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Abstract. A post-Newtonian approximation scheme for general relativity is defined using
the Arnowitt-Deser-Misner formalism. The scheme is applied to perfect fluids and point-mass
systems. The two-body point-mass Hamiltonian is given explicitly up to the post2.5-Newtonian
order.

1. Introduction. The Newtonian theory of gravity describes the motion of celestial

bodies with remarkably good precision. Only very precise measurements show deviations

from the Newtonian description. The Newtonian dynamics is therefore strongly expected

to define an excellent starting point for an approximation scheme of general relativity,

in situations for which the velocities of the bodies are small compared to the velocity of

light ((v/c)2 << 1). On the other, theoretical side, (3+1)-formalisms of general relativity

with elliptic constraint and hyperbolic evolution equations are closest to the elliptic-type

Newtonian theory. Therefore it seems natural to define post-Newtonian approximation

schemes in those formalisms. In the following we shall choose the Arnowitt-Deser-Misner

(ADM) Hamiltonian formalism of general relativity, [3], as one of the best-known and

fully developed (3+1)-formalisms and define a post-Newtonian approximation scheme in

that context. For post-Newtonian approximation schemes in other settings, e.g. see [8],

[9]; for a critical investigation of the Newtonian limit in the theory of general relativity,

see [15].

2. The ADM Hamiltonian of general relativity. In the ADM canonical formal-

ism of general relativity the Hamiltonian of the total system, H, is the most important

quantity. The Hamiltonian is defined on space-like three-dimensional, asymptotically flat

Cauchy hypersurfaces which in their asymptotic regions are covered by cartesian coordi-

nate systems. The Hamiltonian is conserved in time and it contains the full information
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about the field-plus-matter dynamics. H is given by, [3], [24],

H =

∫
d3x(Nh+N ihi) +

c4

16πG

∮
∞
d2si(γij,j − γjj,i), (1)

where

h =
(16πG)2

c6
πijGijklπ

kl − γ1/2 (3)R+
16πG

c4
γ1/2 nµT

µνnν (2)

denotes the so-called super Hamiltonian and

hi = −2γikDjπ
kj − πi (3)

the so-called super momentum.

The independent gravitational field variables in the Hamiltonian are the metric com-

ponents of the space-like hypersurfaces, γij := gij = gji (xi, with i = 1, 2, 3, are spatial

coordinates in the surfaces and x0 = ct is labelling the surfaces, c denotes the velocity of

light and t is a time parameter), and their canonical conjugate momenta, πij . The lapse

and shift functions, N := (−g00)−1/2 and N i := γijg0j , respectively, are Lagrangian mul-

tipliers. γ, (3)R, γij , and Dj denote, respectively, the determinant of the 3-metric, the

curvature scalar of a hypersurface, the inverse 3-metric, and the 3-dimensional covariant

derivative. Gijkl := 1
2γ
−1/2(γikγjl + γilγjk − γijγkl) can be regarded as a contravariant

metric in a 6-dimensional pseudo-Riemannian manifold with signature +4, [14]. G is

the Newtonian gravitational constant. The future-oriented unit normal vector of a hy-

persurface is denoted by nµ. Tµν is the symmetric stress-energy tensor of the matter.

The momentum density of the matter is given by πi = −c−1γ1/2nµTµi = c−1(−g)1/2T 0
i .

The surface integral in equation (1) is taken over the 2-sphere at infinity in a Cauchy

hypersurface.

If we take as model for the matter a barotropic perfect fluid, the stress-energy tensor

takes the simple form

Tµν = (e+ p)uµuν + pgµν , (4)

where e denotes the energy density in the rest frame of the fluid and p its pressure. The

time-like 4-velocity of the fluid, uµ, is normalized according to uµuνgµν = −1. gµν is the

space-time metric (µ, ν = 0, 1, 2, 3; metric signature: +2). The conservation law for the

baryonic mass number has the form Dµ(%uµ) = 0, where % denotes the baryonic mass

density and Dµ the 4-dimensional covariant derivative. The conserved baryonic mass

number, m∗, reads m∗ =
∫
d3x%∗, where, by definition, %∗ = −γ1/2%nµuµ = (−g)1/2%u0

holds. %∗ fulfils the continuity equation ∂t%
∗ + ∂i(%

∗vi) = 0, where the velocity vi is

defined by vi = cui/u0. Introducing the specific energy per unit baryonic mass, Π, which

depends on % only, the energy density and the pressure are given by e = %c2(1+Π/c2), p =

%2dΠ/d%.

