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Abstract. The aim of this work is to develop the variational approach to the Dirichlet
problem for generators of sub-Markovian semigroups on C∗-algebras. KMS symmetry and the
KMS condition allow the introduction of the notion of weak solution of the Dirichlet problem.
We will then show that a unique weak solution always exists and that a generalized maximum
principle holds true.

1. The Dirichlet problem in C∗-algebras. The extension of the Dirichlet problem

to noncommutative C∗-algebras has been considered some years ago by J.-L. Sauvageot

[Sau1]. To formulate the problem the structure required consists of:

i) a C∗-algebra A

ii) a two-sided closed ideal I ⊂ A
iii) a strongly continuous, sub-Markovian semigroup, {Φt : t ≥ 0} on A.

By double duality, {Φt : t ≥ 0} can be canonically extended to a semigroup {Φt : t ≥ 0} of

sub-Markovian normal maps on the enveloping von Neumann algebra A∗∗. The generator

∆x := lim
t→0

1

t
(x− Φt(x)),

defined on the domain Dom(∆) where the above limit exists in the norm of A, is then

extended by

∆x := lim
t→0

1

t
(x− Φt(x)),

on the domain Dom(∆) of A∗∗, where the limit exists in the norm topology of A∗∗. Notice

that the extended semigroup is not necessarily strongly nor weakly* continuous on A∗∗.

The formulation of the Dirichlet problem in the noncommutative setting is based on

the notions of localized convergence and harmonicity, which we recall in a slight more
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restrictive form than the original one [Sau1, 2.1, 3.1].

Definition 1.1. i) A net {yα} ⊂ A∗∗ is said to converge to 0 in A∗∗, uniformly over

the compact sets of I, if, for all a ∈ I and for all ε > 0, there exists a′ ∈ A such that ‖a− a′‖ < ε,

lim
α

(
‖yαa′‖+ ‖a′yα‖

)
= 0.

ii) An element x ∈ A∗∗ is said to be harmonic on I, w.r.t. {Φt : t ≥ 0}, if

1

t
[Φt(x)− x]→ 0

uniformly over the compact sets of I, as t→ 0.

Let M(A) denote the multipliers algebra of A: M(A) := {x ∈ A∗∗ : ax, xa ∈ A ∀ a ∈
A}.

R e m a r k 1.2. It is easily recognized that on norm bounded subsets of M(A) the

uniform convergence over the compact sets of I introduced above coincides with the

convergence in the strict topology of M(A) (see [Ped, 3.12]). Consequently, an element

x ∈ Dom(∆) is harmonic on I iff

a(∆x) = 0, (∆x)a = 0 ∀ a ∈ I;

for x ∈ Dom(∆) this means that x is harmonic iff ∆x belongs to the (closed, two sided)

annihilator ideal I ′ := {b ∈ A : ba = 0 ∀ a ∈ I} of I in A (see [Ric, II-8]).

The next definition makes precise what we mean by a Dirichlet problem in the C∗-

algebra setting. With respect to the original definition proposed in [Sau1], there are two

main differences. The first is that, as mentioned above, we use localized convergence in a

stronger form. The second is that we take into account possibly non vanishing inner and

boundary data.

Let A/I be the quotient C∗-algebra of A by the two-sided closed ideal I. By [Ped,

Proposition 3.12.10], the canonical surjection of A onto A/I extends to a surjective mor-

phism p : M(A)→M(A/I).

Definition 1.3 (Dirichlet problem). Let α ≥ 0, y ∈M(I), z∈M(A/I) be fixed data.

An element x := L(y, z) ∈ M(A) is said to be a solution of the Dirichlet problem, with

inner condition y and boundary condition z, if the class of x in M(A/I) is z and

1

t
[Φt(x)− x] + αx→ y, t→ 0 (1.1)

uniformly over the compact sets of I.

Globally, a solution of the Dirichlet problem is a completely sub-Markovian map

L : M(I)⊕M(A/I)→M(A) (y, z)→ x := L(y, z) (1.2)

such that composed with the projection p : M(A) → M(A/I), p ◦ L gives the second

coordinate map and such that x = L(y, z) solves (1.1).
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Notice that if the solution x of the Dirichlet problem belongs to Dom(∆), equation

(1.1) reads as follows

a(−∆x+ αx− y) = 0, (−∆x+ αx− y)a = 0 ∀ a ∈ I.

