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1. Introduction. In this paper we give a brief survey of the present state of knowledge

on exceptional Dehn fillings on 3-manifolds with torus boundary.

For our discussion, it is necessary to first give a quick overview of what is presently

known, and what is conjectured, about the structure of 3-manifolds. This is done in

Section 2. In Section 3 we summarize the known bounds on the distances between various

kinds of exceptional Dehn fillings, and compare these with the distances that arise in

known examples. In Section 4 we make some remarks on the special case of complements

of knots in the 3-sphere.

We have chosen to phrase questions as conjectures; this gives them a certain edge and

perhaps increases the likelihood that someone will try to (dis)prove them. Incidentally,

no particular claim is made for unattributed conjectures; most of them are lore to the

appropriate folk.

Related survey articles are [Go1] and [Lu].

I would like to thank Pat Callahan, Craig Hodgson, John Luecke, Alan Reid and Eric

Sedgwick for helpful conversations, and the referee for his useful comments.

2. 3-Manifolds. Throughout this section, all 3-manifolds will be closed and oriented.

Recall that the connected sum of two 3-manifolds M1 and M2 is defined by removing

the interior of a 3-ball from each of M1 and M2 and identifying the resulting boundaries

by an orientation-reversing homeomorphism. This gives a manifold M1 #M2, which is

well-defined (as an oriented manifold). In particular, M #S3 ∼= M for all M .

A 3-manifold is prime ifM ∼= M1 #M2 implies that eitherM1 orM2 is homeomorphic

to S3.
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There is the following prime factorization theorem for 3-manifolds with respect to

connected sum.

Theorem 2.1 (Kneser [K], Milnor [Mi2]). For every 3-manifold M there exist prime

3-manifolds M1, . . . ,Mn such that M ∼= M1 # · · · #Mn. The summands Mi not home-

omorphic to S3 are unique up to order.

It is convenient to say that M is irreducible if every 2-sphere in M bounds a 3-ball in

M . Thus prime and irreducible are almost equivalent, the only exception being S1 ×S2,

which is prime but not irreducible.

In view of Theorem 2.1, it is enough to study irreducible 3-manifolds. For these, we

have the following theorem.

Theorem 2.2. Let M be an irreducible 3-manifold. Then either

(1) π1(M) is finite; or

(2) π1(M) is infinite and πi(M) = 0, i ≥ 2.

(Conversely, (1) and (2) each implies that M is irreducible, modulo the Poincaré

Conjecture.)

Part (2) is an easy consequence of the sphere theorem [Pap], [Wh].

Note that in case (1), the universal cover M̃ of M is compact and simply-connected,

and hence a homotopy 3-sphere, while in case (2), M̃ is contractible. It is conjectured

that M̃ is homeomorphic to S3 or R3, respectively.

We now describe the expected structure of 3-manifolds of types (1) and (2) in more

detail.

(1) π1(M) finite. The conjectured picture here is quite simple. Let S3 be the unit

sphere in R4 with the metric induced by the euclidean metric on R4. The linear action of

O(4) on R4 restricts to an action on S3, and in this way the group of orientation-preserving

isometries of S3, Isom+(S3), is identified with SO(4). If π is a finite subgroup of SO(4)

such that the action of π on S3 is free then the quotient S3/π is a 3-manifold M with

π1(M) ∼= π. Such a 3-manifold M is a 3-dimensional spherical space form. One also says

that M is spherical or elliptic.

The groups π of this form, and the corresponding 3-manifolds, are completely classified

[Hop], [TS].

Conjecture 2.3. Any 3-manifold M with π1(M) finite is spherical.

By considering the universal cover of M one may regard the above conjecture as being

broken up into three parts:

(i) if π1(M) is trivial then M ∼= S3;

(ii) if π acts freely on S3 (or perhaps a homotopy 3-sphere) then π is isomorphic to

a subgroup of SO(4) whose restriction to S3 is free;

(iii) if π is a subgroup of SO(4) whose restriction to S3 is free, then any free action

of π on S3 is conjugate to its action as a subgroup of SO(4).

(i) is of course the Poincaré Conjecture.

(ii) is almost solved [Mi1], [Le].