If %∗ and πi are chosen as dynamical variables for the fluid, the equations of motion

read,

∂%∗

∂t
= −∂i(

δH

δπi
%∗), (5)

∂πi
∂t

= −∂s(
δH

δπs
πi)− ∂i(

δH

δπs
)πs − ∂i(

δH

δ%∗
)%∗, (6)
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where (δ...)/(δ...) denotes the Fréchet derivative and ∂i := ∂/∂xi. δH
δπi

= vi defines a

Legendre transformation to a Lagrangian description with %∗ and vi as independent fluid

variables, L =
∫
d3x(πiv

i + πij∂tγij)−H.

The equations of motion, (5) and (6), can be written also in terms of Poisson brackets,

so-called ‘Lie-Poisson’ (-‘Kirillov-Kostant’) brackets which are intimately related with the

3-dimensional diffeomorphism group of the Cauchy hypersurfaces, e.g. see [1], [17].

The Einstein field equations split into constraint equations,

h = 0 (Hamiltonian constraint), (7)

hi = 0 (momentum constraint), (8)

and evolution equations,

∂γij
∂t

=
δH

δπij
, (9)

∂πij

∂t
= − δH

δγij
. (10)

The Hamiltonian constraint is a generalization of the theorema egregium by Gauss and the

momentum constraint generalizes the Codazzi theorem of vanishing covariant divergence

of the extrinsic curvature. It is an important property of the constraint equations that

they are conserved in time, i.e. they commute with the Hamiltonian (1).

Within the full theory we may choose the following four coordinate conditions, [2],

corresponding to the Hamiltonian and momentum constraint, respectively, (i.e. the co-

ordinate conditions are, respectively, not invariant against the transformations generated

by the super Hamiltonian and super momentum, e.g. see [30]),

πijδij = 0, (11)

γij =

(
1 +

2πG

c2
φ

)4

δij +
16πG

c4
hTTij . (12)

hTTij , apart from a factor, denotes the part of the 3-metric which is transverse and traceless

in the flat-space metric δij (Kronecker’s δ). The canonical conjugate to (16πG/c4)hTTij
will be denoted by c−2 pTTij , i.e. pTTij = c2πTTij , where πTTij is the transverse-traceless

part of πij . The fields hTT (:= hTTij ) and pTT (:= pTTij) represent the “true” degrees of

freedom of the gravitational field. The fields hTT and pTT are scaled in such a way that,

in the limit of vanishing 1/c, they remain finite if generated by a slowly moving source

(v/c→ 0).

The application of the coordinate conditions, (11) and (12), to the field equations, (9)

and (10), result in elliptic-type equations for the lapse and shift functions (notice that

the coordinate conditions (12) are equivalent to 3∂jγij − ∂iγjj = 0). These equations

guarantee that the coordinate conditions hold at any instant of time during the dynamical

evolution, i.e. they commute with the Hamiltonian (1). Therefore, like the constraint

equations which determine through elliptic-type equations φ and the vector part of the

flat-space-traceless πij (πij = πTTij +∂iτ
j +∂jτ

i− δij∂lτ l+∇−2∂i∂j∂lτ l), the equations

for the lapse and shift functions can be solved for all instants of time.



46 G. SCHÄFER

The evolution equations for hTT and pTT read,

∂hTT

∂t
=

c6

16πG

δHred

δpTT
, (13)

∂pTT

∂t
= − c6

16πG

δHred

δhTT
. (14)

Hred denotes H if restricted to the space of functions which fulfil the constraint equations

and the coordinate conditions, i.e.

Hred = −c2
∫
d3x ∆φ = −c2

∮
∞
d2si ∂iφ = H[%∗, π, hTT , pTT ], (15)

(π := πi).