Example 1.4. To recover a classical (commutative) Dirichlet problem consider as

A the algebra C0(X) of continuous function, vanishing at infinity, on a Riemannian

manifold (X, g). The ideal I will correspond to the algebra C0(Ω), for some fixed open

set Ω ⊂ X. The quotient A/I will represent the algebra C0(Ωc) of continuous functions

on Ωc vanishing at infinity and M(A) (resp. M(I),M(A/I)) the algebra Cb(X) (resp.

Cb(Ω), Cb(Ω
c)) of all continuous bounded functions on X (resp Ω,Ωc). Clearly, the notion

of convergence introduced above reduces to the uniform convergence over the compact

subsets of Ω. If we choose for Φt = exp(t∆g) the heat semigroup whose generator is the

Laplacian operator ∆g associated to the metric g, a C2 function x ∈ Cb(X) is a solution

of the Dirichlet problem (see [Bre, IX.5]) with data y ∈ Cb(Ω) and z ∈ Cb(Ωc) if{
−∆gx+ αx = y on Ω

x = z on Ωc.

Finally, the complete sub-Markovianity of the lift L (which in the commutative case

simply reduces to sub-Markovianity) translates into the algebraic setting what is known

as the maximum principle for solutions of the Dirichlet problem (see [Bre, IX.7]).

Example 1.5. Let G be a locally compact group with identity e. To any continuous,

negative definite function ψ : G → IR such that ψ(e) = 0 is associated a strongly

continuous (completely) sub-Markovian semigroup {Φt : t ≥ 0} on the reduced C∗-

algebra C∗red(G), which extends to the semigroup u → e−tψu on the algebra K(G) of

continuous functions with compact support on G. Ideals of this C∗-algebra correspond

to kernels of unitary representations of G.

Example 1.6. Combining, in the natural way, the heat semigroup e+t∆g of Example

1.4 and the semigroup e−tψ of Example 1.5 one can construct a strongly continuous

sub-Markovian semigroup on the crossed product C∗-algebra C∗(α,G,C0(X)) [Ped, 7.6],

associated to a continuous action α : G × C0(X) → C0(X) of isometries. The only

condition one has to require is that the action commutes with the semigroup e+t∆g . This

is an unpublished result due to J.-L. Sauvageot, who also proved the Feller’s property

(see below) for these kind of semigroups. Typical ideals in the above crossed product

are in correspondence with saturated subsets of the manifold X, i.e. closed set which are

union of orbits of the action α.

Example 1.7. Let (V,F) a Riemannian foliation of the compact manifold V and

consider the associated C∗-algebra C∗(V,F), constructed by A. Connes (see [Con2]). On

this algebra J.-L. Sauvageot [Sau4] has recently constructed the so called transverse heat

semigroup of the Riemannian foliation (V,F). In this case closed ideals correspond to

saturated subsets of V , i.e. closed subsets which are unions of leaves of the foliation.

Example 1.8. In the notations of Example 1.4, consider the C∗-algebra

A := {u ∈ C0(X,Mn(IC)) : u(x) is diagonal ∀x ∈ Ω′c},
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where Mn(IC) is the algebra of n × n matrices over IC and Ω′ ⊂ X is a fixed open set.

Typical closed ideals in this algebra are those whose functions vanish outside an open set

Ω′ ⊂ Ω. A strongly continuous sub-Markovian semigroup can be realized by reducing to

A the tensor product semigroup e+t∆g ⊗ Ψt, where ψ is any sub-Markovian semigroup

on the full matrix algebra Mn(IC).

To stress the differences between our approach and the one followed by J.-L. Sauva-

geot, we end this section discussing the main assumptions used in [Sau1] to solve, in the

sense of Definition 1.3, the noncommutative Dirichlet problem. These were:

i) the complete sub-Markovianity of the semigroup;

ii) its Feller property: Φt(A
∗∗) ⊂M(A) ∀ t > 0;

iii) the locality of its generator in the ideal I;

iv) the regularity of the ideal I.

The requirement i) is directly connected to Sauvageot’s approach based on two typical

quantum probabilistic tools: the construction of the quantum stochastic process associ-

ated with the semigroup (see [Sau2]) and the theory of quantum stopping times developed

in [Sau3]. Properties ii) and iii) are instead connected with the solubility of the problem

within the multiplier algebra M(I) (as stated in Definition 1.3); property iv), expressed

in terms of the regularity of the stopping time associated with I, is a sufficient condition

to find the solution in M(A) than in some other larger subalgebra of A∗∗.

2.KMS-symmetric Markovian semigroups and Dirichlet forms. To formulate

the notion of weak solution of the Dirichlet problem, the main assumption we use is the

following notion of symmetry.

