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Abstract. In this paper we present an overview of some recent results on applications of knot

theory in fluid mechanics, as part of a new discipline called ‘topological fluid mechanics’ (TFM).

The choice of the topics covered here is deliberately restricted to those areas that involve mainly

a combination of ideal fluid mechanics techniques and knot theory concepts, complemented with

a brief description of some other concepts that have important applications in fluid systems.

We begin with the concept of topological equivalence of fluid flow maps, giving a definition of

knotted and linked flux-tubes. In the fluid mechanics context Reidemeister’s moves are inter-

preted in terms of local actions of fluid flows performed on fluid structures. An old theorem of

Lichtenstein (1925) concerning the isotopic evolution of vortex structures in the context of the

Euler equations is re-proposed and discussed in the TFM context for the first time. Then, we

review the relationship between helicity and linking numbers and we present some recent results

on magnetic relaxation of linked, knotted and braided structures in magnetohydrodynamics. In

the context of the Euler equations (and under certain approximations given by the so-called

‘localized induction’ for vortex structures) we briefly examine some interesting relationships be-

tween integrability and existence and stability of vortex filaments in the shape of torus knots.

We conclude with an overview of some new results concerning electrically charged knots embed-

ded in a viscous fluid, elastic relaxation of strings and braids and relationships between energy

levels and topological information. Some simple bounds on elastic energy levels given by global

geometric quantities and topological quantities are presented and discussed for the first time.

1. Modern developments in topological fluid mechanics. Knotted and linked

structures are ubiquitous in nature and in fluid flows in particular. Their scale lengths

range from 10−10÷10−6m, for tiny macromolecules, polymers, defect lines and superfluid

vortices, to 10−2 ÷ 102m, for fluid eddies, vortex filaments, tornadoes, and up to 106 ÷

1010m for gigantic magnetic flux-tubes, plasma loops and magnetic arches present in
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stellar atmospheres and in astrophysical flows. Observational and experimental evidence

of complex braided and entagled fluid structures is now well documented in literature, in

the context of classical fluid mechanics (see, for example, Lugt, 1983; Van Dyke, 1988)

and magnetohydrodynamics (see, for example, Bray et al., 1991).

Since the original result of Gauss (1833) and the work of Maxwell (1841–1873) on

linked electric circuits and magnetic fields, the studies of Kelvin (1869; 1875) on knotted

vortices, and the first mathematical classification of knots by Tait (1898), applications

of knot theory in fluid mechanics have become an integral part of what is now called

‘topological fluid mechanics’ (TFM). After little more than a century, topological fluid

mechanics has become a diversified and rich discipline (see the proceedings edited by

Moffatt & Tsinober, 1990; Moffatt et al., 1992; Kauffman, 1995a; 1995b; and the review

article by Ricca and Berger, 1996). Fluid mechanics deals essentially with continuous de-

formations of fluid structures; hence, it provides a natural setting for useful applications

of ideas and results coming from topology and geometry. In turn, topological fluid me-

chanics offers many stimulating problems to applied mathematicians and knot theorists.

Fig. 1. In the context of the Euler equations fluid structures can be deformed without change of

topology. A fluid structure may undergo a sequence of ‘pretzel transformations’ that leave the

structure in the same topological equivalence class. The figure shows 5 possible configurations

attained by a fluid structure in an ideal fluid (states 1, 2, . . . , 5 are topologically equivalent).

There are four major active research areas.

1.1. Search for knotted solutions to Euler’s equations . The motion of fluid structures

(e.g. vortex filaments) embedded in a homogeneous, uniform and perfectly inviscid fluid

is governed by the Euler equations

(1)
∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p ,

where u = u(X, t) denotes the velocity field, smooth function of the position vector X

and time t, ρ the fluid density and p the fluid pressure. Euler’s equations are a special

case of the Navier-Stokes equations at zero viscosity. In the inviscid context the topology

of fluid flow and structures is conserved (see figure 1); knot theory is applied to study and
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classify fluid patterns given by evolution of streamlines (integral curves that at each time

have same direction as the velocity vector u at each point X) and vorticity lines (integral

curves that at each time have same direction as the vorticity vector ω = ∇× u at each

point X). There are many open questions about integrability, existence of singularities

and existence and stability of global solutions in terms of vortex structures (for example,

the existence and stability of knotted vortex tubes). To tackle these problems a topological

approach has shown to be very helpful and innovative (see Moffatt et al., 1992). Moreover,

the braiding and entanglement of vortex structures are examples of physical mechanisms

potentially important for the re-distribution of energy and helicity in the bulk of the fluid

(see, for example, the proceedings edited by Jiménez, 1991), and in the last years there

has been a growing interest to study these structures using topological techniques.

Under Euler’s equations a number of physical quantities such as kinetic energy, linear

and angular momentum, helicity, etc., are conserved during evolution. It is very important

to understand the relationship between these physical conserved quantities and known

topological invariants. This approach, initiated by Moffatt (1969) with his seminal work

on the topological interpretation of helicity in terms of (Gauss) linking number, is a very

interesting and promising area of research (Khesin & Chekanov, 1989; Tur & Yanovsky,

1993).

1.2. Relationships between energy relaxation and knot topology. Knotted and linked

fluid structures deform continuously to a state that is energetically favourable. During this

relaxation process we may assume (and there are cases in which this is a physical require-

ment) that the knot topology remains conserved, so that the physical knot (or link) can

relax to some minimum energy configuration, while remaining in the same class of topo-

logical equivalence. In ideal magnetohydrodynamics (MHD), for example, the topology

of magnetic field structures is ‘frozen’ during evolution. Physical conserved quantities

and topological invariants such as linkage, knot type, braiding, etc., form therefore a

large family of quantities that remain conserved in the fluid medium. In the relaxation of

magnetic structures, driven by the magnetic tension induced by the Lorentz force, these

invariants ‘guide’ the magnetic field towards a state of minimum energy by acting as

constraints of the relaxation process (Moffatt, 1992). Since the topology of a magnetic

configuration is frozen in ideal conditions, initial states and end states (i.e. minimum

energy states) are confined to the same class of topological equivalence. Clearly, there is

no guarantee that initial states with different geometry and same topology will eventu-

ally evolve to the same configuration (uniqueness of the solution): it has been suggested

(Moffatt, 1990) that the relaxation will lead to a spectrum of equilibrium configurations

that are topologically equivalent, but different in geometry and energy levels. Magnetic

braids, knotted elastic strings and electrically charged knots, are all examples of physical

knots that are studied by minimising appropriate energy functionals. The results of these

studies find also useful applications in applied science and engineering.

