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We define for each group G the skein algebra of G. We show how it is related to

the Kauffman bracket skein modules. We prove that skein algebras of abelian groups

are isomorphic to symmetric subalgebras of corresponding group rings. Moreover, we

show that, for any abelian group G, homomorphisms from the skein algebra of G to C

correspond exactly to traces of SL(2, C)-representations of G. We also solve, for abelian

groups, the conjecture of Bullock on SL(2, C) character varieties of groups – we show

that skein algebras are isomorphic to the coordinate rings of the corresponding character

varieties.

1. Definition of the skein module and of the skein algebra of a group

Definition 1.1 ([Pr, H-P-1]). Let M be any 3-manifold and let Lfr denote the set

of ambient isotopy classes of framed unoriented links in M (including the empty link ∅).

Let R be any commutative ring with 1 and A an invertible element in R. Furthermore,

let S2,∞ be the submodule of RLfr generated by skein expressions L+ −AL0 −A−1L∞

and L ∐© + (A2 + A−2) · L, where the triple L+, L0, L∞ is presented in Fig. 1.1 (that

is, L+, L0, L∞ are three framed links which are the same outside a small oriented 3-

ball but inside the ball they are as in Fig. 1.1. If M is oriented then the orientation

of the ball agrees with that of M ; L ∐ © denotes a disjoint union of a link L with a

trivial component (©)). We define the Kauffman bracket skein module as the quotient

S2,∞(M ;R,A) = RLfr/S2,∞. If R = Z[A±1], we write briefly S2,∞(M).
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Fig. 1.1

The above definition determines a functor from the category of 3-manifolds and em-

beddings (preserving orientation in the case of oriented manifolds) to the category of

R-modules (with a specified invertible element A ∈ R). In particular if f : M → N is

a manifold embedding then f∗ : S2,∞(M ;R,A) → S2,∞(N ;R,A) denotes the associated

homomorphism of modules.

We show that if we put A = −1 then S2,∞(M ;R)(A=−1) becomes a commutative

algebra depending only on the fundamental group of the manifold (Lemma 1.3). The

product in S2,∞(M ;R)(A=−1) is given by a disjoint sum of links and the identity is the

empty link. Motivated by this, we define the skein algebra of any group as follows.

Definition 1.2. Let G be any group (with identity denoted by e), R a commutative

ring with 1 and RG the group algebra over G with coefficients in R. Let TRG be the

tensor algebra over the module RG (with the identity denoted by 1). Let I+ be the ideal

of TRG generated by e + 2 and expressions g ⊗ h − h ⊗ g, g ⊗ h + gh + gh−1, for any

g, h ∈ G. We define the skein algebra of G as S+(G;R) = TRG/I+.

We list below some elementary properties of S+(G;R).

(0) S+(−;R) yields a functor from the category of groups to the category of R-

algebras. This functor sends epimorphisms of groups to epimorphisms of algebras1.

(1) For any g ∈ G, g ⊗ e = −ge− ge−1 = −2g. This has motivated us to put e = −2,

so we have generally w ⊗ e = −2w.

(2) g = g−1, because −2g = e⊗ g = −g − g−1.

(3) hgh−1 = g , because

0 = g ⊗ h− h⊗ g = −gh− gh−1 + hg + hg−1

= −gh+ hg − gh−1 + (gh−1)−1 = −gh+ hg.

Thus gh = hg and, finally, (hg)h−1 = h−1(hg) = g.

(4) The commutator [g, h] = ghg−1h−1 satisfies the equality

−[g, h] = g ⊗ g + h⊗ h+ gh⊗ gh+ gh⊗ g ⊗ h− 2.

P r o o f. −ghg−1h−1 = ghg−1 ⊗ h−1 + ghg−1h = h ⊗ h − (gh ⊗ g−1h + ghh−1g) =

h⊗h−gh⊗gh−1−gg = h⊗h−gh⊗gh−1+g⊗g+gg−1 = g⊗g+h⊗h−gh⊗gh−1+e =

g ⊗ g + h⊗ h− gh⊗ (−g ⊗ h− gh)− 2 = g ⊗ g + h⊗ h+ gh⊗ gh+ gh⊗ g ⊗ h− 2.