Definition 2.1 (KMS-Symmetric Markovian Semigroups). Let ω ∈ A∗+ be a state

satisfying the KMS condition at β ∈ IR w.r.t. a strongly continuous automorphisms group

{αt}t∈IR of A (see [Ped, 8.12]). The semigroup {Φt}t≥0 is said to be β-KMS-symmetric

w.r.t. {αt}t∈IR and ω if

ω(Φt(x)α−β i
2
(y)) = ω(α+β i

2
(x)Φt(y)) ∀ t ≥ 0 (2.1)

and for all x, y ∈ Aa (the ∗-subalgebra of analytic elements for {αt}t∈IR).

Clearly the above definition still makes sense not only for semigroups but also for

single maps, even if these are not everywhere defined (in this case (2.1) will be verified

for the analytic elements in the domain of the map only). In this form KMS symmetry has

been introduced in [Cip, Definition 2.1] for the particular case of von Neumann algebras

and modular automorphisms groups. See also [GL] for an equivalent formulation in the

context of the Haagerup’s standard form of the von Neumann algebra. The importance

of KMS-symmetry for semigroups is that, combined with the KMS condition, it allows

us to study semigroups in the GNS representation (πω, Hω, ξω) of the state ω.

Lemma 2.2. A KMS-symmetric map Φ on A leaves globally invariant the kernel

ker(πω) of the GNS representation of ω.

P r o o f. For β 6= 0 it is enough, by rescaling, to consider the case β = 1. We have to

prove that for x ∈ A, πω(x) = 0 implies πω(Φ(x)) = 0. Equivalently, we have to show
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that, for x ∈ A,

ω(zxy) = 0 ∀ y, z ∈ A (2.2)

implies

ω(zΦ(x)y) = 0 ∀ y, z ∈ A. (2.3)

By the density of Aa in A (see [Ped, 8.12]) and the continuity of the map Φ, it is enough

to prove (2.3) for y, z ∈ Aa and x ∈ Aa ∩ ker(πω).

Let αw(x) be, for w ∈ IC, the (entire) analytic extension of the function αt(x) of the

real variable t. Notice that {αw}w∈IC is an automorphism group on Aa indexed by IC and,

by [Ped, 8.12.4], ω(αw(x)) = ω(x) for all w ∈ IC. Moreover, (2.2) implies:

ω(zαw(x)y) = ω(α−w(αw(z)xαw(y))) = ω(αw(z)xαw(y)) = 0 ∀w ∈ IC. (2.4)

By the KMS-condition satisfied by ω w.r.t. {αt}t∈IR we have:

ω(zΦ(x)y) = ω(Φ(x)yαi(z)) = ω(Φ(x)α−i/2(α+i/2(yαi(z)))).

Using the KMS-symmetry (2.1) and (2.4) we then have

ω(zΦ(x)y) = ω(α+i/2(x)Φ(α+i/2(yαi(z)))) = 0

as required. For β = 0 the proof is similar and easier.

Since αt(ker(πω)) ⊂ ker(πω) for all t ∈ IR, we can extend the automorphism group on

the C∗-algebra πω(A) (see [Dop, V.4]):

αωt : πω(A)→ πω(A) αωt (πω(x)) := πω(αt(x)) ∀x ∈ A, ∀ t ∈ IR.

Let us denote by M the weak closure πω(A)′′ in B(Hω). Since no confusion can arise,

ω will also denote the normal extension to M of the state ω on A: ω(·) = (·ξω; ξω).

The vector ξω is cyclic and separating forM and the associated modular automorphisms

group {σωt }t∈IR onM, when reduced on πω(A), coincides with {αωβt}t∈IR (see [Dop, V.4]).

Theorem 2.3. Let {αt}t∈IR be a strongly continuous automorphisms group on the

C∗-algebra A and let ω ∈ A∗+ be an associated KMS state at β ∈ IR. Let (πω, Hω, ξω)

be the GNS representation of ω. Let {Φt}t≥0 be a strongly continuous, sub-Markovian

semigroup on A and suppose it is β-KMS symmetric w.r.t. {αt}t∈IR and ω ∈ A∗+. Then

there exists on M = πω(A)′′ a unique σ(M,M∗)-continuous, sub-Markovian semigroup

{Φωt }t≥0 such that

Φωt (πω(x)) = πω(Φt(x)) ∀x ∈ A, ∀ t ≥ 0. (2.5)

Moreover {Φωt }t≥0 is KMS symmetric w.r.t. the modular automorphisms group {σωt }t∈IR

of the normal extension of ω on M.