1.3. Studies of dynamical systems and measure preserving flows . Topological proper-

ties of three-dimensional vector fields play an important part in the study of trajectories of

autonomous differential equations in IR3 (Birman & Williams, 1983; Holmes & Williams,

1985; Bedford & Swift, 1988). In this context, a typical question is to ask whether for a
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given vector field with some closed orbits forming a link, one can deduce existence of other

closed orbits linked with the former; the existence of chaotic orbits is also an important

problem. Existence theorems for knotted orbits of flows in a solid torus have been derived,

as well as lower bounds for the topological entropy of such orbits. Many of these results

are based on the Nielsen-Thurston theory of isotopy classes of surface homeomorphisms

(Meyer & Saari, 1988) and are valid for vector fields that are divergence-free. Interesting

applications of knot theory to flow systems exhibiting pitchfork, period doubling and

bifurcations, as well as applications of asymptotic linking concepts to space filling curves,

form now an integral part of current research topics relevant to TFM (see, for example,

Uezu, 1990; Arnold & Khesin, 1992). Other open questions regard transport properties by

three-dimensional volume-preserving vector fields and relationship between topology of

ideal fluid flows and their Hamiltonian structure (Kuznetsov & Mikhailov, 1980; Marsden

& Weinstein, 1983).

Fig. 2. Fluid structures may undergo a natural change in topology when dissipative effects (due

to fluid viscosity or plasma resistivity) are present. Topological change is due to local processes

of physical reconnection of different parts of fluid structures. In a first, simple approximation

these events may be modelled by techniques of ‘oriented surgery’ on the constitutive vector fields.

1.4. Physical reconnection mechanisms and oriented surgery. When dissipative ef-

fects are present (due to fluid viscosity or plasma resistivity) fluid structures undergo

a topological change due to physical reconnections (see figure 2). Simple mathematical

modelling of these processes involves techniques of ‘oriented surgery’ performed on the

bundle of the constitutive vector fields, integrated by some knowledge of the particular

physical process (see, for example, the review by Kadomtsev, 1987 on reconnection of

magnetic fields, and the paper by Boratav et al., 1992 on reconnection of vortex fila-

ments). At the moment there is no accurate description of the physical mechanism of

reconnection, and many studies are the result of direct numerical simulations of interact-

ing fluid structures (interaction of vortex filaments or magnetic flux-tubes) in the context

of the Navier-Stokes equations or in the context of the resistive magnetohydrodynamical

equations. For example, numerical work carried out by Aref and Zawadzki (1991) reveals

the linking of two colliding vortex rings. These numerical experiments give also impor-

tant information on the robustness of fluid and topological invariants under the action
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of dissipative effects, a key issue to understand the energy dissipation in real physical

systems.

In this context, knot theory is very useful for diagnostic purposes, and there are cases

(for instance in the magnetic field context) in which estimates of energy release through

reconnection are based on crossing number techniques, topological information and com-

binatorics (see, for example, Freedman & Berger, 1993). Formation of singularities in

the flow field, appearance of bifurcations in the corresponding orbits, and development

of chaos are of course fundamental related aspects, in which knot theory plays also an

increasingly important role.

In the following sections we shall discuss and review some results concerning the first

two areas of research. We believe that these results provide a good example of new

applications of knot theory in fluid mechanics, and are part of modern developments in

topological fluid mechanics.

2. Topological equivalence classes for frozen fields. Let us consider a homo-

geneous, inviscid (i.e. ideal), incompressible and perfectly conducting fluid in a domain

D ⊆ IR3. Fluid motion is described by the velocity vector field u = u(X, t), smooth

function of the vector position X and time t, satisfying

(2) ∇ · u = 0 in D , u = 0 on ∂(D)∞ ,

where ∂(D)∞ denotes the boundary of D (possibly at infinity).

A Lagrangian description of fluid motion is given by the functional relation X =

X(a, t), where a is the initial position of a fluid particle. The velocity field induces a

fluid flow map ϕ = ϕ(X, t) that maps each fluid particle instantaneously, from the initial

position a to the final position X by

(3) ϕt : a 7−→ X , t ∈ I .

We assume the flow map to be smooth, have an inverse and be volume-preserving, i.e.

Definition 1. The fluid flow map is a functional element

(4) ϕ ∈
{

C∞ : ∃ ϕ−1 | a = ϕ−1(X, t) ∀t ∈ I ; ϕ volume-preserving
}

.

This means that under the action of the flow map ϕ a sub-domain V of fluid volume,

bounded by a smooth surface S = ∂V , moves in the fluid changing shape, while keeping

volume constant. Here we consider only ‘tame’ flow maps, i.e. flow maps that are ‘non-

degenerate’; flow maps that involve multivaluedness or discontinuity in the mapping are

considered ‘degenerate’ and are not discussed in this paper. We should point out, though,

that flow maps associated with degenerate flow patterns, with formation of cusps, vector

field bifurcations, singularities, etc., are ubiquitous and very important for mathematical

modelling of physical reconnections and description of changes in topology.

Let us consider a magnetic field B = B(X, t) embedded in the fluid domain. Let B

be solenoidal (i.e. ∇ ·B = 0) in D . Consider a bundle of magnetic field lines, each line

being the integral curve that at each time has same direction as the magnetic field B at

X. We have
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Definition 2. The magnetic flux Φ is the surface integral defined by

(5) Φ =

∫

S

B · n dA ,

where S is a simply connected two dimensional surface of area A, bounded by a simple,

unknotted, closed circuit C ≡ ∂S (encircling B once), and n is the normal to S pointing

in the positive direction induced by the B-field.

Suppose the magnetic field is convected with the fluid flow under the condition that

the flux of B through any closed circuit moving with the fluid is conserved. Since there is

no dissipation and no diffusion of magnetic field lines, then the magnetic field is ‘frozen’

in D (up to continuous deformations) and transported in the fluid medium by the velocity

field u, i.e.

Definition 3. A vector field B is said to be frozen in D if and only if it satisfies the

frozen field equation

(6)
∂B

∂t
= ∇× (u×B) .

When we replace theB-field with the vorticity field ω = ∇×u (with ∇·ω=0 in D), eq.

(6) becomes the vorticity transport equation in the Euler equations context. In this case

we have the crucial non-linear coupling between vorticity and velocity field, through the

curl operator. A formal property of equation (6) (valid in kinetic and magnetic contexts)

is represented by the integral solutions given by the Cauchy equations

(7) Bi(X, t) = Bj(a, 0)
∂Xi

∂aj
,

which encapsulate both the convection of the field from the initial position a toX, and the

simultaneous rotation and distortion of fluid elements by the deformation tensor ∂Xi/∂aj.