(iii) is known for some groups π [Li], [Ric], [Rit], [EM], [Ru], [My].
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(2) π1(M) infinite, πi(M) = 0, i ≥ 2. Here it turns out that it is important to

distinguish two subcases.

(a) π1(M) has no subgroup isomorphic to Z × Z. Examples of such manifolds arise

as follows. Let H3 be 3-dimensional hyperbolic space, in other words, one of the two

components of the unit sphere in 4-dimensional Minkowski space. Using the upper half-

space model for H3, the group Isom+(H3) of orientation-preserving isometries of H3

can be identified with PSL2(C), the group of linear fractional transformations of the

Riemann sphere. If π is a subgroup of Isom+(H3) whose action onH3 is free and properly

discontinuous and has compact quotient, then this quotient M = H3/π is a 3-manifold

with π1(M) ∼= π. Moreover, no such π can have a subgroup isomorphic to Z × Z. The

manifold M is said to be hyperbolic.

Seifert and Weber gave one of the first examples of such a manifold, the hyperbolic

dodecahedral space, in [WS].

The central role played by hyperbolic manifolds in 3-dimensional topology has been

revealed through the work of Thurston [T1], [T2], [T3]. In particular, there is the follow-

ing conjecture.

Conjecture 2.4 (Thurston [T2]). An irreducible 3-manifold M such that π1(M) is

infinite and has no subgroup isomorphic to Z× Z is hyperbolic.

Thurston has shown that this is true if M is Haken, i.e., is irreducible and contains

an incompressible surface [T2], [T3].

(b) π1(M) has a subgroup isomorphic to Z×Z. In order to discuss this case, we need

to recall some facts about Seifert fiber spaces [Se], [Or], [Sco3].

A Seifert fiber space is a 3-manifold M which can be expressed as a disjoint union

of circles (fibers) such that each fiber has a fibered solid torus neighborhood, given by

identifying the ends of a solid cylinder D2×I by a rotation through 2πp

q
, (p, q) = 1, p ≥ 1,

the fibers coming from the I-fibers of D2 × I in the obvious way. If p ≥ 2, the central

core of D2 × S1 is a singular fiber of multiplicity p. In particular, M has a foliation by

circles. Conversely, by [Ep] any foliation of a 3-manifold by circles is of this form.

The quotient space of M obtained by identifying each fiber to a point, is a surface,

the base (surface) of the Seifert fibration.

The only reducible Seifert fiber spaces are S1 × S2 and P 3 #P 3.

It is convenient to divide the irreducible Seifert fiber spaces into the following classes:

those that have Seifert fiberings with

(A) base S2 and at most 2 singular fibers;

(B), (C), (D) base S2 and 3 singular fibers, of multiplicities p1, p2, p3, where
∑

1

pi

> 1,

= 1, or < 1 respectively;

(E) all others.

R ema r k s. (1) The manifolds in class (A) are S3 and the lens spaces. They are

precisely the Seifert fiber spaces with finite cyclic π1.
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The manifolds in class (B) are precisely the Seifert fiber spaces with finite non-cyclic

π1. Note that the possibilities for (p1, p2, p3) are the Platonic triples (2, 2, n), (2, 3, 3),

(2, 3, 4) and (2, 3, 5).

The manifolds in classes (A) and (B) are precisely the spherical 3-manifolds.

(2) A Seifert fiber space M is Haken if and only if either M is in class (E) (in which

case M contains a vertical incompressible torus), or M is in class (C) or (D) and H1(M)

is infinite (in which case M contains a horizontal incompressible surface). In particular,

if we say that a 3-manifold is toroidal if it contains an incompressible torus (and atoroidal

otherwise), and if we subdivide class (C) into classes (C′) and (C′′) according to whether

H1(M) is finite or infinite, then the toroidal Seifert fiber spaces are precisely those in

classes (E) and (C′′) (the latter contain horizontal incompressible tori). We remark that

(C′) is the set of manifolds in (C) that have Nil geometric structures, while (C′′) is the set

of manifolds in (C) that have euclidean structures. (See [Sco3] for an excellent account

of the eight 3-dimensional geometries.)

