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Abstract. The states of the title are a set of knot types which suffice to create a generating

set for the Kauffman bracket skein module of a manifold. The minimum number of states is a

topological invariant, but quite difficult to compute. In this paper we show that a set of states

determines a generating set for the ring of SL2(C) characters of the fundamental group, which
in turn provides estimates of the invariant.

1. Introduction. Skein modules were introduced by Józef Przytycki in 1987 as a

class of 3-manifold invariants somewhat analogous to homology groups. The basic idea is

to divide the linear space of all links by a set of meaningful relations. The known skein

relations for various polynomial invariants of links are obvious examples. We will consider

the module corresponding to the Kauffman bracket polynomial.

Let M be a 3-manifold. Its Kauffman bracket skein module is an algebraic invariant,

K(M), built from the set of all framed links inM . By a framed link we mean an embedded

collection of annuli considered up to isotopy in M . The set of framed links is denoted

LM and it includes the empty link ∅.

LetR denote the ring of Laurent polynomials Z[A,A−1] and R(LM ) the free R-module

with basis LM . Let S(M) be the smallest submodule of R(LM ) containing all possible

expressions of the form − A − A−1 , or © + A2 + A−2. The first relation,

called a skein relation, involves three links embedded identically except as the diagrams

indicate, with framing annuli assumed to lie flat in the page. The second relation, called

a framing relation, tells how to remove a trivial component from a link. We define K(M)

to be the quotient R(LM )/S(M).

In a previous work [5] the author developed a connection between K(M) and the set

of SL2(C) characters of π1(M), which was exploited at the level of linear spaces and
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linear functionals. This paper extends the idea to multiplicative structures. We will be

working with a vector space V (M) closely related to K(M). Let HM denote the set of

(unframed) links in M , including ∅, but considered only up to homotopy. Let CHM be

the complex vector space with basis HM . It contains a subspace W (M) generated by all

skein relations + + , and © + 2. The vector space V (M) is the quotient

CHM/W (M).

If K(M) is specialized at A = −1 the skein relations imply that crossings can be

changed at will. Hence, the only difference between this specialization and V (M) is the

use of complex coefficients. There is a commutative multiplication on CHM , given by

L1L2 = L1∪L2, for which ∅ is a unit. Since W (M) is an ideal the multiplication descends

to V (M), which, as an algebra, is finitely generated [4, Theorem 1].

Our main result is that V (M) maps onto the ring of SL2(C) characters. In Section 2

we review the necessary character theory and prove this theorem. As a corollary, we obtain

a lower bound on the number of generators of V (M) as an algebra. This in turn provides

a lower bound on a previously intractable invariant of manifolds, the aforementioned

minimum number of states. Section 3 contains a precise definition of states and estimates

of the invariant for a number of examples.

2. The ring of characters. For the rest of this article the term representation will

refer to a homomorphism of groups ρ : π1(M) → SL2(C). The character of a representa-

tion ρ is the composition χρ = trace ◦ ρ. The set of all characters will be denoted X(M).

For each γ ∈ π1(M) there is a function tγ : X(M) → C given by χρ 7→ χρ(γ). The

following lemma appears to have been discovered independently by Vogt [13], Fricke [7]

and Horowitz [9] as well as Culler and Shalen [6].

Lemma 1. There exists a finite set {γ1, . . . , γm} ⊂ π1(M) such that every tγ is an

element of C[tγ1
, . . . , tγm

].

Theorem 1. (Culler-Shalen) If every tγ is in C[tγ1
, . . . , tγm

], then X(M) is a closed

algebraic subset of Cm.

It follows from [6] that any two parameterizations of X(M) are equivalent via poly-

nomial maps, so their coordinate rings are isomorphic. We call this ring the ring of

characters of π1(M) and denote it R(M).

Each knot K in HM determines a unique tγ as follows. Let ~K denote an unspecified

orientation on K. Choose any γ ∈ π1(M) such that γ ≃ ~K. Since trace is invariant under

conjugation and inversion in SL2(C), it makes sense to write χρ(K) = χρ(γ). Thus K

determines the map tγ . Conversely, any tγ is determined by some K. This correspondence

remains well defined at the level of V (M).

Theorem 2. The map Φ : V (M) → R(M) given by

Φ(K)(χρ) = −χρ(K)

is a well defined surjective map of algebras. If V (M) is generated by a set of knots

K1, . . . ,Km then −Φ(K1), . . . ,−Φ(Km) are coordinates on X(M).
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P r o o f. Let CX(M) denote the algebra of functions from X(M) to C. If K is a knot

in HM let

Φ̃(K)(χρ) = −χρ(K)

and extend to CHM , requiring that Φ̃ be a map of algebras.

