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Abstract. Topological Quantum Field Theories are closely related to representations of

Mapping Class Groups of surfaces. Considering the case of the TQFTs derived from the Kauff-

man bracket, we describe the central extension coming from this representation, which is just a

projective extension.

1. Introduction. A Topological Quantum Field Theory (TQFT) is a way of extend-

ing an invariant < > defined on oriented closed 3-manifolds to manifolds with boundary.

It consists of a functor on a cobordism category: to a surface Σ we associate a module

V (Σ) and to a cobordism† M from Σ1 to Σ2, we associate a linear map ZM from V (Σ1)

to V (Σ2). The reader can refer to Atiyah [A1] for details.

The TQFT-functors are related to representations of mapping class group of surfaces

in the following way. Let Σ be an oriented closed surface, ΓΣ its mapping class group,

that is to say the group of isotopy classes of orientation preserving diffeomorphisms of

Σ. If f is an element of ΓΣ, then its mapping cylinder Cf can be seen as a cobordism

from Σ to Σ. So we obtain an endomorphism ZCf
of V (Σ) and we get a representation of

ΓΣ. Generaly, this representation is just projective (because of what is called the framing

anomaly) and so, linearizing this representation, one obtains a central extension of ΓΣ.

Masbaum and Roberts describe some of these extensions in [M-R].

The aim of this note is to study the central extension arising from the TQFT-functors

constructed in [BHMV3] from the Kauffman bracket. First, we will recall some facts about

this TQFT.

1991 Mathematics Subject Classification: Primary 57M25; Secondary 57N10, 20F05.

The paper is in final form and no version of it will be published elsewhere.
† Since this functor must satisfy certain properties, one has to define carefully the cobordism

category. So, ‘manifold’ means manifold possibly equipped with structure or provided with a

banded link.
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2. TQFT derived from the Kauffman bracket. The purpose of this section is

not to go into the details of the construction, but just to try to explain why we consider

p1-structures.

Considering an appropriate renormalization of the invariant θp defined in [BHMV1,2]

(invariant of a closed 3-manifold with banded link) and using the universal construction,

Blanchet, Habegger, Masbaum and Vogel constructed in [BHMV3] a family (Vp) of

TQFT-functors. These can be defined in the following way: let Vp(Σ) be the free module

generated by {M /M is a 3-manifold such that ∂M = Σ}, and let < , >Σ be the bilinear

form on Vp(Σ) defined by < M1,M2 >Σ=< M1 ∪Σ (−M2) >p (where <>p denotes the

renormalized invariant). Each cobordism M from Σ1 to Σ2 induces a linear map ZM

from Vp(Σ1) to Vp(Σ2) defined by ZM (M1) =M1 ∪Σ1
M . If Vp(Σ) is defined to be Vp(Σ)

divided by the left kernel of < , >Σ, then ZM induces a linear map ZM from Vp(Σ1)

to Vp(Σ2). With these definitions, the authors show that Vp satisfies the TQFT axioms.

Furthermore, since the invariants θp come from the Kauffman bracket, the functors Vp
satisfy the Kauffman relation, that is to say, for all 3-manifolds M , there is a linear map

K(M) → Vp(∂M) which associates to each link L inM (modulo the Kauffman relations)

the class of (M,L)
(
K(M) is the Kauffman module of M

)
.

Since we want to compute the modules Vp(Σ), we ask the invariants to satisfy surgery

axioms (see [BHMV3]). The main one is the index two surgery axiom, which can be stated

as follows: there is a linear combination ω =
∑
λiLi of banded links in the solid torus

−(S1×D2) such that, for any closed 3-manifoldM and any banded link L inM , one has

<M(L)>=<
(
M,L(ω)

)
> , where M(L) is the 3-manifold obtained from M by surgery

on L and L(ω) is the linear combination of banded links in M obtained by inserting a

copy of ω in a neighborhood of each component of L.

Now, if Uε is the unknot with framing ε in the 3-sphere S3, one can see, using the

Kauffman relations, that <S3,Uε(ω)>=<S
3> {Uε(ω)} where { } denote the Kauffman

bracket. Thus, the index two surgery axiom implies that < S3(Uε) >=< S3 > {Uε(ω)} .

But S3(Uε) is diffeomorphic to S3 and computations of [BHMV1] show that {U1(ω)} and

{U−1(ω)} cannot be both equal to 1 (this problem is the so-called framing anomaly).

Thus, since {U1(ω)} = {U−1(ω)}
−1(= µ), doing surgery on Uε(ω) multiplies the in-

variant by µε. But under this surgery, S3(Uε) is the boundary of CP2 \D4 and ε

is precisely the signature of this 4-manifold. Therefore, we see that < > depends on

the signature of the trace of the surgery. So, we shall consider an additional structure

on manifolds such that doing a surgery modifies the structure and makes the invari-

ant independent of the signature. Hirzebruch’s signature theorem leads us to consider

p1-structure on manifolds (see [BHMV3]).

