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Abstract. This is a survey of results and open problems on compact 3-manifolds which admit

spines corresponding to cyclic presentations of groups. We also discuss questions concerning

spines of knot manifolds and regular neighborhoods of homotopically PL embedded compacta

in 3-manifolds.

1. Spines of 3-manifolds. Let

G = 〈x1, x2, . . . , xn : g1, g2, . . . , gm〉

be a finite group presentation with n generators and m relators, n ≥ m. We can associate

to G a canonical 2-complex KG, with one vertex v, such that Π1(KG) is presented by

G. Its 1-skeleton K
(1)
G is a bouquet of n circles with a fixed orientation, also denoted

1991 Mathematics Subject Classification: Primary 57M05; Secondary 57M12.

Work performed under the auspices of the G.N.S.A.G.A. of the C.N.R. (National Research

Council) of Italy and partially supported by the Ministero per la Ricerca Scientifica e Tecnologica

of Italy within the projects Geometria Reale e Complessa and Topologia and by the Ministry of

science and Technology of the Republic of Slovenia grant No. J1-7039-0101-95.

The paper is in final form and no version of it will be published elsewhere.

[49]



50 A. CAVICCHIOLI ET AL.

by x1, x2, . . . , xn. The 2-cells cj of KG correspond bijectively to the relators gj which

determine closed curves as the corresponding attaching maps hj : ∂B
2 → K

(1)
G .

Given such a 2-complex KG, the following questions arise:

Problem 1. Does KG embed into the interior of some compact connected orientable

3-manifold M as its spine, i.e. either M (if ∂M 6= ∅) or M\(open 3-cell) (if ∂M = ∅)

collapses onto KG?

Problem 2. If so, classify the topological structure of all 3-manifolds which admit

KG as spine.

Problem 3. Construct examples of nonhomeomorphic compact 3-manifolds Mi, i =

1, 2, in the 3-sphere with connected boundary ∂M1
∼= ∂M2 of arbitrary genus such that

M1 and M2 have the same spine KG, where G is not a nontrivial free product.

Suppose that KG embeds into a compact 3-manifold M as its spine. A regular neigh-

borhood of K
(1)
G in M is a handlebody H of genus n, each 1-handle corresponding to a

generator xi of G. The boundary ∂H intersects KG in a collection of pairwise disjoint

simple closed curves αj which run around the handles according to the relators gj of

G. The curves αj are the boundaries of the 2-discs in the closure of the complement in

KG of a regular neighborhood of its 1-skeleton. These discs thicken to cylinders B2
j × I,

I = [0, 1], where ∂B2
j ×I must be identified with a regular neighborhood of αj in ∂H . The

resulting manifold is a regular neighborhood of KG in M and hence it is homeomorphic

to M .

The (m+ 1)-tuple (H ;α1, α2, . . . , αm) is the Heegaard diagram of M .

The following represents a first criterion to answer Problem 1 (see [11]).

Theorem 1. KG is a spine of a compact connected (orientable) 3-manifold if and

only if it is possible to draw pairwise disjoint simple closed curves αj on the boundary of

an (orientable) handlebody H with n handles (one handle for each xi) such that αj reads

the relator gj on H.

Now cut each handle of H along a thickened disc. The curves αj give rise to arcs γℓ
running on a 2-sphere with 2n holes, Di and D̄i say. Let eki and ēki , k = 1, 2, . . . , r(i),

denote the intersection points of the arcs γℓ with ∂Di and ∂D̄i, respectively. For each

i, they are assumed to be ordered clockwise (resp. counterclockwise) according to an

orientation of the 2-sphere. Obviously, identifying Di with D̄i, such that eki falls onto ēki ,

yields the initial Heegaard diagram of M .

Let E denote the set consisting of all points eki and ēki , k = 1, 2, . . . , r(i), and define

three permutations A, B and C on E, as follows:

(1) A is the product of the disjoint transpositions interchanging the endpoints of the

arcs γℓ;

(2) B is the involutory permutation sending eki onto ēki ;

(3) C =
∏n

i=1(e
1
i · · · e

r(i)
i )(ē

r(i)
i · · · ē1i ).
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The following gives a second criterion to answer Problem 1. It was first proved in [19]

for closed 3-manifolds and then extended to the boundary case in [2].