Consider the image of W (M) under Φ̃. For the framing relation ©+ 2 ∅ we have

Φ̃(©+ 2 ∅)(χρ) = −χρ(©) + 2 = −tr(Id) + 2 = 0.

Let L+L0+L∞ be a skein relation in which the first two terms are knots, and denote the

components of the third term by K1 and K2. Choose a base point and two loops a and

b in π1(M, ∗) so that, for some orientation, ab ≃ ~L. With favorable orientations on the

other knots we have ab−1 ≃ ~L0, a ≃ ~K1, and b ≃ ~K2. Choose any χρ. Setting A = ρ(a)

and B = ρ(b), we see that

Φ̃(L+ L0 + L∞)(χρ) = −χρ(L)− χρ(L0) + χρ(K1)χρ(K2)

= −tr(AB)− tr(AB−1) + tr(A)tr(B) = 0.

These types of relations generate W (M) as an ideal, so Φ̃ descends to a well defined map

Φ : V (M) → CX(M)

which is determined by its values on knots.

Let K1, . . . ,Km be generators of V (M). Every element of V (M) is a polynomial in

these knots, so Φ(V (M)) ⊂ C[−Φ(K1), . . . ,−Φ(Km)]. Since each tγ is some −Φ(K),

Lemma 1 and Theorem 1 imply that the functions −Φ(Ki) are coordinates on X(M). It

follows that Φ maps onto R(M).

3. Estimating the number of states. In this section we will apply Theorem 2 and

other results to estimate the value of a 3-manifold invariant defined in [4]. The invariant

is roughly the minimum number of knot types in a set of generators for K(M), subject

to the geometric condition that every resolving tree terminates in the set of generators.

The first step is to define what a resolving tree is. Let T be a finite, connected,

contractible graph in which each vertex is labeled by a monomial in RLM , i.e. ±AkL.

Assume there is a bivalent vertex labeled L. There is a well defined potential function on

the vertices of T given by the number of edges in a path to L. Suppose also that T has

the following properties.

1. Each vertex of T with non-zero potential is either univalent or trivalent.

2. Each non-univalent vertex is incident to two edges ending in higher potential ver-

tices.

3. Let pL1 be a non-univalent vertex. If qL2 and rL3 are the higher potential vertices

specified by property 2, then pL1 − qL2 − rL3 is a skein or framing relation.

The univalent vertices of a resolving tree are called leaves. The sum over all leaves is

equal to L in K(M), so T is called a resolving tree for L.

Given a set of module generators for K(M), one may easily construct a resolving tree

for any L such that the sum over all leaves is a linear combination of generators. However,

leaves need not lie in the generating set, provided they cancel with other leaves. Hence
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the additional geometric condition alluded to above. Let G be a set of links that generate

K(M) as a module. If every link in M has a resolving tree with every leaf in G we say

that G is complete.

Finally, there are manifolds for which K(M) is an algebra, and we want to mimic

that structure as closely as possible in a general setting. Let {K1, ...,Kn} be a collection

of framed knots in M . For a positive integer ti we form a link Kti
i by taking ti parallel

copies of Ki, each one a push off along the framing. Let G be the set of all framed links

of the form Kt1
1 ∪Kt2

2 ∪ · · · ∪Ktn
n . (Note that this expression does not define a unique

link; G must contain all possibilities.) If G, together with ∅, is a complete generating set

for K(M), then we say {∅,K1, ...,Kn} is a set of states for M.

In [4] it is shown that every compact orientable M admits a set of states, so we

can define s(M) to be the minimum number of states. Like any invariant defined by

minimizing a geometric occurrence, s(M) is frightfully difficult to compute. Estimates

from above may be obtained by construction, but estimates from below require more

subtle techniques. Fortunately we have the following inequalities.

Proposition 1. Let M be a compact, orientable 3-manifold.

s(M)− 1 ≥ minimum number of generators for V (M) (1)

≥ minimum number of generators for R(M) (2)

= smallest m such that X(M) ⊂ Cm (3)

≥ dimension of X(M). (4)

Furthermore, the last inequality is strict unless X(M) is equivalent to affine space. In

particular, it is strict if X(M) is reducible or singular.

P r o o f. Since the non-empty states generate V (M), we have (1). Theorem 2 implies

(2). The definition of R(M) implies (3), and (4) is obvious. If equality holds in (4) then

closure forces X(M) = Cm, which is irreducible and smooth.

The following is a list of the manifolds for which we have bounds on s(M).