For the purposes of this paper, let us call the Seifert fiber spaces in classes (A), (B),

(C) and (D) small (as in [BW]), and those in classes (C′) and (D) exceptional . Thus

the exceptional Seifert fiber spaces are precisely the irreducible, atoroidal Seifert fiber

spaces with infinite π1. Note that although such a manifold M is atoroidal, π1(M) has a

subgroup isomorphic to Z× Z.

We are now ready to state the theorem that holds in this subcase (b).

Theorem 2.5. Let M be an irreducible 3-manifold such that π1(M) has a subgroup

isomorphic to Z× Z. Then M is either toroidal or an exceptional Seifert fiber space.

This theorem is the culmination of work by several people. For M Haken it was

announced by Waldhausen [Wa], and a proof given by Feustel [F1], [F2]. If M is non-

Haken, Scott showed [Sco1] that the hypothesis of the theorem implies that π1(M) has

an infinite cyclic normal subgroup Z. Mess showed [Me] that π1(M)/Z is either the

fundamental group of a 2-dimensional orbifold or a discrete convergence group. In the first

case, another result of Scott [Sco2] implies that M is a Seifert fiber space. Finally, Casson

and Jungreis [CJ] and Gabai [Ga3] independently showed that a discrete convergence

group is a Fuchsian group, implying that M is a Seifert fiber space in the second case

also.

After Theorem 2.5, Thurston’s Geometrization Conjecture [T1], [T2], [T3] is equiva-

lent to the conjunction of Conjectures 2.3 and 2.4.

3. Dehn filling. Let M be a compact irreducible 3-manifold with ∂M a torus. Let r

be a slope on ∂M , that is, the isotopy class of an essential simple closed curve on ∂M . The

(closed) 3-manifold obtained from M by r-Dehn filling is defined to be M(r) = M ∪ Vr,

where Vr is a solid torus, attached to M along the boundary in such a way that r bounds

a disk in Vr .

If M is a Seifert fiber space (the definition given in Section 2 applies verbatim to

manifolds with boundary) then M(r) is a Seifert fiber space unless r = r0 is the slope of

a fiber, while M(r0) is a connected sum of lens spaces and copies of S1 × S2 [He].



DEHN FILLING 133

If M contains an incompressible torus which is not parallel to ∂M , then this torus

usually remains incompressible inM(r). In fact the exceptions can be explicitly described,

by results of Berge [B1], Gabai [Ga2] and Scharlemann [Sch2].

By Thurston’s geometrization theorem for Haken manifolds [T2], [T3], in the remain-

ing case M is hyperbolic, i.e., intM has a complete hyperbolic structure.

Let us generalize the discussion for a moment to allow manifolds with more than

one boundary component. We shall say that a (compact, orientable) 3-manifold M is

hyperbolic if intM has a complete hyperbolic structure and M is not homeomorphic

to S1 × D2 or T 2 × I. Now let M be a hyperbolic 3-manifold with a torus boundary

component T (and possibly other boundary components, which need not be tori). Define

E(M) = E(M,T ) = {r : r is a slope on T such that M(r) is not hyperbolic}, the set of

exceptional slopes ofM (on T ), and let e(M) = |E(M)|. The goal is to obtain restrictions

on the set E(M).

If r, s are two slopes on T , the distance ∆(r, s) between r and s is defined to be their

minimal geometric intersection number. Most of the results we describe will be in the

form of upper bounds on ∆(r, s) for particular classes of exceptional slopes r and s.

Note that if {µ, λ} is a basis for H1(T ), then the slopes on T can be parametrized by

Q ∪ {1/0 = ∞}, by the correspondence r ↔ a/b, where [r] = aµ + bλ. If s ↔ c/d then

∆(r, s) = |ad− bc|. If ML = S3 − intN(L) is the exterior of a link L in S3, then we will

always parametrize the slopes on ∂ML in this way by taking µ and λ to be a meridian

and longitude for the appropriate component of L.

Here are two examples, which we shall have occasion to refer to later.