Theorem 2. Let G be a finite group presentation with n generators and m relators ,

n ≥ m. Then KG is a spine of a connected compact orientable 3-manifold M with nonvoid

boundary if and only if |A| − |C|+ 2 = |AC|.

The number of components of ∂M equals |AC,BC|. If ∂M is connected , then it is the

closed orientable surface of genus n−m.

Here |p1, . . . , pt| denotes the number of orbits of the group generated by the permu-

tations p1, . . . , pt.

The permutations A and B are uniquely determined by the group presentation G.

A search (possibly by a computer program) of all permutations C satisfying the formu-

las of Theorem 2 yields all bordered compact orientable 3-manifolds (in general, with

repetitions) having the same spine KG.

2. Cyclic presentations. Let Fn be the free group on n generators x1, x2, . . . , xn.

Let θ : Fn → Fn denote the automorphism such that θ(xi) = xi+1, i mod n. For any

word w ∈ Fn, define

Gn(w) =
Fn

R
,

where R is the normal closure in Fn of the set

{w, θ(w), . . . , θn−1(w)}.

A group G is said to have a cyclic presentation if G is isomorphic to Gn(w) for some n

and w (see for example [14]).

Problem 4. What cyclic presentations of groups correspond to spines of closed ori-

entable 3-manifolds?

It seems very plausible that the resulting 3-manifolds appear to be cyclic coverings of

the 3-sphere branched over appropriate knots or links.

Problem 5. What classes of knots or links arise from branched coverings encoded by

cyclic presentations?

We are going to discuss two interesting cases of cyclic presentations yielding 3-

manifolds and then classify the topological structure of these manifolds.

The Fibonacci groups are abstract groups defined by the presentations

F(r,m) = 〈x1, x2, . . . , xm : xixi+1 · · ·xi+r−1x
−1
i+r = 1 (indices modm)〉

for any two positive integers r and m (≥ 2). These groups were investigated by a number

of mathematicians (see for example [3], [8], [9], [10], [13], [14], [15] and [16]). It was shown

that the groups F(2, 2n), n ≥ 2, are interesting from geometrical point of view (see the

quoted papers).

Theorem 3. Let K(2, 2n) be the canonical 2-complex associated to the Fibonacci

group F(2, 2n), n≥2. Then the unique closed orientable prime 3-manifold M(2, 2n) with
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spine K(2, 2n) is the n-fold cyclic covering of the 3-sphere S
3 branched over the figure-

eight knot. In particular , M(2, 4) is the lens space L(5, 2). Further , M(2, 2n), n ≥ 3,

has Heegaard genus two since it is a double cyclic covering of S3 branched over the closed

3-strings braid (σ1σ
−1
2 )n, where σ1 and σ2 are canonical generators.

As proved in [9], M(2, 2n) is hyperbolic for n ≥ 4 and Euclidean for n = 3. Thus we

have the following corollaries (see [21] for a survey on the geometries of 3-manifolds).

Corollary 4. The Fibonacci group F(2, 2n) is isomorphic to a properly discontinu-

ous cocompact group of isometries which acts without fixed points on a space Xn, where

X2 = S
3 (spherical), X3 = E

3 (Euclidean), and Xn = H
3 (hyperbolic) for n ≥ 4.

Corollary 5. Let O(n) be the orbifold with underlying space S
3 and the singular set

the figure-eight knot with branched index n. Then O(n) is spherical for n < 3, Euclidean

for n = 3, and hyperbolic for n > 3.

It was further proved that F(r, 2), r ≥ 2, and F(n−1, n), n ≥ 3, correspond to spines

of Seifert fibered 3-manifolds (see [3] and [8]). However, we have verified by a direct

computation (use the computer program mentioned at the end of Section 1) that the

Fibonacci groups F(2, 5), F(2, 7), F(3, 5), F(3, 6), F(3, 7), F(3, 8), F(4, 3), F(4, 6), and

F(5, 4) do not correspond to spines of closed 3-manifolds. It seems natural for example

to think that there are no 3-manifolds with spines corresponding to the Fibonacci groups

F(2, 2n+ 1), n ≥ 2.