Since this tensor is a time-dependent diffeomorphism of position, it maps continuously

the initial field distribution fromB(a, 0) to B(X, t), establishing a topological equivalence

between the two fields; hence, we write

(8) B(a, 0) ∼ B(X, t) .

Note that since the fluid is assumed to be incompressible, the Jacobian of the trans-

formation has det(∂Xi/∂aj) = 1.

3. Knotted and linked flux-tubes. A magnetic flux-tube embedded in D corre-

sponds to the intuitive idea of a coherent bundle of closed magnetic field lines to form a

tube-like region. If the tube axis (which is a magnetic line) is in the shape of a knot, the

magnetic flux-tube, formed by the magnetic tubular neighbourhood of field lines, is also

knotted. Formally, knotted and linked magnetic flux-tubes are constructed in a standard

way as indicated, for example, by Moffatt (1990) and Moffatt & Ricca (1992; see also the

reprint in Kauffman, 1995a). The mathematical procedure is based on the idea of em-

bedding a bundle of magnetic lines to constitute a tubular neighbourhood of the unknot

and then, by a combination of Dehn’s surgery, isotopy and appropriate cross-switchings,

obtain the desired linked (knotted) magnetic flux-tube. The resulting physical knot can

be defined in a simple way. Let us consider first the following
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Definition 4. A surface S is a magnetic surface in D if it is made of magnetic lines

that are tangent everywhere to the surface in D.

Since B is frozen during evolution, it follows that if S is a magnetic surface at time

t = 0, ϕt(S) is a magnetic surface for all time t ≥ 0.

Consider now the standard solid torus T in IR3 given by

(9) ((2 + ǫ cosβ) cosα, (2 + ǫ cosβ) sinα, ǫ sinβ) ,

where α ∈ [0, 2π), β ∈ [0, 2π) and ǫ ∈ [0, 1]. Let Fp,q (p > q > 1 co-prime integers)

denote the foliation of T by the curves Γǫ,β given by

(10) Γǫ,β(s) = [(2 + ǫ cos(β + qs)) cos(ps), (2 + ǫ cos(β + qs)) sin(ps), ǫ sin(β + qs)] ,

where s ∈ [0, 2π). Lomonaco (1995) suggests the following

Definition 5. A collection of linked (knotted) magnetic flux-tubes Lm is defined as a

smooth embedding into D of finitely many disjoint standard solid tori ⊔iTi and a smooth

magnetic field B such that:

(i) Lm is an embedding when restricted to the interior of ⊔iTi;

(ii) the bounding surface ∪iLm(∂Ti) is a magnetic surface;

(iii) for each component Lm(Ti) there exists a pair {pi, qi} (pi > qi > 1 co-prime

integers) such that Lm maps the foliation Fpi,qi of Ti onto the integral curves of B in

Lm(Ti).

If p and q are real numbers, p/q is irrational and we can extend the definition to

include linked magnetic flux-tubes formed by non-closed integral curves of B given by

Γǫ,β space-filling the tori ⊔iTi (Arnold, 1974).

Since the magnetic field is frozen in D, linked (knotted) magnetic flux-tubes (mag-

netic links and knots) are also frozen and convected in the fluid by isotopies, within the

topological equivalence class of the link (knot) type. Moreover, since the action of the

flow map is volume-preserving, the magnetic volume of each flux-tube, given by

(11) Vi = Vi [ϕt (Lm(Ti))] =

∫

ϕt(Vi)

dVi ,

where ϕt(Vi) is the magnetic volume of Ti under ϕ, is constant at any time t ∈ I. This

means that the associated fluid mass mi = mi(Vi) is also conserved (because the fluid

density ρ is constant). Volume and mass are therefore two scalar, physical invariants

associated with the fluid evolution of physical knots. Another important invariant is

the magnetic flux. For each Ti let us choose a meridional disk Si of area Ai (in the

cross-sectional plane).

Definition 6. The magnetic flux Φi = Φi (Lm(Ti)) associated with the i-th link

component is the surface integral defined by

(12) Φi = Φi (Lm(Ti)) =

∫

Lm(Si)

B · n dAi ,

where n is the normal to Lm(Si) pointing in the positive direction induced by the B-field.

Moreover, the following result holds true:
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Theorem 1 (Helmholtz, 1858; Alfvén, 1950). Under frozen field evolution the mag-

netic flux Φi associated with the i-th link component is conserved , i.e.

(13)
d

dt
Φi (ϕt(Lm)) = 0 .

In vortex dynamics this result is known as Helmholtz’s III law of vortex motion

(replacing B with ω), and represents a fundamental result in the mathematical theory of

ideal fluid mechanics. Alfvén proved this result in ideal magnetohydrodynamics, almost

hundred years later.

4. Reidemeister’s moves and Lichtenstein’s theorem. Topological fluid me-

chanics deals essentially with the study of fluid structures (thought of as embeddings)

that can be continuously deformed one into another by ambient isotopies. Since ϕ is both

continuous and has an inverse, that is also continuous with respect to t, then ϕt1(Lm) and

ϕt2(Lm) are ambient isotopic for {t1, t2} ∈ I in D, and we write Lm,t1 ∼ Lm,t2 . Ambient

isotopy generates equivalence classes of linked and knotted magnetic flux-tubes. Contin-

uous deformations induced by fluid actions convect flux-tubes in D. One of the simplest,

natural deformations is given by the stretching of flux-tubes. If natural stretching takes

place, the total length of the tube axis increases, and by conservation of magnetic volume

and flux, we have a corresponding decrease of the tube cross-section and an increase

of magnetic field intensity. From a geometric viewpoint, this simple deformation corre-

sponds to a trivial time-dependent, continuous, re-parametrization of the tube centreline,

with a continuous deformation of the integral curves in Lm(Ti). This re-parametrization

(via homotopy maps) provides a simple example of ambient isotopy for the magnetic link

(knot) Lm.

Knot topology is preserved under the action of the Reidemeister moves (see, for exam-

ple, Kauffman, 1987). In the context of the Euler equations these moves are performed

quite naturally by the action of local flows on the strands of fluid structures (see figure

3). If the background fluid in the complement (D−Lm) is irrotational (and at rest), then

these flows must satisfy the Dirichlet problem for the Laplacian of the stream function

ψ, given by

(14)

{

u = ∇ψ

∇2ψ = 0
in (D − Lm) ,

with boundary conditions

(15)

{

u · n = u⊥ on ∪iLm(∂Ti) ,
u = 0 on ∂(D)∞ ,

where u⊥ = u⊥(X, t) is the normal component of the velocity on the bounding magnetic

surface, with n denoting the normal vector to the surface. Equations (14) and (15) have

a unique solution in terms of local flows (Batchelor, 1967). These flows correspond to

Reidemeister’s moves through a sequence of continuous deformations of the tube strands.