1For monomorphisms the analogous fact does not hold. For example, if we consider an

embedding i : Z3 → S3, then for i∗ : S+(Z3;C) → S+(S3;C) one has i∗(g + 2) = 0 for any

g ∈ Z3. Moreover, skein algebras can be isomorphic even if groups are not isomorphic. For

example, an embedding j : Z2 → S3 yields an isomorphism j∗ : S+(Z2;C) → S+(S3;C); [P-S-2].
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(5) (Universal coefficients property). Let r : R → R′ be a homomorphism of rings

(commutative with 1). We can think of R′ as an R-module. Then the identity map on G

induces isomorphism of R′-algebras:

S+(G;R′) ≃ S+(G;R)⊗R R
′.

In particular S+(G;R) ≃ S+(G;Z) ⊗Z R. The analogous universal coefficients property

holds also for skein modules [Pr](Lemma 5).

P r o o f. We use the “five lemma” to show that the algebra homomorphism

u : S+(G;R)⊗R R
′ → S+(G;R′),

u(g) = g is an R- (and R′-) isomorphism. Namely, the exact sequence of R modules

I+(R) → TRG→ S+(G;R) → 0

leads to the exact sequence

I+(R)⊗R R
′ → TRG⊗R R

′ → S+(G;R)⊗R R
′ → 0.

Now, using the ”five lemma” to the commutative diagram (with exact rows)

I+(R)⊗R R′ → TRG⊗R R′ → S+(G;R)⊗R R′ → 0

↓ epi ↓ iso ↓ u

I+(R′) → TR′G → S+(G;R′) → 0

we conclude that u is an isomorphism of R′- (and R-) modules, thus also of algebras.

We will use the above properties of skein algebras to show that for a 3-manifold and

A = −1 the skein module (algebra) S2,∞(M ;R,−1) is naturally isomorphic to the skein

algebra of the fundamental group of M , S+(π1(M);R).

Lemma 1.3 (Basic Lemma). Let M be a connected 3-manifold, R a commutative ring

with identity and A = −1. Then:

(a) S2,∞(M ;R,−1) is a commutative algebra with a product given by a disjoint sum

of links.

(b) Consider a function ξ from the space Kfr of framed unoriented knots in M to

S+(π1(M);R), where ξ(K) belongs to the conjugacy class of an element of π1(M) yielded

by K (for some orientation of K) and ξ(∅) = 1. Then ξ descends to an R-algebra iso-

morphism

ξ̂ : S2,∞(M ;R,−1) → S+(π1(M);R).

P r o o f. (a) Notice that if A = −1, then L+ = −L0 − L∞ = L− in S2,∞(M ;R,A)

(see Fig. 1.2) and L1 · L2 does not depend on the relative position of L1 with respect to

L2
2. In particular L1 · L2 = L2 · L1.

2We use the standard fact that two embeddings of a compact graph in M are homotopic iff

one can be obtained from the other by crossing changes and an ambient isotopy.
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(b) Properties (2) and (3) of skein algebras imply that ξ is well defined. Because

S+(π1(M);R) is commutative, we can extend ξ to the space of links in M , Lfr, by the

rule ξ(L) = ξ(K1)⊗ξ(K2)⊗ ...⊗ξ(Kn), where the link L has components K1,K2, ...,Kn.

Then we extend ξ linearly from Lfr to RLfr. Since

ξ(©) = −2 and ξ(K+) + ξ(K0) + ξ(K∞) = 0,

ξ descends to an R-algebra epimorphism ξ̂ : S2,∞(M ;R,−1) → S+(π1(M);R). To see

that ξ̂ is a monomorphism it suffices to construct the inverse map ξ̂−1. We start the con-

struction by introducing the homomorphism µ : TRπ1(M) → S2,∞(M ;R,−1) which as-

sociates to any element x of π1(M) a knotKx which represents it. It is a well defined map

because, as observed in (a), homotopic knots yield the same element in S2,∞(M ;R,−1),

in particular the condition A = −1 makes knots independent on framing.

