in the commutative sector given by a thermal process since the

modular structure given by a stochastic process is unitarily equivalent with the canonical

modular structure associated with KMS state. Let us emphasize that this gives new pos-

sibilities for the description of KMS structures in the case when interaction is present.

Having described quasi-free systems in terms of stochastic processes, one may perturb

them with multiplicative-like functionals, thereby creating some new non-Gaussian ther-

mal process. Furthermore, given such a process, we can reproduce its KMS structure.

Some results in this direction were obtained in [3] for gentle perturbations of the free

Bose gas in the noncritical region of densities and in [4] for the critical case. We present

here an application of our results to the case of the scalar quantum field theory on a glob-

ally hyperbolic stationary space-time, and we give a general result on the existence of a

Markov thermal process, which determines the whole modular structure of the theory. In

the case of a static space-time, we obtain much more explicit description of the arising

process and we are able to discuss its continuity properties.

2. Analytic continuation of quasi-free KMS states. Let D be a complex Hilbert

space with a scalar product 〈·, ·〉 and let σ(f, g) = Im 〈f, g〉. Denote by W (D, σ) the Weyl
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algebra over (D, σ) ([10]) generated by elements Wf , f ∈ D satisfying

WfWg = e−σ(f,g)/2Wf+g (1)

If Tt is a group of unitary operators on D with a generator h and if B(f, g) is a positive,

sesquilinear form on D which is Tt invariant and satisfies

|σ(f, g)|2 ≤ B(f, f)B(g, g) (2)

then ω defined by

ω(Wf ) = e−
1
4
B(f,f), Wf ∈ W (D, σ) (3)

and extended by linearity and continuity to the whole W (D, σ) is a gauge invariant

quasi-free state on W (D, σ). In that case the two point correlation functions

H(f, g; t) = ω(WfWTtg) (4)

have the form

H(f, g; t) = e−
1
4
(B(f,f)+B(g,g))− 1

2
F (f,g;t) (5)

where

F (f, g; t) = ReB(f, Ttg) + iσ(f, Ttg) (6)

If ω is a KMS state with respect to the evolution on W (D, σ) generated by Tt at the

inverse temperature β ([1]), then for every f, g ∈ D there exists a function Φ(f, g; z)

analytic in the strip 0 < Im z < β, such that

Φ(f, g; t+ i0) = F (f, g; t), and Φ(f, g; t+ iβ) = F (g, f ;−t) (7)

Starting with the functions Φ(f, g; z) we can define Euclidean-time correlation functions

G(f, g; s) by the formula

G(f, g; s) = e−
1
4
(B(f,f)+B(g,g))− 1

2
S(f,g;s) (8)

where

S(f, g; s) = Φ(f, g; is), s ∈ [0, β] (9)

and

G(f1, . . . , fn; s1, . . . , sn) =

n∏

k=1

e−
1
4
B(fk,fk)

∏

(jk,lk)

e−
1
2
S(fjk ,flk ;slk−sjk ) (10)

where the second product is taken over all pairs of different indices (jk, lk) such that

jk, lk ∈ {1, . . . , n}, sjk < slk . Extending (10) by linearity and continuity to arbitrary

w1, . . . , wn ∈ W (D, σ) we obtain Euclidean-time correlation functions G(w1, . . . , wn;

s1, . . . , sn).

Proposition 1 ([2]). The functions S(f, g; s) defined by (9 ) satisfy:

1. for every f, g ∈ D and s ∈ [0, β]

S(f, g; s) = S(g, f ;β − s)

2. for every f ∈ D the mapping s → S(f, f ; s) is OS-positive, i.e. for any sequences

{sk}, sk ∈ [0, β/2] and {ck}, ck ∈ C
∑

k,l

ckclS(f, f ; sk + sl) ≥ 0
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More generally, for any terminating sequences {fk}, fk ∈ D; {sk}, sk ∈ [0, β/2] and

{ck}, ck ∈ C ∑

k,l

ckclS(fk, fl; sk + sl) ≥ 0

3. Stochastic positivity and thermal processes. For a general KMS state ω on

an abstract C∗-algebraA, Klein and Landau [7] discussed the problem of construction of a

stochastic process corresponding to ω. As they showed, such a process can be constructed

using some abelian sub-C∗-algebra B of A on which correlation functions at Euclidean

times are positive in some special sense. In such case, the process has values in the

spectrum of the abelian algebra B. To study the existence of a stochastic process in the

case of the Weyl algebra W (D, σ), we consider abelian subalgebras of W (D, σ) defined

in terms of so called abelian splitting of the symplectic space (D, σ).