Figure 3.1 Figure 3.2

Example (1). Let L be the Whitehead link, illustrated in Figure 3.1, and let W be

the exterior of L. Let T be one of the components of ∂W . (Since there is an isotopy of S3

interchanging the components of L, it is immaterial which component is chosen.) Then it

is proved in [NR] that E(W ) = E(W,T ) = {∞, 0, 1, 2, 3, 4}. (Note that [NR] works with

the mirror-image of L, so that our slopes are the negatives of those given there.) Thus

e(W ) = 6.

Example (2). Let L′ be the (−2, 3, 8) pretzel link, also called the Whitehead sister

link [BFLW] (see Figure 3.2), and let W ′ be the exterior of L′. The volumes of W
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and W ′ are equal. Let T be the component of ∂W ′ corresponding to the unknotted

component of L′. Then, using Weeks’ computer program snappea, Hodgson and Weeks

have shown that E(W ′) = E(W ′, T ) = {∞, 2, 3, 7
2
, 11

3
, 4}, giving e(W ′) = 6. (Since there

is an automorphism of W ′ interchanging its boundary components, there are also six

exceptional slopes on the other boundary component.) Note that ∆(2, 11

3
) = 5.

By Thurston’s geometrization theorem for Haken manifolds [T2], [T3], a 3-manifold

with non-empty boundary is hyperbolic if and only if it is irreducible, atoroidal (i.e.,

every incompressible torus is boundary parallel) and not a Seifert fiber space. Hence if

a 3-manifold with non-empty boundary is not hyperbolic then it contains an essential

surface of non-negative euler characteristic (i.e., a sphere, disk, torus or annulus). By

analyzing when such surfaces can be created by two distinct Dehn fillings on a manifold

M , one can prove the following.

Theorem 3.1 [Go2]. Let M be a hyperbolic 3-manifold with a torus boundary compo-

nent T and at least one other boundary component. Then ∆(r, s) ≤ 5 for all r, s ∈ E(M).

Example (2) above shows that this bound is best possible.

It follows from Theorem 3.1 that e(M) ≤ 8. The examples given above have e(M) = 6.

No example is known with e(M) > 6 (where M has more than one boundary component).

From now on we will consider the harder case where ∂M consists of a single torus. A

fundamental result of Thurston says that e(M) is finite [T1], [T2].

Note that, assuming the Geometrization Conjecture (i.e., Conjectures 2.3 and 2.4), if

M(r) fails to be hyperbolic then it is either reducible, toroidal, or a small Seifert fiber

space. For the results we shall describe, it turns out that we can ignore Conjecture 2.3, but

in view of the fact that Conjecture 2.4 is still open it is necessary to work with a slightly

different definition of an exceptional slope. Namely, let us say that a closed 3-manifold M

is hyperbolike if it is irreducible, and π1(M) is infinite and has no subgroup isomorphic

to Z × Z. Thus hyperbolic 3-manifolds are hyperbolike, and the converse assertion is

Conjecture 2.4.

Let RED, CYC, FIN, TOR and ESFS be the set of (closed) 3-manifolds that are

reducible, have (finite) cyclic π1, have finite non-cyclic π1, are toroidal, or are exceptional

Seifert fiber spaces, respectively. Then, by Theorem 2.5, a 3-manifold is not hyperbolike

if and only if it belongs to RED ∪ CYC ∪ FIN ∪ TOR ∪ ESFS.

Now define E′(M) = {r : M(r) is not hyperbolike}, and e′(M) = |E′(M)|. Thus

E′(M) ⊂ E(M), with conjectured equality.

At the moment the best universal bounds on E′(M) are the following.

Theorem 3.2 (Bleiler-Hodgson [BH1]). e′(M) ≤ 24, and ∆(r, s) ≤ 22 for all r, s ∈

E′(M).

The proof of this theorem uses the “2π” theorem of Gromov and Thurston, together

with a result of Adams on cusp volume [A1], to show that, for r outside a set of slopes of

the kind described, M(r) has a Riemannian metric of negative sectional curvature (and

is therefore hyperbolike).

Before giving more detailed bounds, we describe some examples of manifolds M with

relatively large values of e(M) and ∆(r, s), r, s ∈ E(M). These will all be of the form
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W (r) or W ′(r), obtained by Dehn filling on one of the boundary components of the

exterior of the Whitehead or Whitehead sister link.

