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1. Introduction. Hall’s transformation [Hall] is a generalization of the unitary trans-

formation which intertwines the Schrödinger representation, realised in the Hilbert space

got by equipping the configuration space with a Gaussian rather than Lebesgue measure,

with the Bargmann-Fock [Barg] representation of the canonical commutation relations,

and which maps one to the other the respective functions which are identically one (the

harmonic oscillator ground state vectors). In the generalization the configuration space

is replaced by a Lie group G whose Lie algebra L carries an ad-invariant inner product,

and the Gaussian measure becomes a heat-kernel measure dγt, where t is a positive real

number, for the Laplacian determined canonically by the inner product. The complexifi-

cation of the Lie algebra generates a Lie group with complex structure, into which G is

embedded, and which also possesses a (differently normalized) Laplacian. Hall’s transfor-

mation is an isometry Ht from the L2 space of the original heat kernel measure dγt onto

the holomorphic subspace HL2(dγ̃t) of the L2 space of a heat kernel measure dγ̃t for the

complexified Laplacian. It is given explicitly by the convolution

Htf(x) = f ∗ dγt(x) (1.1)

for x belonging to the embedding of G in its complexification.

Following Hall’s original paper, there is now an extensive literature (see [Driv, DrGr,

Gros, GrMa] and references contained in them) in which, in particular, the Hall isomor-

phism Ht is related to maps Dt and D̃t from the respective L2 spaces to the completion

in a certain norm ‖ . ‖t of the dual U∗ of the universal enveloping algebra U of the Lie

algebra L of the initial Lie group G by

Dt = D̃t ◦ Ht. (1.2)

The maps D and D̃ are given formally by

Dtf(U) = Uf(e) (1.3)

D̃tf̃(U) = Ũ f̃(e) (1.4)

where e is the neutral element of G ⊆ G̃ and the action of U ∈ U on f is the extension of

that of L by left-invariant vector fields on G, and Ũ refers to the corresponding action on

G̃ generated by the action of L by holomorphic vector fields. The norm ‖ . ‖t which makes

these maps isometric can be given an intrinsic characterization. The resulting isometries

are bijective if G is simply connected.

In this paper we use quantum stochastic calculus to construct the Hall transformation

Ht and to interpret the maps Dt and D̃t and the norms ‖ . ‖t. In Section 2 we consider

the Bargmann transformation which is related to anti-normal-ordered quantization. In

Section 3 we generalize this transformation to the Lie group context as a relation between

two stochastic flows of which one is classical and the other quantum in character. The

isometry property and the formula (1.1) are deduced from this flow description in Section

4. Finally in Section 5 we give some indications of extensions of this work.

2. Bargmann’s transformation and deformation quantization. Let C〈p, q〉 de-

note the algebra of complex polynomials in two commuting indeterminates p and q, and

let C〈p,q〉 denote the corresponding algebra in indeterminates satisfying the Heisenberg
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relation

pq− qp = −it
where t is a fixed positive number. By a quantization we shall mean a linear bijective

unital map w from C〈p, q〉 to C〈p,q〉 which intertwines the translation actions of R2

which are given by the automorphisms sx,y and sx,y of the respective algebras for which

sx,yp = p+ x, sx,yq = q + y, sx,yp = p + x, sx,yq = q + y

and which intertwines the involutions for which p, q, p and q are self-adjoint. The Weyl

quantization w0 is that which, for arbitrary x, y ∈ R2 and n = 0, 1, . . ., maps (xp+ yq)n

to (xp + yq)n. Any other quantization is of the form w0 ◦ F (∂1, ∂2) [Huds] where F is

a formal power series in the partial derivatives ∂1 and ∂2 with respect to p and q whose

absolute term F (0, 0) = 1, so that F is invertible. In particular the anti-normal ordered

quantization wa is given by

wa = w0 ◦ exp

[
t

2

(
∂2

1 + ∂2
2

)]
. (2.1)

Equivalently, for m,n = 0, 1, 2, . . .,

wa ((p− iq)m(p+ iq)n) = (p− iq)m(p + iq)n. (2.2)

A quantization w defines a deformed associative multiplication on C〈p, q〉 by

Y ◦w Z = w−1 (w(Y )w(Z)) . (2.3)

The translation action continues to be by automorphisms and the original involution

continues to be an involution for the deformed multiplication. Conversely [Huds] it can

be shown that any associative multiplication on C〈p, q〉 with these properties is of the

form (2.3).

In the case of the Weyl quantization the deformed product is given by

Y ◦ Z(p, q) = Υ(∂
(1)
1 , ∂

(1)
2 , ∂

(2)
1 , ∂

(2)
2 )Y (1)Z(2) |p(1)=p(2)=p, q(1)=q(2)=q (2.4)

where Υ(x1, x2, y1, y2) = exp
(
it
2 (x1y2 − y1x2)

)
. For the general quantization w = w0 ◦

F (∂1, ∂2) we replace Υ in (2.4) by

Υ[F ](x1, x2, y1, y2) = Υ(x1, x2, y1, y2)
F (x1, x2)F (y1, y2)

F (x1 + y1, x2 + y2)
.