Note that in the boundary condition (15) there is no prescription for the tangential

component of the velocity on the bounding magnetic surface. As we pointed out earlier,

tangential effects (present, for instance, if the flux-tube gets stretched) induce merely
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Fig. 3. The three types of Reidemester’s moves (see, for example, Kauffman, 1987) are performed

naturally by the action of local fluid flows on the tube strands of magnetic and vortex structures.

ambient isotopies of fluid structures, hence preserving the topology of the magnetic link

(knot). This means that Reidemeister’s moves are performed by local flows that are

solutions to (14–15), up to arbitrary tangential actions.

For linked (knotted) vortex filaments Lv (the analogues of magnetic flux-tubes, when

vorticity replaces the magnetic field), the conditions for having ambient isotopies are

given by a theorem due to Lichtenstein, formulated in 1925 (see also Villat, 1930).

For simplicity let us consider just one, isolated vortex filament (a vortex knot) Lv(T ) ≡

Kv(T ) in D. Let v = (v1, v2, v3) denote the velocity of Kv, with boundary Kv(∂T ) (a

vortex surface), and with v and Kv(∂T ) sufficiently smooth (at least of class C2), and

vi ∝ |X|−2 as |X| → ∂(D)∞. We have:

Theorem 2 (Lichtenstein, 1925). Let Kv(T ) be a vortex filament in D of velocity v

and bounding surface Kv(∂T ), satisfying the conditions Ka(vi) and Ka(Kv(∂T )), where

(16) Ka( · ) ≡ |∂2i ( · )1 − ∂2i ( · )2| ≤ b|X1 −X2|
a i = 1, 2, 3 ,

with b > 0 and 0 < a < 1 constants , and {X1,X2} ∈ Kv(∂T ). Then, at any finite time

t ∈ I we have:

(i) Kv,t1 is topologically equivalent to Kv,t2 in D, for any {t1, t2} ∈ I;

(ii) v is determined uniquely in D;

(iii) Ka(vi) holds true at any time t ∈ I.

The proof of this theorem can be found in the original paper by Lichtenstein and is

also given in the XII chapter of Villat’s book (1930, pp. 256–269). The proof is based
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on the Cauchy equations for a divergence-free velocity field. In the light of a topological

approach to fluid mechanics, Lichtenstein’s result strikes for its modern interpretation of

convection of vortex structures under Euler flows. In this sense Lichtenstein’s theorem

may well be considered one of the first examples of topological interpretation of fluid

mechanical properties.

5. Helicity and linking numbers. In ideal fluids many physical and topological

quantities are invariant of the evolution. Magnetic volume, fluid mass and magnetic flux

are the three physical invariants discussed in the previous section. Other physical invari-

ants are total energy, linear and angular momentum and helicity. Example of topological

invariants are knot and link type, braiding group and linking numbers. A fundamental

question in topological fluid mechanics is to establish whether physical and topological

invariants are related one another and how. Let us consider helicity.

Definition 7. The helicity of a linked (knotted) magnetic flux-tube Lm in D is

defined by

(17) H(Lm) =

∫

∪iLm(Ti)

A ·B dVi ,

where B = ∇×A is the magnetic field, A is the vector potential (with ∇ ·A = 0).

Helicity is just a fluid dynamical expression of the Hopf integral, i.e. the integral of the

scalar product of a solenoidal vector field and its curl; the first proof that this quantity

is an isotopy invariant was given by Whitehead (1947). However, in the context of fluid

mechanics conservation of helicity was shown much later, with the works of Woltjer

(1958) and Moreau (1961), and the result was further extended by Arnold (1974) in his

discussion of asymptotically space-filling curves. We have:

Theorem 3 (Woltjer, 1958; Moreau, 1961). The helicity of Lm is an invariant of the

Euler equations , that is

(18)
d

dt
H (ϕt(Lm)) = 0 , in D .

This result has been extended to give a topological interpretation of helicity in terms

of linking numbers. In summary, we have:

Theorem 4 (Moffatt, 1969; Berger & Field 1984, Moffatt & Ricca 1992). Let Lm be

a collection of magnetic links (knots). Then

(19) H(Lm) =
∑

i

Lki Φ
2
i + 2

∑

i6=j

Lkij ΦiΦj ,

where Lki denotes the (Călugăreanu-White) linking number of the tube axis in Lm(Ti)

with respect to the framing induced by the embedding of the B-field , and Lkij denotes the

(Gauss) linking number of Lm(Ti) with Lm(Tj).

This result establishes a fundamental relationship between physical conserved quanti-

ties (helicity and flux) and topological invariants (linking numbers). Let Lm(T ) ≡ Km(T )
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denote a one-component magnetic link (a knotted magnetic flux-tube). Then, equation

(19) reduces to

(20) H(Km) = LkΦ2 = (Wr + Tw)Φ2 ,

where the (Călugăreanu-White) linking number Lk is decomposed into Wr, the writhing

number of the tube axis, and Tw, the total twist of the flux-tube (for a precise definition

of these quantities see Călugăreanu, 1961; White, 1969; see also Moffatt & Ricca, 1992).

Equation (20) shows that H(Km) can be decomposed into writhe and twist contributions.

Although the sum of these two quantities is a topological invariant, the writhe and twist

contributions, taken separately, are not invariant (they are purely geometric quantities)

and their values change with a change of shape. This means thatWr and Tw interchange

continuously under isotopy.

The writhing number Wr is characterised by the following properties:

i) Wr depends only on the geometry of the tube axis;

ii) Wr is invariant under rigid motions or dilations of D (conformal invariant), but

its sign is changed by reflection;

iii) in passing from an under-crossing to an over-crossing of the strands (in some

projection plane), its value jumps by +2.

It can be shown (Fuller, 1971; Moffatt & Ricca, 1992) that the writhe admits physical

interpretation in terms of the sum of signed crossings of the diagram of the tube axis in

some projection plane, averaged over all projections, that is

(21) Wr =< n+(ν) − n−(ν) > ,

where the angular brackets denote averaging over all directions ν of projection, and n±

denotes the number of apparent ± crossings, from the direction of projection ν. For

a nearly plane curve (except small indentations to allow crossings) the writhe can be

directly estimated by the sum of the signed crossings.