First consider W ; recall that E(W ) = {∞, 0, 1, 2, 3, 4}. For these exceptional slopes,

the discussion in [HMW, Proposition 3] shows that W (∞) ∼= S1 ×D2, W (1), W (2) and

W (3) are Seifert fiber spaces with base D2 and two singular fibers, W (0) contains a

non-separating torus, and W (4) contains a Klein bottle. It follows that for any slope r,

if M = W (r) then M(∞) is a lens space or S3 or S1×S2, each of M(1), M(2) and M(3)

is either a small Seifert fiber space or a connected sum of two lens spaces, and M(0)

and M(4) contain a non-separating torus and Klein bottle, respectively. Hence E(M) ⊃

{∞, 0, 1, 2, 3, 4}. This gives infinitely many hyperbolic manifolds M with boundary a

torus having e(M) ≥ 6.

Similarly, we get infinitely many manifolds with e(M) ≥ 6 from the Whitehead sister

exterior.

Example (3). Let K be the figure eight knot. Then MK = W (−1). Note that since

K is amphicheiral, MK(−r) ∼= −MK(r), and in fact E(MK) = {∞, 0,±1,±2,±3,±4}.

Thus e(MK) = 10. Specifically, MK(∞) ∼= S3, MK(0),MK(±4) ∈ TOR, and MK(±1),

MK(±2), MK(±3) ∈ ESFS.

Example (4). M = W (5). Here E(M) = {∞, 0, 1, 4
3
, 3
2
, 2, 3, 4}. Thus e(M) = 8. The

nature of the manifolds M(r), r ∈ E(M), and the distances ∆(r, s), r, s ∈ E(M), are

shown in Figure 3.3. (Unlabelled distances are 1.)
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Example (5). M = W (−2). Here E(M) = {∞, 0,±1,±2, 3, 4}, so e(M) = 8. Specif-

ically, M(∞) ∈ CYC, M(±1),M(2),M(3) ∈ ESFS, M(0),M(−2),M(4) ∈ TOR.

Example (6). LetK be the (−2, 3, 7) pretzel knot. Then E(MK) = {∞, 16, 17, 18, 37
2
,

19, 20}, giving e(MK) = 7, as shown in Figure 3.4.
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Figure 3.4

Example (7). M = W (6). Then M(∞)∈ CYC, M(1)∈ RED, M(2)∈ FIN, M(3)∈

ESFS, M(0),M(4) ∈ TOR.

Example (8). Let Mn = W ( 1
n
), |n| > 1. Then Mn is the exterior of the n-twist knot

in S3. We have E(Mn) = {∞, 0, 1, 2, 3, 4}.

R ema r k s. (1) The determination of the exceptional fillings on the figure eight knot

exterior (Example (3)) is due to Thurston [T1].

(2) Example (4) is the figure eight sister manifold, studied in [We]. It is also home-

omorphic to W ′(5). It has the same volume as the figure eight knot complement. It is

proved in [BPZ] that E(M) ⊂ {∞, 0, 1, 4
3
, 3

2
, 2, 3, 4}. The fact that 4

3
and 3

2
∈ E(M) has

been verified by Hodgson and Weeks [HW] using snappea.

(3) For Example (5), the proof that the exceptional slopes are as stated is given in

[BPZ].

(4) Example (6) first appears (somewhat disguised) in [FS]. It turns out that MK =

W ′(1). The determination of the exceptional slopes has been done by Hodgson and Weeks

[HW] using snappea. For a discussion of the exceptional fillings, see [Eu2].

(5) Example (7) is given in [BZ2].

(6) In Example (8), the fact that there are no other exceptional slopes is proved in

[BW], using the Orbifold Geometrization Conjecture and snappea.

Using snappea, Hodgson has compiled a considerable amount of data concerning

Dehn fillings on hyperbolic 3-manifolds which can be decomposed into at most five ideal
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tetrahedra. In addition to Example (3), with e(M) = 10, Examples (4) and (5), with

e(M) = 8, and Example (6), with e(M) = 7, he has found seven other manifolds M , all

but one of the form W (r), with e(M) = 7. (Recall that there are infinitely many M with

e(M) ≥ 6.) In view of this data it is tempting to believe that these eleven manifolds are

the only ones with e(M) ≥ 7. In particular, the following is a natural conjecture, which

serves as a useful touchstone for results in this area.