µ descends to the homomorphism µ̂ : S+(π1(M);R) → S2,∞(M ;R,−1) because µ

sends the ideal I+ to zero:

(i) µ(x⊗ y − y ⊗ x) = KxKy −KyKx = 0 (part (a)).

(ii) µ(e+ 2) = (−A2 − A−2)∅+ 2∅ = 0 (for A = −1).

(iii) µ(x ⊗ y + xy + xy−1) = Kx ·Ky + Kxy +Kxy−1 = K+ + K0 + K∞ = 0 (skein

relation).

µ̂ is the inverse of ξ̂. Thus the proof of the Basic Lemma is complete.

It is convenient to consider a variant of the skein algebra of a group (isomorphic to

the previous one):

Definition 1.4. LetTRG be, as in Definition 1.2, the tensor algebra over the module

RG. Let I− be the ideal of TRG generated by expressions g⊗h−h⊗g, g⊗h−gh−gh−1

and e − 2. We define the algebra S−(G;R) as TRG/I−.

Lemma 1.5. The R-algebra homomorphism β̂ : S+(G;R) → S−(G;R), given by

β̂(g) = −g for g ∈ G, is an isomorphism of R-algebras.

P r o o f. We use the fact that the isomorphism β : TRG → TRG, β(g) = −g, sends

I+ to I−. Therefore TRG/I+ → TRG/I− is an isomorphism.

2. The skein algebra of an abelian group. We start by introducing two subal-

gebras of the group algebra RG.

Definition 2.1. (i) sym(RG) is the subalgebra of RG generated by elements of the

form g + g−1, for g ∈ G.
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(ii) RGsym is the subalgebra of RG composed of elements invariant under the invo-

lution (anti-isomorphism) τ : RG→ RG, given by τ(g) = g−1, for g ∈ G.

Lemma 2.2. Let G be an abelian group. Then

(i) sym(RG) is a free R-module with a basis {e} ∪ {g + g−1}g∈B, where

(a) B = G− {e}, if 2 6= 0 in R,

(b) B = {g ∈ G : g2 6= e}, if 2 = 0 in R.

(ii) RGsym is a free R-module with a basis composed of elements g + g−1, where

g2 6= e, and elements g, for g2 = e.

(iii) sym(RG) = RGsym if and only if either 2 is invertible in R or G has no nontrivial

element of order two.

P r o o f. (i) Since (g + g−1)(h+ h−1) = gh+ (gh)−1 + gh−1 + (gh−1)−1, sym(RG) is

generated as an R-module by {e} and elements {g + g−1}, for g ∈ G. Because elements

of G form a basis of RG, the set of all nonzero elements of the form g + g−1 together

with the element e is R-linearly independent in RG. Hence, if 2 6= 0 in R, then {g+ g−1 :

g ∈ G \ {e}} ∪ {e} is a basis of sym(RG). If 2 = 0 in R, then g + g−1 = 0 iff g2 = e.

Therefore, in that case {g + g−1 : g ∈ G, g2 6= e} ∪ {e} is a basis of sym(RG).

(ii) Let w ∈ RGsym. Then w =
∑
b∈B abb +

∑
g∈A agg, where B = {g + g−1 : g ∈

G, g2 6= e}, A = {g : g ∈ G, g2 = e} and ab, ag ∈ R. Thus elements listed in (ii) generate

RGsym. We can argue as in (i) that they are linearly independent.

(iii) It follows immediately from (i) and (ii).

Theorem 2.3. For any abelian group G consider the algebra homomorphism φ :

TRG → RG given by φ(g) = g + g−1 for any g ∈ G. Then φ descends to the algebra

homomorphism φ̂ : S−(G;R) → RG. Furthermore, if 2 6= 0 in R or G has no nontrivial

elements of order 2, then φ̂ is a monomorphism (in particular S−(G;R) is isomorphic to

sym(RG)).