Now, in the equations of motion for the perfect fluid, (5) and (6), H gets substituted by

Hred. Notice also the reduced Lagrangian: Lred =
∫
d3x(πv+16πGpTT∂th

TT /c6)−Hred,

(v := vi).

For completeness we add the expressions for the total linear momentum and angular

momentum of the matter system,
∫
d3xπi and

∫
d3xεijkx

jπk, respectively, where εijk
denotes the Levi-Civita anti-symmetric tensor.

After solving the constraint equations, the metric components gµν are functionals of

the independent variables %∗, π, hTT , and pTT .

3.Post-Newtonian approximations in the ADMformalism. A series expansion

in powers of 1/c of the metric components and of the equations of motion of the matter

is called a post-Newtonian expansion of the theory.

In terms of the independent field and matter variables we are able to define a post-

Newtonian expansion of the metric tensor, [28],

c2g00(t, x) = −c2 +

∞∑
n=0

(
1

c2

)n
h
[n]
00 (x; [%∗(t), π(t), hTT (t), pTT (t)]), (16)

c g0i(t, x) =

∞∑
n=1

(
1

c2

)n
h
[n]
0i (x; [%∗(t), π(t), hTT (t), pTT (t)]), (17)

gij(t, x) = δij +

∞∑
n=1

(
1

c2

)n
h
[n]
ij (x; [%∗(t), π(t), hTT (t), pTT (t)]), (18)

(x :=xi). Here, the h
[n]
µν are the metric components at the postn-Newtonian order, i.e. n-th

post-Newtonian approximation. The components are determined by solely elliptic-type

equations in flat space. h
[0]
00 is minus two times the usual Newtonian potential. The field

variables hTT and pTT enter the metric components at the post2- and post3-Newtonian

approximations, respectively. As hTT and pTT vanish for spherically symmetric processes,

the post-Newtonian power expansions will exist in those situations to all orders.

The reduced Hamiltonian takes now the form,

Hred = c2
∫
d3x%∗ +

∞∑
n=0

(
1

c2

)n
H

[n]
red[%

∗, π, hTT , pTT ]. (19)
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In the following we shall always suppress the baryonic mass-energy c2
∫
d3x%∗ in the

reduced Hamiltonian as it drops out completely from the dynamics.

H
[0]
red is the Hamiltonian of the Newtonian theory. For our matter model, it simply

reads, [26],

H
[0]
red =

∫
d3x%∗Π(%∗) +

1

2

∫
d3x

π2

%∗
− 1

2

∫ ∫
d3xd3y

%∗(t, x)%∗(t, y)

|x− y|
, (20)

where |x− y| denotes the usual Euclidean distance between x and y.

H
[0]
red+ 1

c2H
[1]
red is the post1-Newtonian Hamiltonian. Up to this order no field variables

are involved. At the post2-Newtonian order, hTT is entering; at the post3-Newtonian level,

pTT is coming in, i.e. at this level the gravitational field starts evolving in time, [27]. It can

be shown that at the post2-Newtonian order the field variable hTT may be substituted

in the Hamiltonian completely by matter variables; see the post2-Newtonian two-body

Hamiltonian below.

A post-Newtonian expansion of the equations of motion, (5) and (6), is immediately

achieved by use of the Hamiltonian (19).

To further discuss the time evolution of the field variable hTT , we develop its field

equation into a second (differential-)order form wave equation,

(∇2 − ∂2

c2∂t2
)hTT (t, x) =

∞∑
n=0

(
1

c2

)n
DTT

[n] (x; [%∗(t), π(t), hTT (t), ∂th
TT (t)]). (21)

The functional DTT
[0] depends on %∗ and π only. It contains the full information about

the leading order quadrupole radiation. The whole information of the post1-Newtonian

wave generation is incorporated in DTT
[0] + 1

c2D
TT
[1] . DTT

[1] depends on %∗ and π, and on

hTT linearly.