Definition 1. A pair (D+,D−) of linear subspaces of the symplectic space (D, σ) is

called an abelian splitting if D = D+ +D− and σ(D±,D±) = 0. For the abelian splitting

(D+,D−), let W+ and W− be the abelian subalgebras of W (D, σ) generated by Wf with

f ∈ D+ and D− respectively.

Now the desired positivity condition is the following:

Definition 2. The set of Euclidean-time correlation functions on the Weyl algebra

W (D, σ) with the given abelian splitting is W±-stochastically positive if for any positive

elements w1, . . . , wn ∈ W± and −β/2 ≤ s1 ≤ · · · ≤ sn ≤ β/2

G(w1, . . . , wn; s1, . . . , sn) ≥ 0

Stochastic positivity of quasi-free correlation functions can be naturally formulated in

terms of the functions S(f, g; s). Let C be an abstract complex conjugation on D i.e. C

is antiunitary and C2 = 1. The mapping C defines the abelian splitting (D+,D−) of D:

D+ = {f ∈ D : Cf = f}, D− = {f ∈ D : Cf = −f} (11)

Proposition 2 ([2]). If the generator h of Tt is C-real (i.e. if C leaves the domain

D(h) invariant and Chf = hCf for every f ∈ D(h)), then the functions S(f, g; s)

restricted to D+ satisfy:

S(f, g; s) = S(g, f ; s), s ∈ [0, β]

Combining this result with that of Proposition 1 we get

S(f, g; s) = S(f, g;β − s) (12)

This allows us to extend the function S(f, g; s) (for the fixed f, g ∈ D+) to a periodic

function of s with the period β, defined for all s ∈ R. The extended function will also be

denoted by the same symbol.

Theorem 3. S(f, g; s) defines an operator-valued covariance function Rβ(s) of a pe-

riodic Gaussian OS-positive stochastic process indexed by D+. Thus Rβ(s) is an operator-

valued positive-definite function on D+ which is periodic and OS-positive. Moreover

S(f, g; s) = 〈f,Rβ(s)g〉
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P r o o f. As was shown in [2], S(f, g; s) is not only OS-positive, but is also positive-

definite, i.e.
n∑

k,l=1

ckclS(fk, fl; sk − sl) ≥ 0 (13)

for all terminating sequences f1, . . . , fn ∈ D+; s1, . . . , sn ∈ R and c1 . . . , cn ∈ C. From

this condition we obtain that

|S(f, g; s)|2 ≤ S(f, f ; 0)S(g, g; 0) ≤ const · ||f ||2||g||2

Since S(f, g; s) is bilinear and symmetric, there exists a bounded and positive operator

Rβ(s) on D+ such that

S(f, g; s) = 〈f,Rβ(s)g〉

Moreover, the function s → Rβ(s) is positive-definite, OS-positive and weakly periodic.

Corollary 4. Let ξβs be the Gaussian process indexed by D+ defined by

E(< ξβs , f >) = 0, E(< ξβs1 , f1 >< ξβs2 , f2 >) =
1

2
〈f1, Rβ(s2 − s1)f2〉

Then for f1, f2 ∈ D+

G(f1, f2; s2 − s1) = E(ei<ξβs1 ,f1>ei<ξβs2 ,f2>)

Similarly, for f1, . . . , fn ∈ D+

G(f1, . . . , fn; s1, . . . , fn) = E(ei
∑

n

k=1
<ξβsk

,fk>).

Using OS-positivity, and periodicity of S(f, g; s), f, g ∈ D+, we can show that [2]

S(f, g; s) =

∞\
0

(e−sp + e(β−s)p) dνf,g(p) (14)

where νf,g is a finite, real-valued measure on [0,∞). Now in terms of νf,f , we can formulate

the following continuity property of the process ξβs :

Theorem 5. If f ∈ D+ is such that m(f) =
T∞
0

p dνf,f (p) < ∞, then the coordinate

process ξfs :=< ξβs , f > has a version (denoted by the same symbol) with Hölder continu-

ous paths. More precisely, for any 0 < γ < 1/2 there exists an integrable random variable

d(f, γ) such that

|ξfs − ξfs′ | ≤ d(f, γ)|s− s′|γ

with probability one.