P r o o f. By Lemma 2.2, formula (2.5) defines a semigroup of maps on πω(A). Since

{Φt}t≥0 is β-KMS symmetric w.r.t. {αt}t∈IR and ω, {Φωt }t≥0 is KMS symmetric w.r.t.

{σωt }t∈IR (see [Cip, Definition 2.1)]. By [Cip, Proposition 2.3] these maps are σ(M,M∗)-
densely defined and σ(M,M∗)-closable. By [Cip, Proposition 2.3 ii)], to prove that

they can be uniquely extended to everywhere defined σ(M,M∗)-continuous (hence norm

bounded) maps, it is enough to show that the domain of their closures isM. Fix t ≥ 0 and

a ∈M and consider a net {πω(xβ)}β ⊂ πω(A) converging to a in the σ(M,M∗)-topology.

The net is then norm bounded and, by the sub-Markovianity of Φωt , {Φωt (xβ)}β is norm
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bounded too, hence a σ(M,M∗)-relatively compact set. Hence, possibly considering a

suitable subnet, {πω(xβ)}β converges to a in the σ(M,M∗)-topology and {Φωt (xβ)}β
converges in M, which proves that a is in the domain of the closure of Φωt .

To prove the σ(M,M∗)-continuity of the semigroup {Φωt }t≥0, we start to observe

that for normal functionals of the form ωξ = (·ξ; ξ), ξ = πω(y)ξω for some y ∈ A, the

strong continuity of {Φt}t≥0 gives:

ωξ(Φ
ω
t (πω(x))) = (πω(Φt(x))ξ; ξ) = ω(y∗Φt(x)y)→ ω(y∗xy), t→ 0.

Every ψ ∈ M∗+ can be represented as ψ(·) = (·η; η) for some η ∈ Hω (see [Ara]). Since

‖ψ−ωξ‖ ≤ ‖η−ξ‖·‖η+ξ‖, the density of πω(A)ξω in Hω implies that {ωξ : ξ ∈ πω(A)ξω}
span a norm dense subset of M∗. This and the fact that sub-Markovian semigroups are

necessarily contractive ([Cip, Proposition 2.6]) implies the statement.

By Tomita-Takesaki theory (see [Ped, 8.13]) we consider the standard form of M =

πω(A)′′ in the GNS representation of the state ω on the C∗-algebra A (see [Ara], [Con1],

[Haa]). This consists of the triple (M, L2(A,ω), L2
+(A,ω)), where

M = πω(A)′′, L2(A,ω) := Hω, L2
+(A,ω) := ∆

1/4
ξω
M+ξω.

Here ∆ξω denotes the modular operator associated to the cyclic and separating vector ξω.

Among the main properties of L2
+(A,ω), whose elements are called positive, the following

ones will be crucial for us: L2
+(A,ω) is a closed , convex , selfdual cone in the sense that

L2
+(A,ω) = {ξ ∈ L2(A,ω) : (ξ, η) ≥ 0 ∀ η ∈ L2

+(A,ω)}.

Furthermore, L2(A,ω) is the complexification of the subspace

L2
IR(A,ω) := {ξ ∈ L2(A,ω) : (ξ, η) ∈ IR ∀ η ∈ L2

+(A,ω)}

whose elements are called real and on which the cone induces a structure of ordered real

Hilbert space (denoted by ≤). It also gives rise to an isometric conjugation J on L2(A,ω)

which leaves L2
+(A,ω) and L2

IR(A,ω) invariant: J(ξ+iη) := ξ−iη for all ξ, η ∈ L2
IR(A,ω).

An element ξ is real iff Jξ = ξ. Any real element ξ can be uniquely decomposed as a

difference ξ = ξ+ − ξ− of two orthogonal positive elements, the positive and negative

parts: ξ± ∈ L2
+(A,ω), (ξ+, ξ−) = 0. The positive part ξ+ is identified with the hilbertian

projection of ξ onto the closed convex cone L2
+(A,ω). This is the Jordan decomposition

which characterizes selfdual cones among the convex and closed ones (see [Ioc]). By the

general theory of [Cip], we can then extend {Φωt }t≥0 to a well behaved semigroup on the

space L2(A,ω).

Theorem 2.4. There exists a unique, strongly continuous semigroup {Tωt }t≥0 on the

Hilbert space L2(A,ω) such that

Tωt iω(x) = iω(Φωt (x)) ∀x ∈M (2.6),

where iω :M→ L2(A,ω) denotes the symmetric embedding : iω(x) = ∆
1/4
ξω
xξω.