P r o o f. (1) φ̂ is well defined, because φ(g)φ(h) = φ(h)φ(g) and φ(g⊗h−gh−gh−1) =

φ(g)φ(h) − φ(gh)− φ(gh−1) = (g + g−1)(h+ h−1)− (gh+ (gh)−1)− (gh−1 + g−1h) = 0

(2) φ̂ is a monomorphism:

(i) From the degree reducing identity, g ⊗ h = gh+ gh−1, it follows that (G/g∼g−1 −

{e}) ∪ {1} is a generating set of the R-module S−(G;R).

(ii) By the definition, φ(TRG) = sym(RG). From Lemma 2.2 it follows that the

expressions g + g−1 for g ∈ (G− {e}) and {e} form a basis for the module sym(RG).

(iii) φ̂ sends bijectively a generating set of the R-module S−(G;R) to a basis of

sym(RG) thus φ̂ : S−(G;R) → sym(RG) is a module isomorphism (and hence an algebra

isomorphism).

Corollary 2.4. Let G be an abelian group. Then φ(g) = φ(h) if and only if

(i) g = h±1, or

(ii) 2 = 0 in R and g2 = h2 = e in G.
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Corollary 2.5. (a) S2,∞(L(p, q);R,−1) ≃ sym(RZp)
3. This result agrees with the

module structure of the general skein module S2,∞(L(p, q);R,A) given in [H-P-2, H-P-3] 4.

(b) S2,∞(T 2× [0, 1];R,−1) ≃ sym(R(Z⊕Z)) 5. This is the special case of the general

computation of the Kauffman bracket skein algebra of T 2 × [0, 1] [B-P].

(c) S2,∞(T 3;R,−1) ≃ sym(R(Z⊕Z⊕Z)). (The structure of the general skein module

S2,∞(T 3) is still unknown and is more complicated than in the case of A = −1; in

particular the skein module has a torsion part).

Theorem 2.6. If i : G1 → G2 is a monomorphism and G2 is abelian then i∗ :

S−(G1;R) → S−(G2;R) is a monomorphism for any ring R.

P r o o f. Lemma 2.2 and Theorem 2.3 imply that S+(Gi;Z), i = 1, 2, is a free Z-

module with a basis {e} ∪ {g + g−1 : g ∈ Gi, g 6= e}. The inclusion i : G1 → G2

yields a homomorphism of skein algebras i∗ : S−(G1;Z) → S−(G2;Z) carrying the

elements of the basis of S−(G1;Z) to the elements of the basis of S−(G2;Z). By universal

coefficients property, S−(Gi;R) = S−(Gi;Z) ⊗ R. Hence the induced homomorphism

i′∗ : S−(G1;R) → S−(G2;R) also carries the elements of the basis of S−(G1;R) to the

elements of the basis of S−(G2;R). Therefore i
′
∗ is a monomorphism.

3. Character variety of a group. Let ̺ : G → Sl2(C) be a representation of a

group G in Sl2(C). Then the trace of this representation χ(g) = tr ̺(g), χ : G → C,

is called briefly a character of G. We denote the set of all characters of G by X(G);

this notation agrees with that of Culler and Shalen in [C-S], provided that G is finitely

generated.

In the remainder of this paper we are going to focus on the relationship between

S−(G;C) and X(G) 6.

Let χ be a character of G. Then χ : G → C can be extended to the homomorphism

of C-algebras χ : TCG→ C such that

χ(a⊗ b) = χ(a) · χ(b), χ(a+ b) = χ(a) + χ(b),

and

χ(g) = χ(g)

for any a, b ∈ TCG, g ∈ G. It can easily be seen that χ(e−2) = 0 and χ(g⊗h−h⊗g) = 0

for g, h ∈ G. Moreover, the well known equality (of H. Vogt, and R. Fricke and F. Klein;

3One can show further that the algebra is isomorphic to R[y]/Ip, where I0 = {0}, and

otherwise Ip is the ideal generated by the polynomial Q[p/2]+1(y)−Qp−[p/2]−1(y), where [x] is the

integer part of x. Qn is the Chebyshev polynomial of the first kind,Qn(y) = yQn−1(y)−Qn−2(y),