In the case of anti-normal ordered quantization this becomes

Υa(x1, x2, y1, y2) = exp [−t(x1 + iy1)(x2 − iy2)] . (2.5)

Theorem 2.1. The anti-normal ordered quantization of a polynomial f(p) in p alone

is the polynomial f̃(p) in p alone where

f̃ =

∞∑
n=0

(n!)−1

(
t

2

)n

f (2n). (2.6)

P r o o f. The Weyl quantization maps each polynomial g(p) to g(p). Since exp[ t2 (∂2
1 +

∂2
1)] evidently maps f(p) to the polynomial

g(p) =

∞∑
n=0

(n!)−1

(
t

2

)n

f (2n)(p),
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the result follows from (2.1).

We define the Bargmann transformation Bt initially from the space of complex poly-

nomials in one variable to itself by Bt(f) = f̃ where f̃(p) is the anti-normal ordered

quantization of f(p). Equivalently, in view of Theorem 2.1,

f̃ = exp

(
t

2
D2

)
f (2.7)

where D denotes differentiation. Note that this can also be expressed as the convolution

f̃ = f ∗ dγt where dγt = (2πt)−
1
2 e−(2t)−1x2

dx. Evidently Bt inherits translation invari-

ance from the anti-normal ordered quantization; if, for x ∈ R, fx(p) = f(x + p) and

f̃x(p) = f̃(x+ p), then, with f̃ = Bt(f), we have f̃x = fx. That it is an L2 isometry for

the appropriate Gaussian measures on R and C can be deduced from the L2 isometry

property of the Weyl quantization; it will also follow from more general considerations

in Section 4. That it intertwines the annihilation operators in the respective L2 spaces

(and hence also their adjoints, the creation operators), both of which act by differentia-

tion on polynomials, is clear from (2.7); indeed this is the infinitesimal form of translation

invariance. It is evident that it maps one to the other the respective identity polynomials.

3. Two stochastic flows. Let G be a Lie group whose Lie algebra L is equipped

with an ad-invariant inner product. Such a group is necessarily unimodular, being the

product of a compact Lie group with some RN [GrMa].

We take the complexification L̃ of L, equipped with the sesqui-linear inner product

〈·, ·〉 extending the original one as the circumambient space of a quantum stochastic

calculus. Thus, in the Fock space F(L2(R+

⊗
L̃)) we have creation and annihilation

processes A†(K) and A(K) labelled by elements of L̃ and gauge processes Λ(S) labelled

by linear transformations on L̃. These satisfy the Ito product rules

dA(K)dA†(L) = 〈K,L〉dT, dA(K)dΛ(S) = dA(S∗K),

dΛ(S)dΛ(T ) = dΛ(ST ), dΛ(S)dA†(K) = dA†(SK),

[HuPa] all other products being zero.

Now let (L1, . . . , Ld) be an orthonormal basis of L and denote by L the basis inde-

pendent Laplacian

L =

d∑
j=1

L2
j ,

regarded as a left-invariant second order differential operator on G. We consider the

diffusion X on G, starting at time 0 at the neutral element e, whose generator is L
(sometimes called the Brownian motion on G). Thus X is a G-valued random variable

distributed according to the heat-kernel measure dγt whose density γt is the solution of

the partial differential equation

∂

∂t
γ =

1

2
Lγ, γ0 = δe. (3.1)

For smooth f , f(Xt) can be identified with the evaluation at e of Jt(f) where the
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stochastic flow J is defined by

dJ(f) =

d∑
j=0

J(Ljf)dPj −
1

2
J(Lf)dT, J0(f) = f, (3.2)

where Pj is the momentum process (Brownian motion) i(A†(Lj)−A(Lj)). The solution

of (3.2) may be expressed through the stochastic Dyson perturbation expansion, in which

the stochastic terms in the differential equation are regarded as perturbations of the time

terms, as

Jt(f) =

∞∑
n=o

d∑
j1,...,jn=1

\

∆n(t)

e−
1
2 t1LLj1e

− 1
2 (t2−t1)LLj2 . . . Ljne

− 1
2 (t−tn)L(f)dPj1(t1) . . . dPjn(tn)

where ∆n(t) is the increasing subset of Rn,

∆n(t) = (0 < t1 < . . . < tn < t) .