Moreover {Tωt }t≥0 is symmetric, contractive and sub-Markovian in the sense that

0 ≤ Tωt (ξ) ≤ ξω whenever 0 ≤ ξ ≤ ξω, ξ ∈ L2(A,ω), (2.7)

the order relation in L2(A,ω) being defined by the (closed and convex ) cone L2
+(A,ω).
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P r o o f. It is a straightforward application of [Cip, Definition 2.8, Theorem 2.11].

Associated to the sub-Markovian semigroup {Tωt }t≥0, let us consider the following

symmetric, quadratic form on L2(A,ω):
Fω := {ξ ∈ L2(A,ω) : lim

t→0

1

t
(ξ − Tωt ξ; ξ) exists}

Eω[ξ] := lim
t→0

1

t
(ξ − Tωt ξ; ξ) ξ ∈ Fω,

(2.8)

which will be central in next section. It is the form of the selfadjoint generator of {Tωt }t≥0

and, by a general result [Cip, Theorem 4.11], it is a Dirichlet form in the following sense

[Cip, §4].

Definition 2.5 (Dirichlet Form). Let (E ,F) be a symmetric, nonnegative, quadratic

form on L2(A,ω). It is said J-real if

Jξ ∈ F and E [Jξ] = E [ξ], whenever ξ ∈ F , (2.9)

it is said Markovian if:

ξ ∧ ξω ∈ F and E [ξ ∧ ξω] ≤ E [ξ], whenever ξ ∈ F and Jξ = ξ, (2.10)

where ξ ∧ ξω denotes the hilbertian projection of the vector ξ onto the closed and convex

set ξω − L2
+(A,ω).

A nonnegative, closed, Markovian quadratic form is called a Dirichlet form.

3. Weak solution of the Dirichlet problem. To motivate the introduction of the

notion of weak solution of the Dirichlet problem posed in Definition 2.1, notice that

the C∗-algebra M(A) is not always C∗-isomorphic to M(I) ⊕M(A/I) for generic two

sided closed ideals I. Analogously, the existence of the completely sub-Markovian lift L :

M(I)⊕M(A/I)→M(A), solving the Dirichlet problem, necessarily requires strong reg-

ularity properties on the ideal and on the sub-Markovian semigroup, as for example those

adopted by J.-L. Sauvageot in [Sau1] and discussed after Definition 1.3. On the other

hand, M(A) and M(I) ⊕M(A/I) are always Borel isomorphic, in the sense that their

enveloping Borel ∗-algebras are isomorphic ([Ped, 4.6]). This suggests that the Dirichlet

problem (1.1)-(1.2) could be solved under less pressing assumptions, when considered in

the Borel or W∗-category ([Ped, 4.5]). Under the KMS symmetry assumption, we are

going to show that this program can be in fact carried out, once we will have suitably

adapted Definition 1.3 at the level of standard form of von Neumann algebras.

Let us consider the supporting central projection zI ∈ A∗∗ of the closed, two sided

ideal I of A. It is easy to see that I∗∗ and (A/I)∗∗ can be identified with zIA
∗∗ and

(1 − zI)A/I∗∗, respectively. Let us denote by eI the image of zI under the canonical

surjection π̃ω : A∗∗ →M which extends πω : A →M ([Ped, Theorem 3.7.7]). Then eI
is a central projection inM and the image by π̃ω of the σ(A,A∗)-closed two sided ideals

zII
∗∗ and (1− zI)(A/I)∗∗ coincide with the σ(M,M∗)-closed two sided idealsMeI and

M(1− eI), respectively.

Notice also that while MeI coincide with πω(I)′′, it is not difficult to see that

M(1 − eI) can be naturally identified with πω(A/I)′′, where now πω denotes the GNS
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representation of the reduction of ω to A/I (which, by abuse of notation, we still denote

by ω):

ω : A/I → IC ω(a+ I) := lim
λ
ω((1− uλ)a(1− uλ))

for all (a + I) ∈ A/I and some fixed approximate unit {uλ}λ in the ideal I. It is not

difficult to see that the above definition is independent of the particular approximate unit

involved. Recall that a face F in the selfdual, convex cone P := L2
+(A,ω) is a convex

subcone which is hereditary in the sense that ξ ∈ F, η ∈ P and ξ − η ∈ P imply η ∈ F;

the face F is said to be splitting if P = F ⊕ F⊥, where the orthogonal face is defined as

F⊥ := {η ∈ P : (η, ξ) = 0 ∀ ξ ∈ F} (see [Con1], [Ioc]). In the following we will adopt

the following notations:

L2(I, ω) := eIL
2(A,ω), L2(A/I, ω) := (1− eI)L2(A,ω),

L2
+(I, ω) := eIL

2
+(A,ω), L2

+(A/I, ω) := (1− eI)L2
+(A,ω).