Q0(y) = 2, Q1(y) = y; [P-S-2].
4In fact for the projective space, L(2, 1), S2,∞(L(2, 1);R,A) has an algebra structure and as

an algebra it is isomorphic to R[α]/(α2 −A3 A4
−A−4

A−A−1
), which implies S+(Z2;R) = R[α]/(α2 − 4)

for A = −1.
5One can show further that the algebra is isomorphic to R[x, y, z]/(x2 + y2 + z2 − xyz

− 4) [B-P, P-S-1].
6D. Bullock was the first to investigate the relation between the Kauffman bracket skein

module of a 3-manifold, M , and X(π1(M)) [B-1, B-2].
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compare [C-S, Jo, L-M, Ma-1])

tr(a)tr(b) = tr(ab) + tr(ab−1)

for a, b ∈ Sl2(C) implies that

χ(g ⊗ h) = χ(gh) + χ(gh−1)

for g, h ∈ G. Therefore I− ⊂ Kerχ and χ induces a homomorphism

hχ : S−(G;C) = TCG/I− → C,

such that hχ([g]) = χ(g) = χ(g) for g ∈ G. Hence for any group G and for any character

χ ∈ X(G) the following diagram commutes:

G

π
$$HHHHHHHHH

χ
// C

S−(G;C)

hχ

::vvvvvvvvv

where π(g) = [g] ∈ S−(G;C) for g ∈ G.

Theorem 3.1. If G is an abelian group then each homomorphism of algebras h :

S−(G;C) → C is yielded by a character of G, i.e. h = hχ for some χ ∈ X(G).

P r o o f. By Theorem 2.3, φ̂ : S−(G,C) → sym(CG) , φ̂(g) = g+ g−1 for g ∈ G, is an

isomorphism of C-algebras. The ring CG (resp. sym(CG)) is generated by elements of

the form g±g−1

2 (resp: g+g
−1

2 ). Since ( g−g
−1

2 )2 = ( g+g
−1

2 )2−1, CG is an integral extension

of sym(CG). Let us consider any C-algebra homomorphism h : S−(G,C) → C and the

composition h◦φ̂−1 : sym(CG) → C. The kernel of h◦φ̂−1 is a maximal ideal in sym(CG)

and therefore, by Lying-over Theorem, it can be extended to a maximal ideal J ⊳ CG

(see e.g. [Hu] Ch. VIII). Let f be a natural projection f : CG → CG/J = C. Then the

following diagram commutes:

sym(CG)

i
%%JJJJJJJJJ

h◦φ̂−1

// C

CG

f

>>
||||||||

where i : sym(CG) → CG denotes the natural inclusion.

The homomorphism f restricted to G yields a representation of G in the multiplicative

group C∗, f|G : G → C∗. Therefore the function χ : G → C, χ(g) = f(g + g−1) is the

character of the representation ̺ : G→ Sl2(C)

̺(g) =

(
f(g) 0

0 f(g)−1

)
.

We will complete the proof by showing that h = hχ. Let g ∈ G. Then hχ([g]) = χ(g) =

f(g + g−1). Since g + g−1 ∈ sym(CG) ⊂ CG, f(g + g−1) = h ◦ φ̂−1(g + g−1) = h([g]).

Hence hχ([g]) = h([g]) for any g ∈ G. But the elements {[g]}g∈G generate S−(G;C).

Therefore hχ = h.
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The above proof implies that any character χ of an abelian group G is yielded by a

representation of G into the subgroup of diagonal matrices in SL2(C).

Let G be a finitely generated group. Vogt 1889 [V] and Fricke and Klein (1897)[F-K]

stated and Horowitz [Ho] proved that each character χ of G is uniquely determined by the

values χ(g1), . . . , χ(gn) for some properly chosen finite subset {g1, . . . , gn} of G (compare

[C-S] and [Ma-2]). Therefore X(G) can be identified with the set

{(χ(g1), . . . , χ(gn)) : χ is a character of G} ⊂ Cn.