3. p1-structure. Let ξ be a real oriented vector bundle over a CW-complex B and

denote by ξC its complexification. The first obstruction to trivialise a complex vector

bundle is its first Chern class. Since ξC is the complexification of a real oriented vector

bundle, one has c1(ξC) = 0. Thus, the first obstruction we meet to trivialise ξC is its

second Chern class, which is nothing but p1(ξ), the first Pontryagin class of ξ. This leads

us to give the following definition.
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Definition 1. A p1-structure on ξ is a trivialisation of the stabilisation of ξC over

the 3-skeleton of B which extends to the 4-skeleton of B.

If B′ is a subcomplex of B and ξ′ is the restriction of ξ to B′, a p1-structure on ξ

induces one on ξ′ by restriction. Conversely, if α is a p1-structure on ξ
′, we ask if it can be

extended to ξ. The machinery of obstruction theory (see [St], §32]) proves the following.

Proposition 1. There exists a cohomology class p1(B,α) ∈ H4(B,B′;Z) such that

α extends to ξ if and only if p1(B,α) = 0.

Rema r k 1. When B′ is empty, p1(B,α) is equal to the first Pontryagin class p1(ξ).

Now, let α0 and α1 be two p1-structure on ξ which cöıncide with a given p1-structure

ϕ on ξ′.

Definition 2. A homotopy rel ξ′ between α0 and α1 is a p1-structure on the product

bundle ξ × I which coincides with α0 on ξ × {0}, with α1 on ξ × {1} and with ϕ on

ξ′ × {t} for all t ∈ I.

Considering the difference cochain given by obstruction theory (see [St], §33), one

gets:

Proposition 2. The set of homotopy classes rel ξ′ of p1-structure on ξ is affinely

isomorphic to H3(B,B′;Z).

Now, let M be a compact oriented manifold and define a p1-structure on M to be a

p1-structure on its tangent bundle. Suppose that N is a submanifold of ∂M . Choosing

the normal vector of ∂M to be outward, one can see τM = τN ⊕ ε. Thus, a p1-structure

on M induces one on N by restriction. In this situation, the preceeding result gives the

following.

Corollary 3. (i) If M is a compact oriented manifold of dimension 1 or 2 , there is

a unique p1-structure on M up to homotopy.

(ii) If M is a compact oriented manifold of dimension 3 , the set of homotopy classes

rel ∂M of p1-structure on M is affinely isomorphic to Z.

Rema r k 1. The definition of p1-structure given in [BHMV3] and [G2] is not the

same as here. In dimension less than or equal to 4, it is equivalent to ours. But in higher

dimensions, the notion of p1-structure introduced in [BHMV3] and [G2] is not canonical.

To explain this, let us recall briefly the definition of p1-structure given in [BHMV3] and

[G2].

Denote by Xp1
the homotopy fiber of the map p̃1 : BSO → K(Z, 4) corresponding

to the first Pontryagin class of the universal stable bundle γ
SO

over BSO and let γ
X

be the pullback of γ
SO

to Xp1
. A p1-structure on an oriented manifold M is a bundle

morphism from the stable tangent bundle of M to γ
X

which is an orientation preserving

linear isomorphism on each fiber. One can see that this definition depends in the general

case on the choice of the map p̃1. More precisely, the dependence comes from an action

of β
(
w2(M)

)
∈ H3(M ;Z) on the set of homotopy classes of p1-structure on M , where

β is the Bockstein homomorphism and w2(M) the second Stiefel-Whitney class of M .
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When the dimension of M is less than or equal to 4, one has β
(
w2(M)

)
=0. This is why

the two definitions are equivalent in this case.

4. The Mapping Class Group with p1-structure: definition. First, let us look

at the induced projective representation of ΓΣ in the case of the TQFT above. Consider

the genus g Heegaard splitting S3 = H∪ΣH
′ . Then, since the functors Vp are cobordism

generated and satisfy the Kauffman and surgery axioms, Vp(Σ) is isomorphic to the left

kernel of the bilinear form { , } induced on K(H) × K(H ′) by the Kauffman bracket.

With this point of view, the projective action of ΓΣ on Vp(Σ) can be seen in the following

way. If f is a diffeomorphism of Σ which extends to H , then f induces an endomorphism

of K(H) which descends to Vp(Σ). If f extends to H ′, we get the action by considering

the adjoint of the endomorphism induced on K(H ′).

Now, let us suppose that Σ is the torus S1 × S1 and a (resp. b) the Dehn twist

along the curves S1 × {1} (resp. {1} × S1 ). It is well known that ΓΣ is generated by

a and b, with the two relations aba = bab and (aba)4 = Id. Denote by ã and b̃ the

linear transformations of Vp(S
1×S1) induced by a and b as described above. Then, using

methods of [BHMV1], one can check that these two endomorphisms satisfy the following

relations (see [G1]):

ãb̃ã = b̃ãb̃ and (ãb̃ã)4 = λId

where λ is a scalar different from 1. Thus, the action of ΓS1×S1 is not linear, but just

projective (this is another way to see the framing anomaly). In order to linearize this ac-

tion, and following what we have seen in the second section to solve the framing anomaly,

we will provide the mapping cylinder Cf of an element f of ΓΣ with a p1-structure . The

precise definition is the following.