Because L commutes with each Lj the integrand in (3.3) may be collapsed to give

Jt(f) =

∞∑
n=0

d∑
j1,...,jn=1

n∏
k=1

Ljke
− 1

2 tL(f)
\

∆n(t)

dPj1(t1) . . . dPjn(tn). (3.3)

We may evaluate at the neutral element e to obtain

f(Xt) =

∞∑
n=0

d∑
j1,...,jn=1

n∏
k=1

Ljke
− 1

2 tLf(e)
\

∆n(t)

dPj1(t1) . . . dPjn(tn). (3.4)

The space L̃ is the Lie algebra of a group G̃ into which G is embedded via the natural

embedding L ⊂ L̃. G̃ inherits a complex structure from that of L̃. We define a stochastic

flow J̃ on holomorphic functions f̃ on G̃ by

dJ̃(f̃) =

d∑
j=0

J̃(L̃j(f̃))dA†j , J̃0(f̃) = f̃ . (3.5)

where A†j is the creation process A†(Lj) and L̃j is the holomorphic action of Lj as

left-invariant holomorphic vector fields on the Lie group G̃.

The iterative solution of (3.6) is

J̃t(f̃) =

∞∑
n=0

d∑
j1,...,jn=1

n∏
k=1

L̃jk(f̃)
\

∆n(t)

dA†j1 . . . dA
†
jn
. (3.6)

Again we can evaluate at e to obtain

J̃t(f̃)(e) =

∞∑
n=0

d∑
j1,...,jn

n∏
k=1

L̃jk f̃(e)
\

∆n(t)

dA†j1 . . . dA
†
jn
. (3.7)

The Hall transformation Ht : f 7→ f̃ can be defined by equating the coefficients of
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the iterated integrals in (3.5) and (3.8). Thus f is related to f̃ by

f(Xt) =

∞∑
n=0

d∑
j1,...,jn=1

n∏
k=1

L̃jk f̃(e)
\

∆n(t)

dPj1(t1) . . . dPjn(tn). (3.8)

It is evident from its genesis that Ht has the translation-invariance property

Ht(fx) = (Ht(f))x (3.9)

where, for x ∈ G ⊂ G̃, fx denotes the left translation fx(y) = f(xy).

In the case G = (R,+), Ht reduces to the Bargmann transformation Bt.

4. Isometry properties and convolution formula. Since Xt has distibution dγt
and the map f 7→ f(Xt) is multiplicative and respects complex conjugation, the proof of

the following theorem is immediate.

Theorem 4.1. The map Ft : f 7→ f(Xt) is isometric from L2(dγt) to the space Wt

of square-integrable complex-valued functions of the random variable Xt equipped with the

norm

‖ f(Xt) ‖2= E
[
| f(Xt) |2

]
.

For the next isometry property we use (3.5) to write

f(Xt) =
∞∑

n=0

d∑
j1,...,jn=1

cj1,...jn(t)
\

∆n(t)

dPj1 . . . dPjn . (4.1)

where the cj1,...,jn(t) are complex numbers.

Theorem 4.2.

‖ f(Xt) ‖2=

∞∑
n=0

(n!)−1tn
d∑

j1,...,jn=1

| cj1,...,jn(t) |2 . (4.2)

P r o o f. This follows from (4.1) together with the relation

E
[ \

∆m(t)

dPk1
. . . dPkm

\

∆n(t)

dPj1(t1) . . . dPjn(tn)
]

= (n!)−1δm,n

n∏
l=1

δkl,jl

which is easily deduced from the Ito formula dPkdPj = δk,jdT .

Similarly, if we write (3.8) in the form

F̃t(f̃) =

∞∑
n=0

d∑
j1,...,jn=1

c̃j1,...,jn(t)
\

∆n(t)

dA†j1 . . . dA
†
jn

(4.3)

where F̃t(f̃) = J̃t(f̃)(e), we may use the Ito formula dAkdA
†
j = δk,jdT to prove

Theorem 4.3.

‖ F̃t(f̃)Ω ‖2=

∞∑
n=0

(n!)−1tn
d∑

j1,...,jn=1

| c̃j1,...,jn(t) |2 .

where Ω is the Fock vacuum vector.
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Our last isometry is more subtle. We introduce the Laplacian on G̃

L̃ =

d∑
j=1

(
(Lj)

2 + (iLj)
2
)
.

Here (L1, . . . , Ld, iL1, . . . , iLd) is a basis of L̃ = L ⊗R C regarded as a real Lie algebra.