P r o o f. Since

|S(f, f ; l)− S(f, f ; 0)| = |

∞\
0

((e−lp − 1) + (e−(β−l)p − e−βp)) dνf,f (p)|

≤ 2|l|

∞\
0

p dνf,f (p) = 2m(f)|l|

it follows that

|E(ez|ξ
f

s+l
−ξfs |)| ≤ E(e|z|(ξ

f

s+l
−ξfs )) + E(e−|z|(ξf

s+l
−ξfs )) = 2e

|z|2

2
E((ξf

s+l
−ξfs )

2)
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≤ 2e|z||S(f,f ;0)−S(f,f ;l)| ≤ 2e2|z||l|m(f).

On the other hand, by the Cauchy integral formula

|ξfs+l − ξfs |
n =

n!

2πi

\
Cr

ez|ξ
f

s+l
−ξfs |

zn+1
dz.

Thus

E(|ξfs+l − ξfs |
n) ≤ 2n!

e2r
2|l|m(f)

rn
.

Now, taking r = |l|−1/2 we obtain E(|ξfs+l − ξfs |
n) ≤ cn|l|

n/2. The assertion follows by

the application of the Kolmogorov continuity test.

Definition 3. A periodic stochastic process ξs indexed by D+ has the two-sided

Markov property on the circle Kβ (the circle with radius β) iff for all r, s ∈ Kβ

E[s,r]E[r,s] = E{r,s}E[r,s]

where for I ⊂ Kβ, EI denotes conditional expectation with respect to the σ-algebra

generated by {ξs, s ∈ I} and {r, s} = {s, r} is the set consisting of the two elements r, s.

Theorem 6. ξβs has a version with the two-sided Markov property on the circle Kβ.

P r o o f. The covariance operator Rβ(s) has the form [2]

Rβ(s) =
e−sh + e−(β−s)h

1− e−βh
, h ≥ ε

Let us introduce the new scalar product in D+ given by 〈f, g〉β := 〈f, (1−e−βh)−1g〉. The

norms || · || and || · |β are obviously equivalent. Let ξ̃s be the Gaussian process indexed

by (D+, 〈·, ·〉β) with zero mean and covariance operator R̃β(s) = e−sh + e−(β−s)h. ξ̃s
is stochastically equivalent to ξβs and by the result of [9] it satisfies two-sided Markov

property on Kβ.

4. KMS structure generated by thermal process. Let ξβs be a Gaussian process

constructed above and let (Q,Σ, µ) be its underlying probability space. Since the process

is stationary, u(t) defined by

u(t)(ei<ξβs1 ,f1> · · · ei<ξβsn ,fn>) = e
i<ξβ

s1+t
,f1> · · · ei<ξβ

sn+t
,fn>

extends to a one parameter group of unitary operators on L2(Q,Σ, µ). By periodicity,

u(β) = I. Since the process is symmetric, Θ defined by

Θ(ei<ξβs1 ,f1> · · · ei<ξβsn ,fn>) = e
i<ξβ

−s1
,f1> · · · ei<ξβ−sn

,fn>

extends to a unitary operator on L2(Q,Σ, µ) such that Θ2 = I. Finally, since the process

is OS-positive

〈ΘF, F 〉L2 ≥ 0

for all F ∈ L2(Q,Σ[0,β/2], µ) where for S ⊂ R, ΣS denotes the σ-algebra generated by

{ξβs : s ∈ S}.
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Theorem 7. Let ξβs be a Gaussian, periodic (with period β), OS-positive stochastic

process indexed by D+. Then there exist : a Hilbert space Hξ with a unit vector Ωξ, a

weakly continuous one-parameter group of unitary operators Uξ(t) and a von Neumann

algebra Mξ of operators acting on Hξ such that Ωξ is cyclic and separating for Mξ and

αξ
t (M) = Uξ(t)MUξ(t)

∗ is the modular automorphism group associated with Ωξ.

P r o o f. On the space L2(Q,Σ[0,β/2], µ) define a sesquilinear form by

〈F,G〉 = 〈ΘF,G〉L2

By OS-positivity, it is positive semi-definite. Let

N = {F ∈ L2(Q,Σ[0,β/2], µ) : 〈F, F 〉 = 0}

Then

D = L2(Q,Σ[0,β/2], µ)/N

is a pre-Hilbert space with respect to the inner product

〈[F ], [G]〉 = 〈F,G〉

where [F ] denotes the class containing F . Hξ is defined as a Hilbert space comple-

tion of D and Ωξ = [1]. Let Dt be the linear space generated by vectors [F ] for F ∈