The total twist Tw is given by the sum of the total torsion of the tube axis and the

intrinsic twist of the B-lines in the tube T , divided by 2π (Moffatt & Ricca, 1992), and

has the following properties:

i) Tw is a continuous function of the tube-axis;

ii) Tw is invariant under rigid motions or dilations of D (conformal invariant), but its

sign is changed by reflection;

iii) Tw is additive for contiguous tubular segments of T .

Part of the twist contribution to helicity is associated with the torsion of the tube

axis and part with what may be described as ‘intrinsic twist’ of the field lines in the

flux-tube. This decomposition and the relation between Reidemeister’s type I move and

kinetic helicity (defined similarly by the integral of u · ω over the vortex volume) of a

vortex filament (Lv ≡ Kv) are discussed in Ricca & Moffatt (1992).
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On the other hand, if the embedding of the B-lines corresponds to a zero-framing of

each component Lm(Ti) (i.e. Lki = 0 for each component), then

(22) H(Lm) = 2
∑

i,j

Lkij ΦiΦj .

Fig. 4. Example of two (zero-framed) linked flux-tubes with zero (Gauss) linking number. The

helicity of the system is zero!

As is shown in figure 4, there are cases of non-trivial links with zero (Gauss) linking

number and zero helicity. It is interesting to note that Maxwell (1873, vol. II, p. 43) was

aware of this fact, noticing that the so-called ‘Whitehead’ link had indeed Lk12 = 0, as

he remarked in his study of linked electric circuits.

Higher-order linking numbers able to capture complex topologies (as in the case of the

Borromean rings) have been introduced by Berger (1990; 1991; see also Evans & Berger,

1992). Since links are close relatives of braids, a hierarchy of linking integrals, the first

member of which is just the Gauss integral Lij , generates a family of winding numbers for

braids. These last invariants admit physical interepretation in terms of helicity integrals

for braided magnetic flux-tubes expressed through higher-order braid linkings.

6.Magnetic relaxation under topological constraints. Consider now a perfectly

conducting, incompressible and viscous fluid in D1, where magnetic links (knots) Lm are

present. Magnetic flux-tubes are subject to the Lorentz force F, induced by the magnetic

field, that in a first approximation is given by F ∝ cn, where c is the curvature of the

tube axis and n the principal unit normal. This force induces a shrinking of the tube

length and is equivalent to the action of a ‘shortening flow’ on Lm. Curvature effects are

present through a longitudinal tension in the tube that makes it behaving like a rubber

band in tension (with magnetic waves propagating along the tube as elastic waves on

strings).

Definition 8. The magnetic energy of Lm is defined by

(23) Em(t) = Em (ϕt(Lm)) =
1

2

∫

∪iLm(Ti)

|B|2 dVi .

In this case the fluid is dissipative and magnetic energy is not conserved during evolu-

tion; instead, it is converted into kinetic energy and then dissipated by internal friction.
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This relaxation process for magnetic energy is governed by the Navier-Stokes equations.

Often magnetic relaxation is analysed by means of model equations that are simpler than

the Navier-Stokes equations, while being representative of the correct dynamics (see, for

example, Moffatt, 1992).

Fig. 5. Relaxation of knotted magnetic field lines. The process is governed by a ‘shortening flow’

acting on the system of field lines guided by the relaxation of magnetic tension. The process

comes to a halt when different parts of Lm come into contact with each other.

Under these model equations it can be shown that the magnetic link (knot) passes

from high to low magnetic energy levels according to

(24)
dEm

dt
∝ −

∫

∪iLm(Ti)

|u|2 dVi ,

by relaxing internal magnetic tension; during relaxation, magnetic volume and flux are

still preserved (viscosity does not effect the magnetic field), while B-lines are being short-

ened by internal tension. Since this evolution is volume-preserving, the natural shortening

of the tube axis is balanced by a corresponding increase of the average cross-section (‘fat-

ning’ process). Evidently, this process of energy reduction comes to a halt when different

parts of the tube come into contact with each other, at which stage topological constraints

put a barrier to any further relaxation of magnetic tension and the relaxation comes to a

halt (see figure 5). Positive lower bounds on magnetic energy minimization must therefore

exist (although these may not be uniquely defined), according to the specific link or knot

topology. A result that entails both magnetic energy and topology of Lm is given by the

following:

Theorem 5 (Freedman, 1988; Moffatt, 1992). Let Lm be a magnetic link in D1. Then

there exists a positive lower bound such that

(25) lim
t→∞

Em(t) = Em,min > 0 ,
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and

(26) Em(Lm) ≥ q0|H(Lm)| ,

where q0 is a non-zero positive constant independent of Lm.

This means that for non-trivial topologies (Lm is not homeomorphic to unlinked tori)

we can show that even if H(Lm) = 0 (as in the case shown in figure 4), then there exist

positive lower bounds on Em(t). End states (corresponding to ground energy levels) are

attained when different parts of flux-tubes come into contact with each other; when this

happens, tangential discontinuities in the B-field may arise: in this case fluid flow maps

becomes ill-defined (contact regions are images of pathological flow maps) and new initial

conditions for the fluid flow are needed.

If Lm ≡ Km is a single knotted magnetic flux-tube, then Moffatt (1990) has shown

(on dimensional grounds) that the energy of the end state can be written as

(27) Em,min(Km) = m(h)[Φ(Km)]2V [(Km)]1/3 ,

where m is a positive real number, determined only by the knot topology, and h is a twist

parameter. However, as t→ ∞ the knot end state is not uniquely determined. Evidently

the energy re-distribution influences the magnetic relaxation process; for a given knot

a spectrum of potentially different asymptotic end states is expected. The knot energy

spectrum would be given by {m0, m1, m2, . . .} (m0 being the ground state energy),

where a high value of m0 indicates high knot complexity. Numerical results obtained by

Chui & Moffatt (1995) seem to indicate that indeed torus knots Km ≡ Tp,q (p, q co-prime

integers) appear to be characterized by quantised energy levels, with energy growing

with crossing numbers. Additional calculations show that the two magnetic torus knot

isotopes, given for example by T2,3 and T3,2, can both attain the ground state energy

level if the internal twist of field lines is altered (which corresponds to a change in h,

hence in the framing of Tp,q and in the self-linking number of the knot).