The heat kernel measures dγ̃t are defined by a renormalized analogue of (3.1):

∂

∂t
γ̃ =

1

4
L̃γ̃, γ̃0 = δe.

Theorem 4.4. For holomorphic f̃ ,

‖ F̃t(f̃)Ω ‖2=
\

G̃

| f̃ |2 dγ̃t. (4.4)

P r o o f. Using (3.7) we have

(J̃(f̃))† = J̄(
¯̃
f)

where J̄ is the flow defined on conjugate-holomorphic functions on G̃ by

dJ̄(
¯̃
f) =

d∑
j=1

(J̄(L̄j(
¯̃
f)))†dAj , J̄0(

¯̃
f) =

¯̃
f (4.5)

where Aj = A(Lj) and, for L ∈ L, L̄ denotes the action of L as a conjugate-holomorphic

vector field. Evaluating at e the iterated solution corresponding to (3.7) of (4.5) and using

(3.8), we find that

dF̃(f̃) =

d∑
j=1

F̃(L̃j(f̃))dA†j ,

d(F̃(f̃))† =

d∑
j=1

F̄(L̄j
¯̃
f)dAj

where F̄t(
¯̃
f) = J̄t

¯̃
f(e). By the quantum Ito formula we have

d((F̃(f̃))†F̃(f̃)) =

d∑
j=1

(F̄(L̄j
¯̃
f)F̃(f̃)dAj + (F̃(f̃))†F̃(L̃j f̃)dA†j)

+

d∑
j=1

F̄(L̄j
¯̃
f)F̃(L̃j f̃)dT.

Taking vacuum expectations we obtain

d

dt
‖ F̃t(f̃)Ω ‖2=

d∑
j=1

‖ F̃t(L̃j f̃)Ω ‖2 . (4.6)

We may solve (4.6), together with the initial value

‖ F̃0(f̃)Ω ‖=| f̃(e) |2,
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iteratively, to obtain

‖ F̃t(f̃)Ω ‖2=

∞∑
n=0

(n!)−1tn
d∑

j1,...,jn=1

∣∣∣ n∏
k=1

L̃jk f̃(e)
∣∣∣2. (4.7)

Now we follow Driver [Driv], noting that, for holomorphic f̃ , each L̄j f̃ = L̃j
¯̃
f = 0, and

that each L̃j commutes with each L̄j so that (4.7) can be rewritten as

‖ F̃t(f̃)Ω ‖2=

∞∑
n=0

(n!)−1tn
( d∑

j=1

L̄jL̃j

)n
|f̃ |2(e). (4.8)

But
∑d

j=1 L̄jL̃j is just twice the Laplacian L̃. Hence (4.4) follows from (4.8).

Since the Hall transformation Ht : f 7→ f̃ is defined by identifying the expansion co-

efficients cj1,...,jn(t) and c̃j1,...,jn(t) in (4.1) and ((4.2) it follows from Theorems 4.1,...,4.4

that

Theorem 4.5. Ht is an isometry from L2(dγt) to the holomorphic subspace HL2(dγ̃t)

of L2(dγ̃t).

Finally we must prove the convolution formula (1.1).

Theorem 4.6. If f̃ = Htf then, for arbitrary x ∈ G ⊂ G̃ we have

f̃(x) =
\

y∈G

f(xy−1)dγt(y) = E[f(xXt)]. (4.9)

P r o o f. By (3.9) we have E[f(Xt)] = f̃(e), that is, since G is necessarily unimodular,

(4.9) holds when x = e. Its validity for general x follows from this together with the

translation-invariance property (3.10).

5. Conclusion. The approach to the Hall transformation described here appears to

be a natural one in that it gives direct probabilistic descriptions of the norms ‖ ‖t
on the dual of the universal enveloping algebra which render isometric the factors Dt

and D̃t of Ht discovered by Gross, Driver and their collaborators. It is essential that a

quantum stochastic calculus be used to understand in this sense the Driver-Gross isometry

D̃t. However our derivation of this isometry does not use the ad-invariance of the inner

product on L, so that this isometry extends to this more general case as noted in [DrGr].

In contrast, ad-invariance is essential for the centrality of the Laplacian (which is the

quadratic Casimir element), required for our derivation of the isometry of the Gross

map Dt.

Our approach offers some interesting possibilities for further work and extension. The

first of these is to construct a non-linear (in the Hall sense) generalisation of Segal’s

Fermionic analogue of the Bargmann transformation [Sega], making use of the Z2-graded

quantum stochastic calculus [EyHu] which generalises the quantum stochastic Boson-

Fermion unification [HuPa2] and which lives naturally [Eyre] on the universal enveloping

algebra of a Lie super-algebra in the same way that a quantum stochastic calculus lives

naturally on the universal enveloping algebra of a Lie algebra [HuPu].
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Another extension of the present work is to the study of deformations of Poisson Lie

algebras [ChPr] and associated solutions of the quantum Yang-Baxter equation using

quantum stochastic calculus. This work makes use of both holomorphic and conjugate-

holomorphic derivative operators to construct deformed products which generalise the

Weyl-Moyal product (2.4) of the case G = R, G̃ = C. The corresponding solution of the

quantum Yang-Baxter equation is constructed in the tensor product of two copies of the

completed universal enveloping algebra using the tensor product operator of D̃t with its

conjugate-holomorphic counterpart.
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