The formal solution of equation (21), assuming the condition of no incoming radiation

from light-like past infinity (t+ r/c = b, t→ −∞, b = constant), uniquely reads,

hTT (t, x) = − 1

4π

∞∑
n=0

(
1

c2

)n ∫
d3

|x− y|
DTT

[n] (y; [%∗(u), π(u), hTT (u), ∂uh
TT (u)]), (22)

where u = t − |x − y|/c is the time at the source point y, represented in terms of the

retarded time t at the field point x. Obviously, a uniform expansion of equation (22) in

powers of 1/c is not feasible in general.

The solution of pTT is obtained by solving the equation (13) for pTT (Legendre trans-

formation for the gravitational field).

The solution (22) exists if its energy (numerical value of the Hamiltonian) is finite.

For this it is sufficient to check that the numerical value of the free-field part of the

Hamiltonian, Hrad, is finite. Hrad is given by

Hrad
red =

16πG

c4

∫
d3x[

1

4
(∇hTT )2 +

1

c2
(pTT )2]. (23)

An approximate treatment of equation (22) has shown that the gravitational field gener-

ated from freely infalling bodies has finite energy, to leading order at least, [25].

The explicit solution (22) can be constructed order by order in the ordering in n.

At any finite order a well-defined approximate solution can be expected if the starting
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approximate solution has finite energy. Nothing is known, however, about the convergence

of the series of approximate solutions if the independent variables depend on time. If they

do not depend on time, a convergent series can be expected, e.g. for stationary rotating

bodies. In stationary situations the solution for hTT is fully expressible in powers of

(1/c)2 as the independent variables do not depend on time. In non-stationary situations

one can try to expand the arguments of the independent variables in powers of 1/c,

either in the near zone, if one is interested in the equations of motion for the matter,

or in the far zone, if one is interested in the radiation. In the near zone, for fixed t,

this expansion is an expansion in powers of |x − y|/c, in the far zone, for fixed t − r/c,
it is an expansion in powers of y · n/c (notice: u = t − r/c + y · n/c + O(r−1)), where

n = x/r, r = |x|). However, already at the post4-Newtonian order, i.e. expansion of

DTT
[0] to the order c−4, those power-series expansions break down. If one is interested

in information beyond post3.5-Newtonian order one has to treat the independent field

varibles in their non-1/c-expanded form. Nevertheless, as the non-analytic terms in 1/c

belong more to the “phases” than to the “amplitudes” of the independent field variables,

it may happen that some final expressions are fully expandable in powers of 1/c if one

chooses the phases correctly, i.e. if the flat-space time parameter of the source, t− r
c , is

shifted to the true-space time parameter, t− r
c −

2MG
c3 ln( r

cα ), where M denotes the total

mass of the system and where the parameter α fixes the coordinate system in the far

zone, e.g. see [7]. Furthermore, to really know that the radiation comes from the source

only, the no-incoming radiation condition has to be checked with the true light-like past

infinity (t+ r
c + 2MG

c3 ln( r
cα ) = b, t→ −∞).

4. Energy balance considerations. Let us decompose the Hamiltonian into a part

which depends on matter variables only, but without the baryonic mass-energy, Hmat
red , a

part which depends on field variables only, Hfield
red , and an interaction part which vanishes

if either the matter or the field variables vanish, Hint
red. Then we get

Hred = Hmat
red [%∗, π] +Hint

red[%
∗, π, hTT , pTT ] +Hfield

red [hTT , pTT ]. (24)

By construction, Hred is conserved in time.

The power supplied by the matter system into the field, or vice versa, is given by (the

Hamiltonian which evolves the matter system is Hmat
red +Hint

red),

d(Hmat
red (t) +Hint

red(t))

dt
= −

dHfield
red (t)

dt
. (25)

(Notice, dtH
field
red = −∂tHint

red[%
∗, π, hTT (t), pTT (t)], which shows the importance of Hint

red

for the exchange of energy.)

The approximation of the balance equation (25) to first post-Newtonian order is given

by, considering dissipative terms only,

dH1pN
red (t)

dt
= −dH

rad
red (t)

dt
, (26)

where the post1-Newtonian Hamiltonian H1pN
red is identical with H

mat(1pN)
red and where

Hrad
red is given by equation (23). In some sense, Hrad

red could be denoted by H
field(1pN)
red .
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The dropped Hint
red is of the order (v/c)4; its leading order term reads,

H
int[4]
red = −8πG

∫
d3xhTTij [

πiπj
%∗

+
1

4πG
∂iU

∗∂jU
∗], (27)

where U∗ =
∫
d3y%∗/|x− y|.