L2(Q,Σ[0,β/2−t], µ), t ∈ [0, β/2]. For every t ∈ [0, β/2] we can define the linear operator

p(t) with domain Dt by

p(t)[F ] = [u(t)F ]

and we can show that (p(t), Dt) form a symmetric local semigroup ([8]). Hence there

exists a unique self-adjoint operator Hξ on Hξ such that p(t) = e−tHξ . Uξ(t) is defined

by Uξ(t) = eitHξ . Let now F0 ∈ L∞(Q,Σ0, µ). Then

π0(F0)[F ] = [F0F ]

defines a bounded operator on Hξ and

M0 = {π0(F0) : F0 ∈ L∞(Q,Σ0, µ)}

is a von Neumann algebra of operators on Hξ. Let Mξ be the von Neumann algebra

generated by elements

eit1HξB1e
−it1Hξ · · · eitnHξBne

−itnHξ

with tj ∈ R, Bj ∈ M0. Then Ωξ is cyclic and separating for Mξ ([7]). Using the prop-

erties of the process ξβs we can now define the modular conjugation and modular group

corresponding to Ωξ. Let

Θβ/4 = u(β/4)Θu(−β/4)

and

Jξ[F ] = [Θβ/4F ]

Then

〈Jξ[F ], Jξ[G]〉 = 〈ΘΘβ/4F,Θβ/4G〉L2 = 〈G,ΘF 〉L2 = 〈[G], [F ]〉

since Θβ/4 commutes with Θ by periodicity. Hence Jξ can be extended to an antiunitary

operator on Hξ such that J2
ξ = I. Computing the action of Jξ on MξΩξ, M ∈ Mξ we
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can show that

JξM
∗Ωξ = e(−β/2)HξMΩξ

Now since MξΩξ is a core for e(−β/2)Hξ ([7]), Jξ defined above is the modular conjugation

operator and the corresponding modular operator ∆ξ can be identified with e(−β/2)Hξ .

Let (Hω , πω,Ωω) be the GNS representation defined by quasi-free KMS state ω. Then

Ωω is cyclic and separating for πω(W (D, σ))′′. We are going to show that in the case

of quasi-free state the modular structure constructed from the process ξβs is unitarily

equivalent to the canonical modular structure defined by KMS state ω. Thus all relevant

information about KMS structure is contained in the (commutative) stochastic process

ξβs . To obtain this result we need the following property of the dynamic eith, proved in [2].

Theorem 8. Let h be C-real on D and let e({0}) = 0, where de(λ) is the spectral

measure of h. Then the family{
n∑

k=1

eitkhfk : n ∈ N, tk ∈ R, fk ∈ D+

}

is dense in D.

Now we have:

Theorem 9 ([2]). For quasi-free KMS state ω defined on the Weyl algebra W (D, σ)

the canonical modular structure is unitarily equivalent to the modular structure con-

structed from the stochastic process ξβs .

5. Stochastic positivity for quantum fields on a stationary space-time. Let

(M, g) be a stationary space-time, i.e. (M, g) is space nad time orientable with a global

time-like Killing vector field X . Thus, (M, g) can be always realized as (R× C, g) where

(C, ĝ) is a Riemannian 3-manifold and

g =

(
a2 − bibi −bi

−bi −ĝij

)

with a scalar field a (laps field) and a vector field b (shift field) satisfying

a > 0, a2 − ĝ(b, b) > 0

and with the Killing vector field

X :=
∂

∂t
= aN(C) + b

where N(C) is a unit future-pointing normal vector field to C. If (M, g) is globally hy-

perbolic, then C can be chosen to be a global Cauchy surface. On (M, g) we consider the

covariant Klein Gordon equation

(gµν∇µ∇ν +m2 + V )ϕ = 0

Given some Cauchy surface C, let

D(C) = C∞
0 (C) + C∞

0 (C)



208 R. GIELERAK ET AL.

be the space of real smooth Cauchy data of compact support. Then, by the Leray’s

theorem [5], the Cauchy data Φ ∈ D(C) given by

Φ =

(
f

p

)

define a unique solution ϕ of the Klein Gordon equation having compact support on every

other Cauchy surface and such that

ϕ|C = f, N(C)ϕ|C = p

Thus, we may view time evolution as a one-parameter group

Tt : D(C) → D(C)

Moreover, Tt preserves the symplectic form

σ̂(Φ1,Φ2) =
\
C

(f1p2 − p1f2) dη(C)

where η(C) is the Riemannian volume element on (C, ĝ) and

d

dt
TtΦ|t=0 = −ĥΦ

with ĥ = −gA and

A =

(
−(∂ia)∂i + a(m2 −∆(C) + V ) −(∇ib

i + bi∂i)

bi∂i a

)
; g =

(
0 1

−1 0

)

where ∆(C) is the Laplace-Beltrami operator on (C, ĝ) and ∇i is the covariant derivative

on (C, ĝ). In order to apply previous results, we need a Hilbert space (D, 〈, 〉D) containing

D(C), such that σ̂(·, ·) = Im 〈·, ·〉D and Tt = eith, where h is self-adjoint on D. The

result of Kay ([6]) shows that such a one-particle Hilbert space structure exists under the

following (mass gap) assumptions:

1. V is stationary and infV (x) +m2 > 0,

2. inf a > 0 on C,

3. inf (a− bibi/a) > 0 on C.