Conjecture 3.3. Let M be a hyperbolic 3-manifold with boundary a torus. Then

e(M) ≤ 8 unless M is the figure eight knot exterior.

It does not seem too unrealistic to expect that the bounds described below can be

refined to at least prove this conjecture with e(M) replaced by e′(M).

With the above examples in mind, we now summarize what is known about the

possible distances between exceptional slopes.

If C1 and C2 are classes of non-hyperbolike 3-manifolds, let ∆(C1, C2) = max{∆(r1, r2) :

M(ri) ∈ Ci, i = 1, 2, for some hyperbolic 3-manifold M with ∂M a torus}. The following

table gives upper bounds for ∆(C1, C2) for the classes S3 (= {S3}), RED, CYC, FIN and

TOR.

S
3 RED CYC FIN TOR

S
3 0∗ 1 1∗ 2 2∗

RED 1∗ 1∗ ? 3∗

CYC 1∗ 2∗ ?

FIN 5 ?

TOR 8∗

Table 3.1

Rema r k s. (1) References for these bounds are: ∆(S3, S3) [GLu2]; ∆(S3,RED)

[GLu1]; ∆(S3,CYC) and ∆(CYC,CYC) [CGLS]; ∆(S3,FIN) and ∆(CYC,FIN) [BZ1];

∆(S3,TOR) [GLu4]; ∆(RED,RED) [GLu3], [BZ2]; ∆(RED,CYC) [BZ2]; ∆(RED,TOR)

[Oh1], [Wu2]; ∆(FIN,FIN) [BZ1]; ∆(TOR,TOR) [Go2].

(2) Those bounds marked with a * are best possible. Examples showing this are as

follows.

Example (7) shows that ∆(RED,CYC) = 1 and ∆(RED,TOR) = 3.

Example (6) shows that ∆(S3,CYC) = 1, ∆(S3,TOR) = 2, ∆(CYC,CYC) = 1 and

∆(CYC,FIN) = 2.

Example (3) (or (4)) shows that ∆(TOR,TOR) = 8.

Finally, an example is given in [GLi] which shows that ∆(RED,RED) = 1. (The

manifold M described there has an additional torus boundary component, after capping

off the 2-sphere boundary components with 3-balls. However, one can show that doing an

appropriate Dehn filling on this boundary component gives a hyperbolic manifold with a

single boundary component which still has two reducible fillings at distance 1.)
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(3) The conjectured upper bound for ∆(S3,RED) is 0 (see Conjecture 4.1 below).

Example (7) shows that ∆(RED,FIN) ≥ 1.

Example (6) shows that ∆(S3,FIN) ≥ 1.

Example (4) shows that ∆(CYC,TOR)≥ 3, ∆(FIN,FIN) ≥ 3, and ∆(FIN,TOR)≥ 5.

Since no worse examples are known, one expects that these are all equalities.

(4) Regarding ∆(RED,FIN), Boyer and Zhang have shown [BZ2] that ifM(r1) ∈ RED

and M(r2) ∈ FIN then ∆(r1, r2) ≤ 5 unless M(r1) ∼= P 3 #P 3 and π1(M(r2)) is a D-type

or Q-type group (see [BZ1]).

Also, Oh has shown [Oh2] that if M(r1) ∈ RED and M(r2) is a Seifert fiber space

with base S2 of type (2, 2, n) then ∆(r1, r2) ≤ 3.

(5) Regarding ∆(TOR,TOR), it is shown in [Go2] that if M(r1) and M(r2) ∈ TOR,

then ∆(r1, r2) ≤ 5 unless M = W (−1), W (5), W (5/2) or W (−2). In these cases, there

exist r1, r2 with M(r1) and M(r2) ∈ TOR such that ∆(r1, r2) = 8, 8, 7 and 6 respectively.