Culler and Shalen proved that X(G) under this identification is an algebraic set and

that the definition of X(G) does not depend (up to isomorphism of algebraic sets) on

the choice of the elements g1, . . . , gn. They also showed that for any g ∈ G the function

τg(χ) = χ(g), τg : X(G) → C, is regular on X(G).

One can easily check that τe = 2, τgh = τhg and τg · τh = τgh + τgh−1 for g, h ∈ G.

Therefore there exists a homomorphism from S−(G;C) to the coordinate ring of X(G)

ψ : S−(G;C) → C[X(G)]

such that ψ([g]) = τg for g ∈ G. Since C[X(G)] is generated by τg1 , . . . , τgn , ψ is an

epimorphism.

Lemma 3.2. For any χ ∈ X(G) we denote the maximal ideal in C[X(G)] correspond-

ing to χ by mχ, i.e. mχ is the ideal consisting of all regular functions on X(G) vanishing

at χ. Then the following diagram commutes :

S−(G;C)

hχ ((QQQQQQQQQQQQ

ψ
// C[X(G)]

πχ

vvnnnnnnnnnnnn

C = C[X(G)]/mχ

where πχ denotes the natural projection C[X(G)] → C[X(G)]/mχ.

P r o o f. Since S−(G;C) is generated by elements [g], where g ∈ G, it suffices to prove

that πχψ([g]) = hχ([g]). But πχψ([g]) = πχ(τg) = χ(g) = hχ([g]).

Theorem 3.3. ψ : S−(G;C) → C[X(G)] is an isomorphism for any finitely generated

abelian group G.

P r o o f. Notice that if G is finitely generated abelian group then G is isomorphic

to T ⊕ Zk, where T is a finite group and k is a non-negative integer. By Maschke’s

Theorem [see [Hu] Ch. IX], CT has a trivial Jacobson radical (i.e. CT is semisimple),

and therefore CT does not have any non-zero nilpotent elements; (we use here the fact

that the Jacobson radical of a commutative algebra contains all nilpotent elements). Since

CT is a finitely generated commutative C-algebra without non-zero nilpotent elements,

CT is a coordinate ring of some algebraic set A; CT ≃ C[A] 7.

The algebra CZk is isomorphic to C[x±1
1 , x±1

2 , . . . , x±1
k ] and so, like CT, it does not

have any nilpotent elements. Therefore we can assume that CZk is a coordinate ring of

7In fact, A is a finite set.
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an algebraic set B (In fact B ≃ C∗k 8). Then CG = CT ⊗ CZk is the coordinate ring

of A×B.

Let s ∈ S−(G;C), s 6= 0. Then φ̂(s) 6= 0 in sym(CG) ⊂ CG. Since CG ≃ C[A× B],

we can consider φ̂(s) as a regular function on A × B. Let ma be the maximal ideal in

C[A×B] associated to a point a ∈ A×B at which φ̂(s) does not vanish. Then the natural

homomorphism h : C[A×B] → C[A×B]/ma ≃ C does not vanish on φ̂(s). By Theorem

3.1, the composition of homomorphisms

h ◦ φ̂ : S−(G;C) → CG ≃ C[A×B] → C

is equal to the homomorphism hχ for some character χ of G. Lemma 3.2 implies that

πχψ(s) = hχ(s). Since hχ(s) 6= 0, we get ψ(s) 6= 0. This implies that ψ is a monomor-

phism. By the remark preceding Lemma 3.2, ψ is also an epimorphism.

Corollary 3.4. For any x, y ∈ S−(G;C), x 6= y, there exists a character χ ∈ X(G)

such that hχ(x) 6= hχ(y).

P r o o f. If x 6= y then ψ(x) 6= ψ(y) in C[X(G)]. Therefore there exists a character χ ∈

X(G) such that πχ(ψ(x)) 6= πχ(ψ(y)). Hence, Lemma 3.2 implies that hχ(x) 6= hχ(y).

Added in proof (January 1998). In [P-S-2], we prove Theorem 3.1 for all finitely generated

groups.
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