1. F × I, F is a compact orientable surface with first Betti number β(F ).

2. L(p, q), any lens space other than S3.

3. Mq, the exterior of a (2, q)-torus knot.

4. M3(r), surgery on a right hand trefoil knot with integer framing r.

Deleting an open cell or capping a spherical boundary component has no effect on K(M)

or X(M), so the list may be taken to include those modified manifolds as well.

Proposition 2. s(F × I) ≤ 2β(F ).

P r o o f. Follows from [4, Corollary 1].

Proposition 3. s(L(p, q)) ≤ 2.

P r o o f. Hoste and Przytycki [10, 11] have constructed generating sets that contain

only 2 states.

Proposition 4. s(Mq) ≤ 3.
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P r o o f. Generating sets with 3 states are constructed in [2].

Proposition 5. If r 6= 1 or 3 then s(M3(r)) ≤ 3. If r = 1 or 3 then s(M3(r)) ≤ 2.

P r o o f. Also by construction [3].

Proposition 6. If ∂F 6= ∅ then s(F × I) ≥ 3β(F ) − 2. If β(F ) = 3 this can be

sharpened to s(F × I) ≥ 8.

P r o o f. Since ∂F 6= ∅, π1(F × I) is free of rank β(F ). It follows from [12, Theorem

2.2] that X(F × I) has dimension 3β(F ) − 3. If β(F ) = 3 then π1(F × I) is free on the

set {a, b, c}. The assignments

x = ta, y = tb, z = tc, u = tab,

v = tac, w = tbc and t = tabc

realize X(F × I) ⊂ C7. Horowitz [9] has shown that X(M) is the zero set of

x2 + y2 + z2 + u2 + v2 +w2 + uvw− xyu− xzv− yzw− 4+ t2 − txw− tyv− tzu+ txyz.

The variety is singular at (2, 2, 2, 2, 2, 2, 2), so Proposition 1 (4) applies.

Proposition 7. If F is hyperbolic and ∂F = ∅ then s(F × I) ≥ 3β(F )− 5.

P r o o f. It is implicitly shown in [8] that the dimension of X(F × I) is 6g − 6.

Proposition 8. If F is a torus then s(F × I) ≥ 4.

P r o o f. Let π1(M) = 〈a, b | ab = ba〉 with x = ta, y = tb and z = tab. With these

coordinates on C3, X(M) is the zero set of

x2 + y2 + z2 − xyz − 4,

which has dimension 2 and a singularity at (2, 2, 2).

Proposition 9. s(Mq) ≥ 3.

P r o o f. Write π1(Mq) as 〈a, b | (ab)na = b(ab)n〉, where n = (q − 1)/2. Let ω be the

principle q-th root of −1 and let p(y) be a polynomial whose roots are {ωi+ω−i | 1 ≤ i ≤

n}. If x = ta and y = tab then, from [1, Propositions 9.1(i), A.4∗.11(ii) and A.4∗.13(i)],

we know X(Mq) ⊂ C2 is the zero set of p(y)(x2 − y − 2). Its dimension is 1 and it has

n+ 1 components.

Proposition 10. If M is S3 or a punctured S3 then s(M) = 1. Otherwise, s(M) ≥ 2.

P r o o f. Begin by capping all spherical boundary components with balls. This has no

effect on either K(M) or s(M), so continue to denote the result by M . If M is closed,

[4, Theorem 3] says that either M = S3 or s(M) ≥ 2. If ∂M 6= ∅ then H1(M,Z/2Z) has

positive rank. From [4, Lemma 6] we again have s(M) ≥ 2.

The estimates in Propositions 2–10 are summarized in Table 1. Those pertaining to

handlebodies are obtained by considering the manifold to be a product of a planar surface

and an interval.1

1When these results were presented at the Banach Center Mini Semester on Knot Theory,

August 1995, they were the best known estimates. Recently, however, Przytycki and Sikora have

announced that s(F × I) = 2β(F ), and that s(M3(6)) = 3.
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Manifold Lower bound Upper bound

B3, S2 × I and S3 1 1

Solid torus 2 2

Genus 2 handlebody 4 4

Punctured torus × I 4 4

Torus × I 4 4

Genus 3 handlebody 8 8

Twice punctured torus × I 8 8

F × I ; ∂F 6= ∅ and χ(F ) < 0 3β(F )− 2 2β(F )

F × I ; ∂F = ∅ and χ(F ) < 0 3β(F )− 5 2β(F )

L(p, q) 2 2

Mq 3 3

M3(1) and M3(3) 2 2

M3(r); r 6= 1 or 3 2 3

Table 1. Summary of s(M) estimates
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