If we average the equation (26) over several periods of the emitted wave it turns out

that only the wave zone contributes to the right side of the equation (26) if we postulate

a quasi stationary process which lasts longer than it takes time for the wave to reach the

wave zone. In the wave zone we may then use the homogeneous field equations which

result from Hrad
red , i.e.

∂hTT

∂t
= 2pTT ,

∂pTT

∂t
=
c2

2
∇2hTT . (28)

Assuming no-incoming radiation conditions, it is easily shown that the following re-

lation holds,

<
dHrad

red (t)

dt
>t=

8πG

c5

∮
w.z.

< (∂th
TT (t))2 >t r

2dΩ, (28)

where < ... >t denotes the time average over several periods of the wave. As a result

we find that the enery loss in the matter system appears as radiation power in the wave

zone (w.z.). Notice that through our assumption of quasi-stationarity we were able to

treat the whole radiation emission problem in a small sandwich (with a width of a few

periods of the wave) of space-like hypersurfaces. As in the wave zone the Hamiltonian of

the gravitational field is always given by Hrad
red the generalization of our energy balance

treatment to the full dynamics is straightforward.

For the losses of linear momentum and angular momentum similar considerations hold.

Here, corresponding to equation (25), the time derivative of the momentum constraint

(8) comes in. The explicit wave zone expressions can be found, e.g. in [31].

5. Post2.5-Newtonian two-body point-mass Hamiltonian. The simplest model

for an astrophysical two-body system are two non-spinning point-like masses interacting

gravitationally. Although point-like objects do not exist in general relativity – black holes

are the most compact objects, and they are extended – the model can be used in ap-

proximate calculations as long as no inconsistencies occur. Calculations have shown that

the property of being “point-like” might already be invalidaded at the post3-Newtonian

order, [21], latest, however, at post5-Newtonian order, [8]. It is a remarkable property of

the Einstein theory that up to the post2.5-Newtonian approximation, as well as at the

post3.5-Newtonian order, well-separated compact objects can be treated as “point-like”

with only mass parameters entering the equations of their external motion. This property

is sometimes called the “effacement” of the internal structure in the external problem,

[8], [9].

The point-mass model results from the fluid-matter model in putting Π = p = 0 and

setting %∗(t, x) = Σamaδ
3(x−xa(t)) and πi(t, x) = Σapaiδ

3(x−xa(t)), where ma, xia, and

pai are mass parameter, position vector, and linear momentum of body a, respectively.

After regularization of the gravitational potentials and of the Hamiltonian, respectively

the equations of motion, it turns out that ma are the rest masses of the bodies. Powerful
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methods to achieve the regularization are Hadamard’s “partie finie” and Riesz’s analytic

continuation procedure; for applications, e.g. see [25] and [8], respectively; for details,

see the contribution by P. Jaranowski, in these proceedings.

For point masses the equation of motion (5) and (6) translate, respectively, into the

equations

dxia
dt

=
∂H

∂pai
, (30)

dpai
dt

= − ∂H
∂xia

. (31)

In the coordinate system introduced above, the Hamiltonian Hmat
red +Hint

red, up to the

post2-Newtonian approximation, appears as follows, the additive constant (m1 + m2)c2

being dropped, [12],

H2pN
red (x, p1, p2) =

1

2

(
p21
m1

+
p22
m2

)
− Gm1m2

r
− 1

8c2

(
p41
m3

1

+
p42
m3

2

)
+
G2(m1 +m2)m1m2

2c2r2
+
Gm1m2

8c2r

[
−12

(
p21
m2

1

+
p22
m2

2

)
+ 28

(p1 · p2)

m1m2

+4
(n · p1)(n · p2)

m1m2

]
+

1

16c4

(
p61
m5

1

+
p62
m5

2

)
− G3m1m2(m2

1 +m2
2 + 5m1m2)