We may summarize the situation by saying that the above table gives quite good

bounds on the distances between exceptional slopes, except for those that correspond to

exceptional Seifert fiber spaces. In particular, the lack of good bounds in this case is the

main obstruction to proving (the weak form of) Conjecture 3.3. Note that Example (3)

shows that ∆(ESFS, S3) ≥ 1, ∆(ESFS,ESFS) ≥ 6, and ∆(ESFS,TOR) ≥ 7. Example (7)

shows that ∆(ESFS,RED) ≥ 2. Also, there are examples given by Hodgson and Weeks

in [HW] showing that ∆(ESFS,CYC) ≥ 2 and ∆(ESFS,FIN) ≥ 2.

The data suggests the following.

Conjecture 3.4. Let M be a hyperbolic 3-manifold with boundary a torus. If M is not

homeomorphic to W (−1), W (5), W (5/2) or W (−2), then ∆(r, s) ≤ 5 for all r, s ∈ E(M).

This would imply Conjecture 3.3.

The known manifoldsM with e(M) large are all “small.” For example, the Whitehead

and Whitehead sister link exteriors W and W ′ are conjecturally the manifolds with the

lowest volume among all hyperbolic 3-manifolds with two cusps (see [CHW]). Again,

volW (−1) = volW (5), volW (5/2), and volW (−2) are conjecturally the lowest, second

lowest, and third lowest volumes of hyperbolic 3-manifolds with one cusp [CHW].

The Whitehead and Whitehead sister links have tunnel number 1, so each of W and

W ′ can be obtained from a genus 2 handlebody by adding a 2-handle, in other words,

the Heegaard genus g(W ) = g(W ′) = 2. It follows that g(W (r)) ≤ 2 for all r, and

g(W (r)(s)) ≤ 2 for all r and s (and similarly for W ′). On the other hand, since the

Heegaard genus of a small Seifert fiber space is at most 2, one might expect that a

manifold M with several exceptional Dehn fillings of this kind should have g(M) = 2. In

this context it is interesting to note that Adams has shown [A2] that if g(M) > 2 then

in Theorem 3.2 the bounds of 24 and 22 can be replaced by 16.

For information on the behavior of Heegaard genus under Dehn filling see [MR].

4. Knots in the 3-sphere. In this section we make some remarks about the special

case of Dehn filling on the exterior MK of a hyperbolic knot K in S3. For further infor-

mation see the very nice survey article [Lu]. In this case we shall abbreviate MK(r) to
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K(r), E′(MK) to E′(K), etc. Note that ∞ ∈ E′(K), since K(∞) ∼= S3; hence e′(K) ≥ 1.

However, as we will discuss below, a picture is emerging which suggests that it might

eventually be possible to give a complete “list” of all knots K with e′(K) > 1.

So let K be a hyperbolic knot in S3 and suppose that r ∈ E′(K). We shall always

assume that r 6= ∞.

First consider the case when K(r) is reducible. The Cabling Conjecture [GS] asserts

that (allowing K to be arbitrary for the moment) K(r) is reducible for some r if and

only if K is a cable knot. Since this is known to be true if K is a satellite knot [Sch2],

the conjecture is equivalent to the following statement for hyperbolic knots.

Conjecture 4.1. K(r) is always irreducible.

This is known to be true for several classes of knots; for example, alternating knots

[MT], strongly invertible knots [Eu1], symmetric knots [HS], arborescent knots [Wu1],

and knots of bridge number at most 4 [Hof]. It is true if r = 0 [Ga1]; more generally,

if K(r) is reducible then it must have a lens space summand [GLu2]. It is also known

that if K(r) is reducible then ∆(r,∞) = 1 (see Table 3.1). However, a general proof of

the Cabling Conjecture continues to be elusive. It is one of the most interesting open

questions about Dehn surgery on knots.

Regarding the case when K(r) is toroidal, here we have ∆(r,∞) ≤ 2 (see Table 3.1).

There are many examples with ∆(r,∞) = 1 (see [Pat] for the case of alternating knots),

and it may be too ambitious to try to describe them all.

Eudave-Muñoz has described infinitely many examples with ∆(r,∞) = 2 [Eu2], and

asks if these are the only such examples. So we have

Conjecture 4.2. If K(r) is toroidal for some r with ∆(r,∞) = 2, then K is a

Eudave-Muñoz knot.