Lemma 3.1. L2
+(I, ω) and L2

+(A/I, ω) are closed , splitting faces of the seldual convex

cone L2
+(A,ω). Moreover , eI and eA/I are sub-Markovian projections.

P r o o f. By the properties of standard forms of von Neumann algebras, each closed

face of L2
+(A,ω) is of the form eJeJ(L2

+(A,ω)) for a unique projection e∈M, and xJxJ

is positivity preserving for all x ∈ M (see [Con1]). Moreover if e is central in M, then

eJeJ = ee∗ = e, the face L2
+(I, ω) is splitting and the orthogonal face is L2

+(A/I, ω). Let

ξ∈ L2
IR(A,ω) be such that 0 ≤ ξ ≤ ξω. Then, since e = eJeJ and (1−e) = (1−e)J(1−e)J ,

e and e⊥ are positivity preserving, so that

0 ≤ eξ ≤ eξω ≤ eξω + (1− e)ξω = ξω,

which shows the two projections to be sub-Markovian.

We can now introduce the following notion of solution of the noncommutative Dirichlet

problem.

Definition 3.2 (Weak Solution of the Dirichlet Problem). Let {Φt}t≥0 be a strongly

continuous sub-Markovian semigroup on the C∗-algebra A. Let {αt}t∈IR be a strongly

continuous automorphisms group of A and ω ∈ A∗+ an associated KMS state at β ∈ IR

with respect to which the semigroup is β-KMS symmetric. Let us consider the Dirichlet

form (Eω,Fω) on the Hilbert space L2(A,ω) associated with {Φt}t≥0 and fix α > 0,

η ∈ L2(I, ω) and ζ ∈ Fω. An element ξ ∈ Fω is said to be a weak solution of the Dirichlet

problem posed in Definition 1.3, with inner and exterior data η and ζ respectively, if{
Eω(ξ, ξ′) + α(ξ, ξ′)L2(A,ω) = (η, ξ′)L2(A,ω) ∀ ξ′ ∈ FωI

ξ ∈ ζ + FωI
(3.1)

where FωI :=Fω∩L2(I, ω). Notice that the solution ξ depends upon the exterior condition

ζ only through (1− eI)ζ ∈ L2(A/I, ω).

The next theorem is our noncommutative version of the Dirichlet Principle for weak

solutions.

Theorem 3.3 (Existence and Uniqueness of the Weak Solution). With the assumptions

of Definition 3.2 , there exists a unique weak solution of the noncommutative Dirichlet
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problem. It can be characterized as the unique minimizer of the following functionals:

E1 : Fω → IR E1(ξ) :=
1

2

(
Eω[ξ] + α‖ξ‖2L2(A,ω)

)
− α(η, ξ)L2(A,ω),

E2 : Fω → IR E2(ξ) := α−1Eω[ξ] + ‖η − ξ‖2L2(A,ω)

(3.2)

over the set ζ + L2(I, ω).

P r o o f. Let Q =: ζ+L2(I, ω). As in the classical case (e.g. [Bre, Proposition IX.22]),

one easily verifies that ξ ∈ Q is a weak solution if and only if

Eω(ξ, ξ′ − ξ) + α(ξ, ξ′ − ξ) ≥ (η, ξ′ − ξ) ∀ ξ′ ∈ Q.
Since Q is closed and convex and Eωα [·] := Eω[·] + α‖ · ‖2L2(A,ω) is coercive (for α > 0),

we can then apply Stampacchia’s theorem on (Eωα ,Fω) [Bre, Theorem V.6] to get the

existence and uniqueness of the weak solution as unique minimizer of E1. The proof is

completed as soon as one notices that E2[·] = 2α−1E1[·] + ‖η‖2.

Theorem 3.4 (Maximum Principle for Weak Solutions). Let ξ ∈ Fω be a weak solution

of the noncommutative Dirichlet problem with inner and exterior conditions η ∈ L2(I, ω)

and e⊥I ζ ∈ L2(A/I, ω) (for some ζ ∈ Fω), respectively. Then, for λ ≥ 0 we have:

ξ ∈ L2
IR(A,ω) whenever η ∈ L2

IR(I, ω), e⊥I ζ ∈ L2
IR(A/I, ω), (3.3)

ξ ∈ L2
+(A,ω) whenever η ∈ L2

+(I, ω), e⊥I ζ ∈ L2
+(A/I, ω), (3.4)

0 ≤ ξ ≤ λξω whenever 0 ≤ η ≤ λeIξω, 0 ≤ e⊥I ζ ≤ λe⊥I ξω. (3.5)

More globally , the map L : L2(I, ω)⊕ (I − eI)Fω → L2(A,ω), where L(η, ζ) is the weak

solution of the Dirichlet problem with data η and ζ, is sub-Markovian.