The Sieradski groups are abstract groups defined by presentations

S(r, n) = 〈x1, x2, . . . , xn : xixi+2 · · ·xi+2r−2 = xi+1 · · ·xi+2r−3 (indices modn)〉

for any two positive integers r and n (≥ 2). For example, n = 2 gives the presentation

〈x1, x2 : xr
1 = xr−1

2 ∧ xr
2 = xr−1

1 〉, and the corresponding canonical 2-complex can be

checked to be a spine of the lens space L(2r − 1, 1). These groups, introduced in [22]

for r = 2, were successively obtained in [12], [13], and [23] from different geometric

constructions. The following will appear in [5].

Theorem 6. The Sieradski groups S(r, n) correspond to a spine of a closed connected

orientable 3-manifold M(r, n). Moreover , M(r, n) is homeomorphic to the n-fold cyclic

covering of the 3-sphere S
3 branched over the torus knot of type (2r−1, 2), i.e. M(r, n) is

the Brieskorn manifold M(2, 2r− 1, n) in the sense of [17]. In particular , M(r, 2) is the

lens space L(2r−1, 1). Finally, M(r, n) admits the structure of a Seifert bundle over the

2-orbifold S
2(2, 2r − 1, n) which is a 2-sphere S

2 with three cone points with cone angles

π, 2π
2r−1 , and

2π
n
.

Note that this theorem, for r = 2, answers in the affirmative an open problem sug-

gested by the referee in [22].

In particular, we have the following corollaries.

Corollary 7. The Sieradski group S(2, n) is isomorphic to a properly discontinuous

cocompact group of isometries which acts without fixed points on a space Xn, where

Xn = S
3 for n < 6, X6 = Nil, and Xn = S̃L(2;R) for n > 6.
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Corollary 8. Let Θ(n) be the orbifold with underlying space S
3 and the singular set

the trefoil knot with branched index n. Then Θ(n) is spherical for n < 6, a Nil-orbifold

for n = 6, and a S̃L(2;R)-orbifold for n > 6.

We conclude the section with an open problem on a class of cyclic presentations

G(h, k, n) which includes the Fibonacci groups F(2, n) for h = 1 ∧ k = 2, and the

Sieradski groups S(2, n) for h = 2 ∧ k = 1.

Problem 6. Determine all the pairs (h, k) of positive integers for which the cyclic

presentations

G(h, k, n) = 〈x1, x2, . . . , xn : xixi+hx
−1
i+k = 1 (indices modn)〉

correspond to spines of closed 3-manifolds M(h, k, n) for infinitely many n. Then classify

the topological structure of these classes of manifolds.

3. Equivalent spines. In this section we turn our attention to Problem 3. Let K

be an oriented tame (smooth or PL) knot in the right-hand oriented 3-sphere S3. Take a

tubular neighborhood V of K in S
3 and let M = S

3\V̊ be the knot manifold of K.

In [4] the following result on spines of knot manifolds was proved.

Theorem 9. Suppose that η is a Wirtinger presentation (with deficiency one) of the

knot group of K. Then the canonical 2-complex Kη is a spine of the knot manifold of K.

Theorem 9 directly implies the existence of many examples of nonhomeomorphic

compact 3-manifolds M1, M2 ⊂ S
3 with ∂Mi

∼= S
1×S

1 which admit the same spine. The

following extends earlier constructions on connected sums of torus knots, given in [18].

Theorem 10. Let K1 ⊂ S
3 be an invertible nonamphicheiral knot and let K2 ⊂ S

3

be an arbitrary knot. Then the knot manifolds of K1#K2 and K̄1#K2 (K̄1 being the

mirror-image of K1) have a common spine. If K2 is also nonamphicheiral , then these

knot manifolds are not homeomorphic.

In particular, for any invertible nonamphicheiral knot K, the knot manifolds of K#K

and K̄#K are not homeomorphic but they do possess a common spine.