Local equilibria are likely to depend on both topology and geometric properties of the

magnetic field distribution.Whether global minima depend solely on topology, however, is

still an open question. Lower bounds on (minimum) magnetic energy of knotted flux-tubes

were found by Freedman & He (1991). It can be shown that

(28) Em,min(Km) ≥
[Φ(Km)]3/2[ac(Km)]3/4

π1/4[V (Km)]1/3
,

where

(29) ac(Km) =< n+(ν) + n−(ν) > ,

is the asymptotic crossing number of the knot type (Freedman & He conjecture that

ac(Km) = c(Km) ≡ cK , where cK is the topological crossing number of the knot type,

i.e. the number of crossings in the minimal knot diagram).

Magnetic knots can be isotoped to closed magnetic braids (in the conjugacy class of

the knot type) by application of Markov’s theorem (Birman, 1976; Hansen, 1989) and

action of local fluid flows on tube strands. In absence of background flows (fluid at

rest) we can show that magnetic knots with points of inflexions, i.e. points at which the

curvature of the tube axis vanishes, evolve to inflexion-free braids and then to minimal
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braids. By using first principles of ideal magnetohydrodynamics (MHD) (no viscous or

resistive effects present) inflexional magnetic knots remove inflexion points through a

generic (natural) deformation driven by the Lorentz force. We have:

Theorem 6 (Ricca, 1996a). Let ϕt(K) ≡ Kt be the embedding of a magnetic knot in

D. If Kt1 has a finite number of inflexion points in isolation present at time t1, then Kt1

is naturally isotoped to the inflexion-free knot Kt2 (t2 > t1), i.e. ϕ : Kt1 7→ Kt2 , for some

{t1, t2} ∈ I, t2 > t1.

Fig. 6. The knot K5,2 on the left is shown in standard projection with minimum number of

crossings (cK = 5) and two (apparent) points of inflexion (C1 and C2). The same knot can

be isotoped to an inflexion-free braid configuration (on the right-hand-side of the figure) with

number of crossings cB ≥ 6.

This result shows that there is a natural connection between magnetic knots and

minimal braids. Since magnetic relaxation induces a shortening flow that shrinks the

tube axis and also removes inflexions, magnetic knots evolve quite naturally to closed

braid configurations. Depending on the knot geometry, this deformation may yield to

the appearance of a higher number of crossings in the resulting inflexion-free braid (see

figure 6): if cK denotes the topological crossing number for the knot type Kt1 , then the

corresponding closed braid B ≡ Kt2 ∼ Kt1 has number of crossings cB that according to

Vogel (1990) and Traczyk (1995) is bounded by

(30) cK ≤ cB ≤ cK + (cK − 1)(cK − 2) .

Since inflexional configurations represent disequilibria for magnetic knots, then inflexional

knots evolve to braided configurations at lower energy levels. The tendency of knotted

magnetic flux-tubes to remove inflexions and relax to lower energy states indicate that

magnetic braids (and minimal braids in particular) are favourite candidates for low energy

states.

Finally, let us consider an open braid Bm of N components (corresponding to N equal

magnetic flux-tubes). The braid is given by N -strings placed between two planes z = 0

and z = L, embedded in an inviscid, cylindrical sub-domain D0 ≡ (x2 + y2 ≤ R)⊗ (0 ≤

z ≤ L) ⊂ D (R and L are finite quantities). For a magnetic field given by B = Bz(b+k),
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where Bz is constant and b = [(dx/dz)i, (dy/dz)j] (with i, j, k standard Cartesian unit

vectors), the free magnetic energy of the braid is given by

(31) Em(Bm) =
B2

z

8π

∫

∪iBm(Ti)

|b|2 dVi , (Gaussian units) .

Assuming that the N tubes have equal magnetic flux given by Φ = πR2Bz/N , we can

prove the following result:

Theorem 7 (Berger, 1993). Let Bm be a magnetic braid in D. Then there exists a

positive lower bound for the magnetic energy given by

(32) Em(Bm) ≥ 9.06× 10−2[cmin(Bm)]2
Φ2

N2L
, (Gaussian units) ,

where cmin(Bm) is the minimum crossing number of the N -braid.

Moreover, if the flux-tubes are subject to random motion about each other, with

typical velocity u and average distance between foot-points d, then Berger (1993) has

shown that

(33) cmin,t (ϕt(Bm)) = γ
|u| t

d
N3/2 ,

where γ is an efficiency parameter. This result has important implications in astrophysical

contexts, where energy estimates of braided magnetic structures provide useful informa-

tion for the study of production and dissipation of magnetic energy in solar coronal loops.

7. Vortex knots and integrability. Vortex knots Lv are the magnetic analog of

knotted magnetic flux-tubes and are defined simply by replacing the B-field with the

ω-field (vorticity). Under the Euler equations vortex dynamics is governed by the Biot-

Savart integral, that is a global functional of vorticity ω. This integral gives the propaga-

tion velocity of the vortex (Batchelor, 1967). If the vortex filament is very thin (i.e. with

radius of the cross-section small compared to the radius of curvature of the tube axis)

and the interactions of different parts of the vortex are neglected, then the Biot-Savart

integral is replaced by an asymptotic theory and the motion of the vortex is approximated

by simple local laws (‘localized induction approximation’ laws, or LIA for short). Under

LIA we have a family of dynamical laws of increasing complexity, depending on the de-

gree of approximation of the physical model. Under these laws we may have a hierarchy

of soliton equations (such as the Non-Linear Schrödinger equation or the Korteweg-de

Vries equation). These equations are completely integrable and have a countably infinite

number of polynomial invariants that can be interpreted as global geometric function-

als (Ricca, 1990; Langer & Perline 1991; Moffatt & Ricca, 1991). For example, under a

zeroth-order LIA, the motion of a single vortex knot Lv(T ) ≡ Kv(T ) is governed by a

very simple law, that after appropriate re-scaling of time takes the form

(34) u = Ẋ = X′ ×X′′ = cb ,

where the time-derivative is denoted by a dot and primes denote derivatives with respect

to arc-length of the tube axis; c and b are the curvature and the unit binormal of the

axis. Hence, according to (34), the velocity induces a ‘binormal flow’ on Kv.
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Existence, steadiness and stability of knotted solutions to Euler’s equations have been

conjectured since the original works of Kelvin (1869), but so far only few analytical results

have been put forward. In the LIA context, though, some progress has been made. An

important result is the following:

Theorem 8 (Kida, 1981). Let Kv(T ) denote the embedding of a vortex knot in D. If

Kv evolves under the zeroth-order LIA, then there exists a class of steady solutions in the

shape of torus knots Kv ≡ Tp,q, where p > 1 and q > 1 are co-prime integers.

Fig. 7. Vortex tube in the shape of ‘small-amplitude’ torus knot T2,5. This represents a stable

solution to the zeroth-order LIA (eq. 34) (Ricca, 1993; 1995a).