The proof of the theorem relies on the following lemmas.

Lemma 3.5. Let e be a projection onto a closed , convex , splitting face of L2
+(A,ω).

We then have:

i) (eξ)± = eξ± and (e⊥ξ)± = e⊥ξ± for all ξ ∈ L2
IR(A,ω);

ii) e(ξ1 ∧ ξ2) = eξ1 ∧ eξ2 for all ξi ∈ L2
IR(A,ω) i = 1, 2;

iii) e⊥(ξ1 ∧ ξ2) = e⊥ξ1 ∧ e⊥ξ2 for all ξi ∈ L2
IR(A,ω) i = 1, 2.

P r o o f. i) Let ξ ∈ L2
IR(A,ω) and ξ = ξ+ − ξ− its Jordan decomposition into the

positive and negative parts. Since e is positivity preserving eξ± ∈ L2
+(A,ω). Moreover,

since the face is splitting, e⊥ is the orthogonal projection onto the orthogonal face, hence

a positive preserving projection too. By selfduality of the cone L2
+(A,ω) we have

0 ≤ (eξ+, eξ−) = (ξ+, eξ−) ≤ (ξ+, ξ−) = 0,

so that eξ = eξ+ − eξ− is the Jordan decomposition of eξ. The statement involving e⊥

can be proved analogously.

ii) By [Cip, Lemma 4.4], ξ1 ∧ ξ2 = ξ2 − (ξ1 − ξ2)− and by part i) we have:

e(ξ1 ∧ ξ2) = e(ξ2 − (ξ1 − ξ2)−) = eξ2 − e(ξ1 − ξ2)− = eξ2 − (eξ1 − eξ2)− = eξ1 ∧ eξ2.
Lemma 3.6. Let e be the projection onto a closed , convex , splitting face of L2

+(A,ω)

and consider ξi ∈ L2
IR(A,ω) i = 1, 2, ξ3 ∈ L2(A,ω).

i) If e⊥ξ3 ≥ 0 we have ξ1+ ∈ ξ3 + L2
IR(I, ω) whenever ξ1 ∈ ξ3 + L2

IR(I, ω);
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ii) if e⊥ξ1 ≤ e⊥ξ3 we have ξ1 ∧ ξ2 ∈ ξ3 + L2
IR(I, ω) whenever ξ1 ∈ ξ3 + L2

IR(I, ω).

P r o o f. i) Since ξ1 ∈ ξ3 + L2
IR(I, ω) we have e⊥ξ1 = e⊥ξ3, so that, by Lemma 3.5 i),

we have also: e⊥(ξ1+ − ξ3) = e⊥(ξ1+)− e⊥ξ3 = (e⊥ξ1)+ − e⊥ξ3 = (e⊥ξ3)+ − e⊥ξ3 = 0.

ii) Since ξ1 ∈ ξ3 + L2
IR(I, ω) we have: e⊥ξ1 = e⊥ξ3. By Lemma 3.5 iii) we have:

e⊥(ξ1 ∧ ξ2 − ξ3) = e⊥(ξ1 ∧ ξ2)− e⊥ξ3 = e⊥ξ1 ∧ e⊥ξ2 − e⊥ξ3 =

= e⊥ξ3 ∧ e⊥ξ2 − e⊥ξ3 = e⊥ξ3 − e⊥ξ3 = 0.

Lemma 3.7. For all real ξ ∈ Fω we have: Eω[ξ ∧ λξω] ≤ Eω[ξ] ∀λ ≥ 0.

P r o o f. For λ = 0 apply [Cip, Theorem 4.11, Theorem 4.7]. By [Cip, Theorem 6.1],

it suffices to prove that Tωt (λξω − L2
+(A,ω)) ⊆ λξω − L2

+(A,ω) for all t ≥ 0. In fact, by

sub-Markovianity of the semigroup we have:

Tωt (λξω − L2
+(A,ω)) = λTωt (ξω − λ−1L2

+(A,ω)) = λTωt (ξω − L2
+(A,ω)) ⊆

⊆ λ(ξω − L2
+(A,ω)) = λξω − L2

+(A,ω).