4c4r3

+
Gm1m2

8c4r

[
5

(
p41
m4

1

+
p42
m4

2

)
− 11

p21p
2
2

m2
1m

2
2

− 2
(p1 · p2)2

m2
1m

2
2

+5
p21(n · p2)2 + p22(n · p1)2

m2
1m

2
2

− 12
(p1 · p2)(n · p1)(n · p2)

m2
1m

2
2

−3
(n · p1)2(n · p2)2

m2
1m

2
2

]
+
G2m1m2

4c4r2

[
m2

(
10

p21
m2

1

+ 19
p22
m2

2

)
+m1

(
10

p22
m2

2

+ 19
p21
m2

1

)
− (m1 +m2)

27(p1 · p2) + 6(n · p1)(n · p2)

m1m2

]
, (32)

where x = x1−x2, r = |x|, and n = x/r hold. For the obtention of the Hamiltonian (32)

the solution of the equation for the field variable hTT was needed in leading order, [22].

We remark that in harmonic coordinates, at the post2-Newtonian approximation,

an ordinary Hamiltonian is not achieveable. In harmonic coordinates the two-body dy-

namics is most easily formulated on the equations of motion level ([8], [21]). At the

post2-Newtonian level of approximation the corresponding Lagrangian contains higher

time derivatives of the position variables [8], [11], [16], [10]. This leads to a constraint

Hamiltonian system, e.g. see [13].

The near-zone expansion of hTT to order 1/c yields the part of the Hamiltonian which,

to leading order, is responsible for the back-reaction of the emitted gravitational waves.

It takes the form, [28],

Hreac
red (x, pa, t) = −16πG

c4
h
TT (reac)
ij (t)

(
p1ip1j
2m1

+
p2ip2j
2m2

−Gm1m2
xixj

2r3

)
, (33)
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where a = 1, 2 and where hTT (reac) reads

h
TT (reac)
ij (t) = − 1

20πc

d3

dt3
Qij(t). (34)

Qij is the usual Newtonian mass-quadrupole tensor for the matter system, Qij = m1(xi1x
j
1

−(1/3)δij |x1|2) + m2(xi2x
j
2 − (1/3)δij |x2|2) . The dissipation property of the reaction

Hamiltonian, equation (33), has its origin in the time-asymmetry of hTT (reac).

The reaction Hamiltonian adds up with the post2-Newtonian Hamiltonian, equation

(32), to give the post2.5-Newtonian two-body Hamiltonian,

H2.5pN
red (x, pa, t) = H2pN

red (x, pa) +Hreac
red (x, pa, t), (35)

where a = 1, 2. The Hamiltonian H2.5pN describes the motion of a two-body point-mass

system in general relativity up to the first radiation reaction level.

Explicit solutions for the dynamics defined by the conservative Hamiltonian (32) are

given in [12], [29], and [32]. The energy and angular momentum losses related with the

dissipative Hamiltonian (33) have been treated in [23] already many years ago. Energy

and angular momentum losses in general binary systems are known up to the order 1/c7,

[6], [20]. Recently, for circular orbits, energy losses at the orders 1/c9, [5], and 1/c10,

[4], have been obtained. The two-body equations of motion are known in the dissipative

part up to the post3.5-Newtonian level, [18]; the dissipative n-body Hamiltonian at the

post3.5-Newtonian level has been derived only quite recently, [19].
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[20] W. Junker, G. Schä fer, Binary systems: higher order gravitational radiation damping
and wave emission, Mon. Not. R. astr. Soc. 254 (1992), 146–164.

[21] S. M. Kopejkin, General-relativistic equations of binary motion for extended bodies, with
conservative corrections and radiation damping, Sov. Astron. 29 (1985), 516–524.

[22] T. Ohta, H. Okamura, T. Kimura, and K. Hiida, Coordinate condition and higher
order gravitational potential in canonical formalism, Progress of Theoretical Physics 51
(1974), 1598–1612.

[23] P. C. Peters, Gravitational radiation and the motion of two point masses, Phys. Rev.
136 (1964), B1224–B1232.

[24] T. Regge and T. Teite lboim, Role of surface integrals in the Hamiltonian formulation
of general relativity, Annals of Physics 88 (1974), 286–318.
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