To construct examples with boundary genus greater than one, we need the concept of

θ-manifold, introduced in [6]. Let θ(K1,K2,K3) be the oriented θ-curve, embedded in S
3,

and formed by two points joined with three arcs knotted according to the oriented knots

K1, K2, and K3, respectively. Let M(K1,K2,K3) be the closure of the complement of

a regular neighborhood of this graph in S
3. Then M(K1,K2,K3) is an irreducible 3-

manifold, with boundary of genus two, called a θ-manifold . Obviously, this construction

can be generalized to give manifolds with higher boundary genus.

The Torus Decomposition Theorem for a compact irreducible 3-manifold M asserts

that in M there exists a collection of incompressible tori that separate M into atoroidal

or Seifert fibered components. These decomposing tori for the θ-manifold M(K1,K2,K3)

are three annuli, T1, T2 and T3 say, which run around the knotted parts of the θ-curve

θ(K1,K2,K3) as shown in Figure 1.

In [6] the following result was proved.
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Fig. 1. The decomposing tori for the θ-manifold M(K1,K2, K3)

Theorem 11. Let K be the trefoil knot in S
3. Then the θ-manifolds M(K,K,K)

and M(K,K, K̄) are not homeomorphic but they possess the same spine. Furthermore,

they are the unique compact 3-manifolds with connected boundary having as spine the

canonical 2-complex KG associated to the group presentation

G = 〈ai, bi, i = 1, 2, 3 : a3i b
−2
i = 1, i = 1, 2, 3, a−1

1 b1a
−1
2 b2a

−1
3 b3 = 1〉.

We give only a sketch of the proof (note that one can construct other examples

starting from any invertible nonamphicheiral knot). The manifolds of the statement are

irreducible and have incompressible boundaries so the fundamental group is not a non-

trivial free product. The three annuli, mentioned above, are the characteristic varieties

of the manifolds so they must be preserved under homeomorphism, by the Character-

istic variety theorem, of M(K,K,K) to M(K,K, K̄). This however would mean that

the complement of one of the positive trefoil is homeomorphic to the complement of the

negative trefoil. However, this is not possible as the trefoil is nonamphicheiral. Finally,

invoke the algorithm of Theorem 2 to show that M(K,K,K) and M(K,K, K̄) are the

unique compact 3-manifolds having KG as spine.

These results are related to the following question, first settled in [20], concerning

regular neighborhoods of homotopically PL embedded two-dimensional polyhedra in 3-

manifolds. For a discussion in higher dimension we refer to [7].

Problem 7. Let K be a 2-polyhedron and let f1, f2 : K → M̊ be two (homotopic)

embeddings of K into the interior of a compact 3-manifold M . Let Ni ⊂ M̊ be a reg-

ular neighborhood of fi(K) in M , i = 1, 2. Under which conditions, are N1 and N2

homeomorphic?
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In [2] and [20] it was shown that N1 and N2 are homeomorphic for many classes of

special polyhedra (compare also [1]). Indeed, any special polyhedron thickens to at most

one 3-manifold. In [2] the following result was proved.

Theorem 12. Let M be a closed irreducible 3-manifold which is not a fake 3-sphere.

If ∂Ni
∼= S

2, then N1 is homeomorphic to N2.

We can therefore state the following conjecture.

Conjecture. Let M be a homotopy 3-sphere (or 3-cell), K a simply-connected 2-

polyhedron, f1, f2 : K → M̊ embeddings and Ni a regular neighborhood of fi(K) in M .

If ∂Ni
∼= S

2, then N1
∼= N2.

This conjecture is interesting because if it is true, then the 3-dimensional Poincaré

conjecture is proved to be equivalent to the following statement:

Every homotopy 3-cell possesses a spine which embeds in R
3.

Indeed, the Poincaré conjecture implies this statement without any additional conjec-

ture. Conversely, let M be a homotopy 3-cell and choose a (tame) 3-cell C in the interior

of M . By hypothesis, M has a spine K ⊂ M̊ which embeds in the interior of C via a

map f1 : K → C̊. Let N1 be a regular neighborhood of f1(K) in C̊ (and hence in M̊).

It follows immediately that N1 is a genuine 3-cell. Furthermore, N2 := M is a regular

neighborhood of f2(K) = K in M , where f2 is the inclusion map. The above conjecture

now implies that the 3-cell N1 is homeomorphic to M , as requested.
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