Proof of Theorem 3.4. Let us denote by e the projection eI and let ξ be the

weak solution of the noncommutative Dirichlet problem with data η ∈ L2(I, ω) and

e⊥ζ ∈ L2(A/I, ω), ζ ∈ Fω. In order to prove (3.3), let us assume η ∈ L2
IR(I, ω), e⊥ζ ∈

L2
IR(A/I, ω) and define Q := ζ + L2(I, ω). By Theorem 3.3 it is enough to show that

Pξ ⊂ Q and E2(Pξ) ≤ E2(ξ) where P := (1 + J)/2 is the projection onto the real part

L2(A,ω). We have e⊥(ξ − ζ) = 0 by hypothesis. Since e is a projection in the center of

M, it commutes with J and P ([Con1]). Since moreover, by hypothesis, Je⊥ζ = ζ we

have Pξ = ξ and

e⊥(Pξ − ζ) = Pe⊥ξ − e⊥ζ = P (e⊥ξ − e⊥ζ) = Pe⊥(ξ − ζ),

so that Pξ ∈ Q. Since Eω is J-real (Definition 2.5), Eω[Pξ] ≤ Eω[ξ] by [Cip, Lemma 4.2,

Theorem 6.1]. Since, by hypothesis Pη = η, we finally have:

E2(Pξ) = α−1Eω[Pξ]+‖η−Pξ‖2 ≤ α−1Eω[ξ]+‖Pη−Pξ‖2 ≤ α−1Eω[ξ]+‖η−ξ‖2 = E2(ξ).

To prove (3.4) assume now η ∈ L2
+(I, ω) and e⊥ζ ∈ L2

+(A/I, ω) and define Q := ζ +

L2
+(I, ω). By the first part of the proof we know ξ to be real. By Lemma 3.6, ξ+ ∈ Q

and, since (Eω,Fω) is a Dirichlet form, we have also Eω[ξ+] ≤ Eω[ξ] by [Cip, Theorem

4.7 iii)]. Since the projection ξ → ξ+ is nonexpansive and η is positive, we get

E2(ξ+) = α−1Eω[ξ+]+‖η−ξ+‖2 ≤ α−1Eω[ξ]+‖η+−ξ+‖2 ≤ α−1Eω[ξ]+‖η−ξ‖2 = E2(ξ)

so that ξ = ξ+ by Theorem 3.3.

To complete the proof of the theorem we have to show that ξ ≤ λξω assuming now

η ≤ λeξω and e⊥ζλe⊥ξω. Notice that the hypothesis on η is equivalent to η ∧ λeξω = η.

Define Q := ζ +L2
IR(I, ω). By Lemma 3.6 ii), ξ ∧ λξω ∈ Q. Applying Lemma 3.7 and the

fact that the hilbertian projection ξ → ξ ∧ λξω is non expansive, we obtain

E2(ξ ∧ λξω) = α−1Eω[ξ ∧ λξω] + ‖η − ξ ∧ λξω‖2 ≤
≤ α−1Eω[ξ] + ‖η ∧ λξω − ξ ∧ λξω‖2 ≤ E2(ξ),

which concludes the proof of the theorem.
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4. Conclusions and prospects. In this work the variational approach to the non-

commutative Dirichlet problem has been developed and applied to a given sub-Markovian

semigroup, or its generator, on a C∗-algebra A. As it results quite clearly from the proofs

of Theorem 3.3 and Theorem 3.4, the method provided has a wider range of applications.

For example, using the methods of [Cip], one can deal with semigroups and generators

associated to a general noncommutative Dirichlet form on any standard form of a von

Neumann algebra. Moreover, while closed two sided ideals, I ⊂ A, are associated, in

the Jacobson topology, to closed subsets of the primitive spectrum Prim(A) (see [Ped,

Theorem 4.1.3]), our method allows to solve the Dirichlet problem, in the weak sense, on

Borel sets of several Borel structures on Prim(A) [Ped, 4.7]. In particular Theorem 3.3

and Theorem 3.4 remain valid for general closed splitting faces of the selfdual cone.

The important problem one has to face when dealing with weak solutions is their

regularity. In other words, if the inner and boundary data η and ζ belong to M(I) and

M(A/I), respectively, does the corresponding weak solution belong to M(A)? In [Sau1]

this problem has been posed and solved using a probabilistic approach. In particular,

beside analytic regularity properties of the semigroup, such as locality and Feller’s proper-

ties, a probabilistic regularity property of the ideal I is required in terms of the quantum

stopping time associated with I. For the time being we prefer to conclude the paper at

this stage, leaving to subsequent works the study of the regularity of weak solutions of

noncommutative Dirichlet problems, such as those arising in contexts of Noncommutative

Geometry of Examples 1.5, 1.6, 1.7.
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