These correspond to fully non-linear solutions to LIA. In the linear régime, ‘small-

amplitude’ torus knots and cable-knots have been found by Keener (1990) and Ricca

(1993; 1995a). A linear stability analysis based on explicit analytic expressions for torus

knot solutions under LIA (see figure 7) leads to the following result:

Theorem 9 (Ricca, 1993; 1995a). Let Tp,q (p > 1 and q > 1 co-prime integers) be

the embedding of a ‘small-amplitude’ vortex torus knot in D, solution to the zeroth-order

LIA. Under linear perturbations , Tp,q is stable for p < q, and unstable for p > q.

This means that Tp,q-vortex knots with p/q > 1 are dynamically unstable and evolve to

different configurations. Remember that under LIA reconnections are not allowed (this

is an artificial requirement of the asymptotic analysis); consequently, Tp,q knots (with

p/q > 1) evolve towards a singularity event. On the other hand, for given (p, q) we have

that Tp,q ∼ Tq,p. Stability characteristics will therefore select those long-lived structures

from the family of topologically equivalent configurations.

Under the Euler equations the topology of vorticity is preserved, but the enstrophy

of the associated flow, defined by

(35) Ω(t) = Ω (ϕt(Lv)) =

∫

∪iLv(Ti)

|ω|2 dVi ,

is not conserved. It is obvious that there can be no theoretical upper bound on the

enstrophy, because natural evolution governed by the Euler equations is generally such

as to increase enstrophy without limit when the effects of viscosity are ignored (Batchelor,
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1967). As in the case of magnetic relaxation, we might ask whether, given the topology of

the vorticity field, there is any lower bound to the enstrophy, under the action of volume-

preserving diffeomorphisms. By simple application of the Schwarz inequality Moffatt

(1969) showed that when the kinetic helicity (where u · ω is now the helicity density) of

a flow is non-zero, in ideal conditions the enstrophy is bounded below. A lower bound

may be attained by the same technique used in the context of magnetic relaxation,

since magnetostatic equilibria correspond to steady solutions of Euler’s equations. For a

collection of vortex links (Lv), each tube having different flux Φi but equal volume V , it

can be shown (Moffatt & Ricca, 1991) that enstrophy takes the form

(36) Ω(Lv) =
∑

i,j

mijΦiΦjV
−1/3 ,

where mij is a real, symmetric, positive-definite matrix. Under frozen-field deformation,

this matrix varies, and, for given Φi, Φj , there is a minimising configuration. However,

mij in the minimum enstrophy state is a function of the ratio Φi/Φj. This may be seen

explicitly for the Whitehead link, for which m11 is non-zero if Φ2 is non-zero.

8.Charged knots and elastic strings. The influence of knot topology on minimum

energy levels can be studied with electrically charged knots and elastic strings. Charged

links (knots) Lq are made of flexible and inextensible loops of wire carrying an electrical

charge Q. Lq is embedded in a non-conducting, non-dielectric, viscous medium (like

honey). The so-called ‘honey jar problem’ (from Freedman & He, 1992) consists of finding

minimum energy configurations attained by Lq due to the action of the repulsive Coulomb

forces and the dissipative forces of fluid viscosity. The charged knot moves in the fluid

driven by a local force that in first approximation is given by F ∝ −cn, where c is the

curvature of the axis and n is the unit normal: because of the minus sign, the charged

knot is subject to a ‘straightening flow’ action.

Different knot models have been proposed; the physical knot can be modelled by an

infinitely thin filament, a hollow tube or a solid tube, and it can be either a perfect

conductor or made of infinitely resistive material (with zero conductivity). A discussion

of the physical implications that these different models have on the relaxation mechanism

is given by Lomonaco (1995).

Definition 9. The potential energy associated with Lq is defined by

(37) Eq =
1

2

∮

Lq

∮

Lq

λ(s)λ(s∗)

|X(s)−X(s∗)|
dsds∗ ,

where X(s) denotes the filament (or tube) axis, s the arc-length and λ(s) the charge

density function.

As s → s∗ the integral becomes divergent and there are analytical difficulties to

describe the relaxation process. In general, these difficulties are overcome by using tech-

niques of de-singularisation based on asymptotics, ‘cut-off’ methods or analytical re-

normalisation of singularities.

Potential asymptotic theories of thin tube geometries have been put forward since the

original work of Levi-Civita (1909) (for a review of Levi-Civita’s asymptotic potential



KNOTS IN FLUID MECHANICS 339

theory see Ricca, 1996b). Techniques based on appropriate cut-off of the singularity point

have been used in numerical analysis (see, for example, Fukuhara, 1988), where cut-off

lengths are introduced through the numerical discretisation algorithm, while artificial

re-normalisation of the Green function is a more modern idea. Birman and Lomonaco

(see Lomonaco, 1995 and references therein), for example, replace |X(s) − X(s∗)| with

(|X(s)−X(s∗)|+ ǫ) and study the relaxation in the limit for small ǫ.

Alternatively, we can define re-normalised ‘energy’ functionals as follows. For simplic-

ity, let us consider links (knots) with constant charge λ(s) = 1. According to Freedman

& He (1992; see also Freedman, He & Wang, 1994), we have

Definition 10. The α-re-normalised energy (pseudo-energy) of the link Lq, Eα(Lq)

(α ≥ 1), is defined by

(38) Eα(Lq) =

∮

Lq

∮

Lq

(

1

|X(s)−X(s∗)|α
−

1

[D(X(s),X(s∗))]α

)

dsds∗ ,

where D(X(s),X(s∗)) measures the length of the arc ss∗ on the curve X(s).

It should be noted that only the energy defined by (37) has physical meaning. Similar

re-normalisations are used by O’Hara (1991; see also Simon, 1994). For charged knots

Lq ≡ Kq, Freedman & He (1992) show that the topological crossing number cK is bounded

from above by the 2-re-normalised energy (‘Möbius’ energy), according to the formula

(39) E2(Kq) ≥
12π

11

(

cK −
1

π

)

,

which poses an upper limit on the number of topologically distinct knot types below a

given threshold of energy level. Examples of charged torus knots that are critical for this

pseudo-energy are given by Kim & Kusner (1993).

Other energy functionals have physical meaning. For instance, consider structures with

elastic properties given by the elasticity and the rigidity characteristics of some material.