Eudave-Muñoz’ examples all have the following properties: K is strongly invertible

and has tunnel number 1, and if Kr denotes the core of the attached solid torus Vr in

K(r), then there is an incompressible torus T in K(r) such that |Kr ∩T | = 2, separating

K(r) into two Seifert fiber spaces with base D2 and two singular fibers. The following

theorem might therefore be regarded as evidence in favor of Conjecture 4.2.

Theorem 4.3 [GLu4], [GLu5]. If K(r) is toroidal with ∆(r,∞) = 2 then

(1) K is strongly invertible;

(2) K has tunnel number at most 2;

(3) there is an incompressible torus T in K(r) such that |Kr ∩ T | = 2;

(4) one component of K(r) cut along T is a Seifert fiber space with base D2 and two

singular fibers.

Concerning condition (3), Eudave-Muñoz [Eu3] has recently constructed examples

where K(r) is toroidal, with ∆(r,∞) = 1, such that the incompressible torus T in K(r)

with |Kr ∩ T | minimal has |Kr ∩ T | = 4.

Turning to the case when π1(K(r)) is finite cyclic, we have the bounds given in

Table 3.1. If π1(K(r)) is trivial, then it is known that K(r) cannot be S3 (see Table 3.1),
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but the following old Property P Conjecture [BM] is still open for hyperbolic knots (it is

true for non-hyperbolic knots by [Se] and [Ga2] (see also [Sch1])).

Conjecture 4.4. π1(K(r)) 6= 1.

It is a nice challenge to find a proof of this before someone proves the Poincaré

Conjecture.

For π1(K(r)) finite cyclic and non-trivial, Example (6) in Section 3 shows that the

relevant bounds given in Table 3.1 are best possible.

In this context there is a beautiful construction due to Berge [B2], which goes as

follows: Let X be a handlebody of genus 2 standardly embedded in S3, and let X ′ =

S3 −X be the complementary handlebody. Let K be a non-trivial knot in S3 which lies

on ∂X (= ∂X ′) in such a way that the manifold X(K) obtained by attaching a 2-handle

to X along K is a solid torus, and similarly for X ′. Then if r is the slope of the framing

of K induced from ∂X , it is easy to see that K(r) = X(K)∪X ′(K), and hence is a lens

space (it cannot be S1×S2 by [Ga1], nor S3 by [GLu2]). Berge has given a complete list

of such knots K, and has suggested

Conjecture 4.5. If K(r) is a lens space then (K, r) arises from Berge’s construction.

Dean [D] has studied a variant of Berge’s construction in which K is as before except

that one now insists that X ′(K), instead of being a solid torus, is a Seifert fiber space

(with base D2 and two singular fibers). Then K(r) (if irreducible) will be a small Seifert

fiber space.

Conjecture 4.6. If K(r) is a Seifert fiber space other than a lens space then (K, r)

arises from Dean’s construction.

Conjectures 4.5 and 4.6 would imply

Conjecture 4.7. If K(r) is a Seifert fiber space then it is a small Seifert fiber space.

In the direction of Conjecture 4.7, Boyer and Zhang have shown [BZ2] that if K(r) is

a Haken Seifert fiber space then ∆(r,∞) = 1.

Conjectures 4.5 and 4.6 also imply

Conjecture 4.8. If K(r) is a Seifert fiber space then ∆(r,∞) = 1.

Recall from Table 3.1 that it is known that ∆(r,∞) = 1 if K(r) ∈ CYC, and that

∆(r,∞) ≤ 2 if K(r) ∈ FIN.

Roughly speaking, the Cabling Conjecture, and Conjectures 4.2, 4.5 and 4.6, all say

that the existence of the exceptional filling in question has a relatively simple topological

explanation.

We note that Eudave-Muñoz knots, Berge knots, and Dean knots all have tunnel

number 1. On the other hand, Eudave-Muñoz and Luecke (unpublished) have constructed

knots K with arbitrarily high tunnel number such that K(r) is toroidal for some r with

∆(r,∞) = 1.

Finally, we remark that many interesting results on Dehn filling have been obtained

using the theory of laminations. We refer the reader to [Ga4] for a nice account of these,

and additional references.
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