The above assumptions imply also that the generator h has a bounded inverse.

Theorem 10 ([2]). Let (D, eith) be the one-particle Hilbert space structure corre-

sponding to the Klein Gordon equation on a globally hyperbolic stationary spacetime

(M, g). There exists a complex conjugation C on D such that h is C-real.

In the case of a static space-time, we can realize (M, g) as above, but with the vector

field b = 0. Then the matrix A becomes diagonal

A =

(
A 0

0 a

)

with

A = −(∂ia)∂i + a(m2 −∆(C) + V )

In this case the one-particle structure can be described in a more explicit way. As was

shown by Kay ([6]), D can be identified with L2(C, dη) and the space D(C) of Cauchy
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data is mapped into L2(C, dη) by

(f, p) → Y f + iY ∗−1p

where

Y = (a1/2Aa1/2)−1/4a1/2

and B means closure of operator B. The one-particle hamiltonian h is now given by

h = (a1/2Aa1/2)1/2

and the complex conjugation C is the natural one in L2(C, dη). Then D+ is defined as

Hilbert space completion in L2(C, dη) of the linear space generated by vectors

Y f , f ∈ C∞
0,R(C)

and similarly, D− is the completion in L2(C, dη) of linear space generated by

Y ∗−1p , p ∈ C∞
0,R(C).

From our general results it follows that there exist thermal process indexed by D+ and

D−. The former we call field thermal process and denote by ξβt and the latter we call

momentum thermal process and denote by πβ
t . It is enough to consider the covariances

of these processes for the indexes of the form Y f or Y ∗−1p with f, p ∈ C∞
0 (C). Thus we

obtain

E(< ξβt , f >< ξβs , g >) =
\

C×C

(Y f)(x)Rβ(t, s;x, y)(Y g)(y)dη(x) dη(y)

E(< πβ
t , f >< πβ

s , g >) =
\

C×C

(Y ∗−1f)(x)Rβ(t, s;x, y)(Y ∗−1g)(y)dη(x) dη(y)

where

Rβ(t, s;x, y) =
e−|t−s|h + e−(β−|t−s|)h

1− e−βh
(x, y)

for |t − s| ≤ β. Let dEh(λ) be the spectral resolution of the operator h in the Hilbert

space L2(C, dη). Then

E(< ξβt , f >< ξβ0 , g >) =

∞\
0

e−tλ + e−(β−t)λ

λ(1 − e−βλ)
d〈a1/2f, Eh(λ)a

1/2g〉

Therefore, if f is such that a1/2f ∈ L2(C, dη) then

m(f) =

∞\
0

e−tλ + e−(β−t)λ

1− e−βλ
d〈a1/2f, Eh(λ)a

1/2f〉 ≤ Const||af ||2L2(C,dη)

and we can apply Theorem 5 to conclude that for every such f there exists a version of

the coordinate process < ξβt , f > with Hölder continuous paths. Similar arguments work

also for the momentum process. Thus we obtain

Corollary 11. Let (M, g) be a static, globally hyperbolic space-time with the laps

field a. Then

1. For any f ∈ C∞
0,R(C) such that a1/2f ∈ L2(C, dη) and β ∈ (0,∞] there exists a

version of the coordinate process < ξβt , f > such that for every γ ∈ (0, 1/2) there is
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an integrable random variable d(f, γ) such that

| < ξβt , f > − < ξβs , f > | ≤ d(f, γ) |t− s|γ

with probability one.

2. For any f ∈ C∞
0,R(C) such that a1/2f ∈ H1/2(C, dη) where

H1/2(C, dη)=metric completion of C∞
0,R(C) with respect to the (Sobolev-like) norm

||f ||21/2 =
\

C×C

(h1/2f)(x)(h1/2f)(y)dη(x) dη(y)

the momentum coordinate process < πβ
t , f > for β ∈ (0,∞] has a version with

Hölder continuous paths similarly as in (1).
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