Flexible elastic strings, for example, deform to reduce elastic tension and internal stress

in a way similar to the behaviour of magnetic flux-tubes. Knotted strings Ke modelled

by thin, inextensible, elastic tubes can be studied by applying relaxation techniques to

elastic energy functionals. In the context of linear elasticity, the elastic energy functional

is given by

(40) Ee(Ke) =

∮

Ke

(

Cb

2
[c(s)]2 +

2π2Ct

L2
[Tw(s)]2

)

ds ,

where Cb and Ct are the coefficients of bending rigidity and torsional rigidity, c(s) is the

curvature of the axis, and Tw and L denote total twist and length of the string. Here, for

simplicity, curvature and twist of the reference (or natural) configuration are set to zero.

Many studies of elastic relaxation of twisted flexible strings are based on the energy

functional (40) and on conservation of (Călugăreanu-White) linking number (see, for

example, Tanaka & Takahashi, 1985; Wadati & Tsuru, 1986; Schlick & Olson, 1992;

Ricca, 1995b; see also the results collected by Sumners, 1992). At different linking number

values, writhe and twist contribute differently to the loop configuration, leading to the

development of supercoiling at high writhing number. The exchange of twist and writhe
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Fig. 8. Example of elastic relaxation of a 3-component braid of elastic strings. The system on

the left, with high elastic energy, evolves from a randomly generated initial state to a relaxed

low energy end-state (on the right) under minimisation of a curvature force (Schilham, 1995).

performed naturally on the string through a sequence of Reidemeister moves (a process

that generally involves the appearance of points of inflexions) and the effects on the energy

levels have been investigated by Ricca (1995b). Critical energy levels are found to depend

strongly on specific linking differences and elastic characteristics of Ke. Moreover, it can

be shown that for very high values of specific linking difference (i.e. high superhelicity)

the writhing number of the supercoil state tends to a limit (independent of the elastic

charateristics of the string) that gives upper bounds on the bending energy Ee,b(Ke)

(given by the first contribution in the r.h.s. of eq. 40). Since this energy is given by

the total square curvature, this means that there are upper bounds on the total square

curvature too.

A fundamental theorem of Milnor (1950) relates global geometry and knot topology.

Let us first recall the following definition (Rolfsen, 1976):

Definition 11. The bridge index β(K) of a knot is the minimum number of maximal

bridges (over-passes of the knot diagram that do not contain under-crossing points) over

all knot diagrams. By convention β( unknot ) = 1.

The bridge index is an invariant of the knot. Milnor’s theorem states that:
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Theorem 10 (Milnor, 1950). For a simple, closed and smooth knot K of total curva-

ture κ(K) given by

(41) κ(K) =

∮

K

c(s) ds ,

and bridge index β(K), we have

(42) κ(K) ≥ 2πβ(K) .

Moreover:

Corollary 11. If κ(K) < 4π, then K is the unknot.

We can relate elastic energy levels with knot topology by a simple application of

Schwarz inequality; denoting by Êe,b(Ke) the bending energy divided by Cb/2L (Cb and

L are assumed constant), we have

(43) Êe,b(Ke) = L

∮

Ke

[c(s)]2 ds ≥ [κ(Ke)]
2 ≥ 4π2[β(Ke)]

2 ,

(β(Ke) ≡ β(K)) which gives (similarly to eq. 39), upper bounds on the admissible

number of distinct knot types below a given threshold of bending energy.

Suppose now that Ke is deformed to lie almost entirely on a plane, (or on a sphere),

allowing just small indentations at crossing points due to the over-passes and under-passes

of the strands. If Ke has no intrinsic twist we can show that in the limit of vanishing

cross-section and small indentations the total torsion of the string axis tends to zero and

the total energy becomes bounded from below

(44) Êe(Ke) ≥ 4π2[β(Ke)]
2 .

Similar estimates based on knot topology and energy relaxation are very useful in a

variety of model problems (see figure 8).

Finally, we want to mention a result due to Langer & Singer (1984; 1985) on elastic

knots under the action of a ‘straightening flow’:

Theorem 12 (Langer & Singer, 1984; 1985). There exists a countably infinite family

of (similarity classes of ) closed non-planar elastic curves in IR3. All such elasticae are

embedded and lie on embedded tori of revolution. Infinitely many of these are knotted and

the knot types which thus occur are precisely the Tp,q torus knots satisfying p > 2q. The

integers p, q determine the elasticae uniquely (up to similarity).

Experiments on the elastic relaxation of closed, knotted loops made of springy wire

show that there are at least three points of self-contact (counting multiplicity) to have

stable configurations in equilibrium. When this happens, impressive symmetries do arise.

9. Conclusions. Fluid mechanics provides a natural context for applications of ideas

and results from knot theory. In this paper we have presented and discussed some of these

applications that are part of the most recent developments in topological fluid mechanics

(TFM). This is a growing discipline that is already becoming diversified in many sub-

fields. It is therefore difficult, if not impossible, to present a balanced overview of the

state-of-art of the subject. The choice of the topics discussed here has been deliberately
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restricted to those areas that are best known to the author and that involve a combination

of ideal fluid mechanics and topological concepts. A brief overview of other related aspects

has been given in §1.

The concept of topological equivalence of fluid flows and structures has been dis-

cussed in §2, and knotted and linked flux-tubes have been defined through basic working

definitions in §3. A fluid mechanical interpretation of Reidemeister’s moves in terms of

fluid flows has been discussed in §4. In the context of the Euler equations, a theorem

of Lichtenstein (1925) concerning the isotopic evolution of vortex structures has been

presented and discussed in the TFM context for the first time. Proof of the theorem can

be found in the original paper by Lichtenstein and in the XII chapter of Villat’s book

(1930, pp. 256–269), and is based on the Cauchy equations for a divergence-free velocity

field. In this context Lichtenstein’s theorem may be considered one of the first examples

of topological interpretation of fluid mechanics actions of fluid flows.

The topological interpretation of the helicity of a fluid flow in terms of linking numbers

has been discussed in §5. An overview of results on magnetic relaxation of linked, knotted

and braided structures has been presented in §6. Interesting relationships between en-

ergy levels and topological information have been reviewed together with a discussion of

results on knotted magnetic flux-tubes and corresponding braid configurations. In §7 we

have examined relationships between integrability and existence and stability of vortex

filaments in the shape of torus knots in the context of the Euler equations and under

certain approximations. Finally, in §8, we have discussed a number of results concern-

ing electrically charged knots in a viscous fluid, elastic relaxation of loops and braided

strings. New bounds for elastic energy levels based on global geometric quantities and

topological information have been presented.

Many other results have been left out and we apologise for this. Our hope is that this

review will at least convey the sense of beauty and excitement given by the fascinating

progress of topological fluid mechanics.
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