Let Σ be an oriented, connected, closed surface and let ϕ be a given p1-structure on

Σ. For f ∈ ΓΣ, we provide ∂Cf with the p1-structure ϕ. This one can be extended to Cf ,

and Pf , the set of homotopy classes rel ∂Cf of such extensions, is affinely isomorphic to

Z (corollary 3).

Definition 3. The mapping class group with p1-structure , denoted by Γ̃Σ, is the set

of all pairs (f, α) where f ∈ΓΣ and α∈Pf , together with the obvious composition.

R ema r k 1. Atiyah ([A2]) has previously defined this group in a different way.

R ema r k 2. Up to canonical isomorphism, this group does not depend on the choice

of ϕ: if ψ is another p1-structure on Σ, the isomorphism is given by the conjugation by

Σ× I equipped with a p1-structure which realizes a homotopy between ϕ and ψ.

The forgetful map µ is an epimorphism from Γ̃Σ to ΓΣ which defines a central extension

of ΓΣ by Z. Since an element of Vp(Σ) can be represented by a 3-manifold M provided

with a p1-structure and with boundary Σ, we have a linear action of Γ̃Σ by gluing Σ× I

along Σ× {0} to M . Thus, the problem of linearizing the action of ΓΣ is solved.

5. Presentation of Γ̃Σ . Now, let us give a presentation of this extended group. It

is well known that ΓΣ is generated by Dehn twists. So, we shall construct a canonical

lifting τ̃α = (τα, A) of τα, the twist along a simple closed curve (s.c.c.) α on Σ. To do
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this, we have to define the p1-structure A on Cτα . Consider a neighborhood V of α in Σ

and define A outside V × I to be equal to ϕ. Then it remains to extend it on V × I. But

V × I is diffeomorphic to S1 × I × I and so, we want to extend a given p1-structure on

∂(S1 × I × I). The corollary 3 tells us that the set of such extensions is parametrized by

Z. We will take the one which extends to D2 × I × I. More precisely, note that ϕ, which

is by restriction a p1-structure on V ≈ S1× I, can be extended to D2× I in a unique way

up to homotopy by proposition 2. The twist τα, which can be seen as a diffeomorphism

of V , extends to D2× I. By proposition 2, there is a unique p1-structure A on D2× I× I

up to homotopy such that A|D2×∂I×I = ϕ, A|D2×I×0 = ϕ and A|D2×I×1 = ϕ ◦ τα. We

define A on V × I to be the restriction of A.

Now, if C is a set of s.c.c. in Σ such that {τα / α ∈ C} generates ΓΣ, then the set

{τ̃α / α ∈ C} together with a generator u of kerµ generate Γ̃Σ. Let us look at the relations.

Since the extension is central, u commutes with all the τ̃α. To obtain the other rela-

tions, one just needs to lift the relations of ΓΣ . These are the following.

The braid relations. It is well known that if α is a s.c.c. in Σ and h is a diffeomorphism

of Σ, then τh(α)=hταh
−1 . More specifically, if h is a twist τβ , one has the relation (called

a braid relation)

τγ = τβτατ
−1
β (T )

where γ=τβ(α) .

The lantern relations. Let us consider a subsurface of Σ which is homeomorphic to a

disc with three holes. Let α1, α2, α3 and α4 be the boundary components and β1, β2
and β3 curves as shown in figure 1. The relation (called a lantern relation) is:

τα1
τα2

τα3
τα4

= τβ3
τβ2

τβ1
(L).

2

1 3

4

13

2α α α

β

α

β β

Fig. 1

The chain relations. We consider a subsurface of Σ which is homeomorphic to a

surface of genus one with two boundary components. The relation is



116 S. GERVAIS

(τα1
τβτα2

)4 = τδ1τδ2 (C)

where the curves are described in figure 2.

1

δ

δβ 2
α

1 α 2

Fig. 2

Lifting these relations, we obtain a presentation of Γ̃Σ.

N o t a t i o n s. If m ∈ ΓΣ is a word τα1
· · · ταn

, we will denote by m̃ the word

τ̃α1
· · · τ̃αn

∈ Γ̃Σ.

Theorem ([G2]). For any oriented surface Σ, Γ̃Σ is generated by the set of all τ̃α
(where α is a simple closed curve on Σ) together with u, and is defined by the relations

(I), (II), (III) and (IV) below :

(I) for any s.c.c. α, τ̃α u = u τ̃α ,

(II) T̃ = 1 for all the braids T between the curves α and β such that α and β intersect

in zero, one or two points with opposite signs ,

(III) C̃ = u12 for all chains C,

(IV) L̃ = 1 for all lanterns L.

Rema r k 1. One can obtain a finite presentation of Γ̃Σ using the presentation of ΓΣ

given by Wajnryb in [W].

R ema r k 2. This presentation allows us to extend τα 7→ τ̃α to a section

s : ΓΣ → Γ̃Σ and to compute the associated cocycle. This is equal to 12 times the

generator of H2(ΓΣ;Z) (see also [A2]).
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