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1. Introduction. Pulsating stars are important sources of information for astrophy-

sics. Nearly every star undergoes some kind of pulsation from the early stages of its

formation until the very late ones i.e. the catastrophic creation of a supercompact ob-

ject (white dwarf, neutron star or black hole). Pulsations of supercompact objects are of

great importance for relativistic astrophysics since these pulsations are accompanied by

the emission of gravitational radiation. In this review we shall discuss various features

of neutron star pulsations i.e. the various modes of pulsation, mode excitation, detection

probability and the possibility to extract information (to estimate, for example, the ra-

dius, mass and stellar equation of state) from the detection of the associated gravitational

waves.

2. Excitation mechanisms. It is well known in astrophysics that many stars will

end their lives with a violent supernova explosion. This will leave behind a compact ob-

ject which will oscillate violently in the few first seconds. Huge amounts of gravitational

radiation will be emitted and the initial oscillations will consequently damp out. The gra-

vitational waves will carry away information about the compact object. If the supernova

remnant is a black hole we will observe a short monochromatic burst lasting a few tenths

of a millisecond, while if it is a neutron star we will observe a more complicated signal

which will be the overlapping of several frequencies. The stellar signal will consist of a

short burst (similar to that from a black hole) followed by a long lasting sinusoidal wave.

The characteristics of such a signal will be discussed in the following chapters. Supernovae

are quite frequent, the expected event rate is 5.8 ± 2.4 events per century per galaxy [30].

The amount of energy emitted in such an event depends on the details of the collapse.

A spherical collapse will not produce any gravitational waves at all, while as much as
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10−3M⊙c
2 can be radiated away in a highly non-spherical one. The present numerical

codes used to simulate collapse predict that the energy emitted as gravitational waves

will be of the order of 10−4 − 10−6M⊙c
2 [8]. However, most of these codes are based on

Newtonian dynamics and the few fully general relativistic ones are not 3-dimensional.

For example, most of the codes fail to explain the high average pulsar velocity which is

believed to be a result of a boost that the neutron star gets during the collapse due to

anisotropy in the neutrino distribution [10].

Although collapse may be the most frequent source for excitation of stellar oscillations

there are other situations in which significant pulsations take place. For example, after

the merger of two coalescing neutron stars it is natural to expect that the final object

will oscillate. Thus the well known waveform for coalescing binaries will be followed by

the characteristic signal of the newly created compact object. In the same way smaller

bodies falling on a neutron star or black hole will excite oscillations, and oscillations on

a neutron star can be excited by a close encounter with another star.

To obtain rough estimates for the typical gravitational-wave amplitudes from a pul-

sating star we use the standard relation for the gravitational-wave flux [26]

F =
c3

16πG
|ḣ|2 =

1

4πr2
dE

dt
, (1)

which is valid far away from the star. Combining this with i) dE/dt = E/2τ where τ is

the e-folding time of the pulsation and E is the available energy ii) the assumption that

the signal is monochromatic (with frequency f) and iii) the knowledge that the effective

amplitude achievable after matched filtering scales as the square-root of the number of

observed cycles: heff = h
√
n = h

√
fτ , we get the estimates

heff ∼ 3× 10−21

(

E

10−6M⊙c2

)1/2 (
2kHz

f

)1/2 (
50kpc

r

)

, (2)

for the f -mode, and

heff ∼ 1× 10−21

(

E

10−6M⊙c2

)1/2 (
10kHz

f

)1/2 (
50kpc

r

)

, (3)

for the fundamental w-mode. Here we have used typical parameters for the pulsation

modes, and the distance scale used is that to SN1987A. In this volume of space one would

not expect to see more than one event per ten years or so. However, the assumption that

the energy release in gravitational waves in a supernova is of the order of 10−6M⊙c
2 is

very conservative [26].

An important factor for the detection of gravitational waves is the pulsation mode

frequencies. Existing resonant gravitational wave detectors, as well as the laser interfero-

metric ones which are under construction, are only sensitive in a certain bandwidth. The

bar detector are typically tuned to 1-3 kHz, while the interferometers are sensitive within

10-1000 Hz. The initial burst-like part of the waveform which carries away whatever de-

formation a collapse left in the spacetime is expected to be in the frequency range of 8-10

kHz. This is well away from the sensitivity of any resonant detector in operation. The

sinusoidal part of the waveform which follows will be in the frequency range of 1.5-6 kHz
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(for the fundamental and the first p-mode of the star). These pulsations are consequently

well suited for detection by the existing resonant detectors.

3. Stellar pulsations: the theoretical minimum. For the study of stellar oscilla-

tions we shall consider a spherically symmetric static spacetime which can be described

by the Schwarzschild solution both inside and outside the star. If we assume a small

variation in the fluid or/and in the spacetime we must deal with the perturbed Einstein

equations

δ

(

Gµ
ν − 8πG

c4
T µ
ν

)

= 0 (4)

and the variation of the conservation of the mass and the momentum of the fluid

δ
(

T µ
ν;µ

)

= 0 (5)

The perturbed metric will be

gµν = g0µν + hµν (6)

where g0µν is the unperturbed metric and hµν << 1. By analyzing the above system

of equations we can rewrite the whole problem as two coupled wave equations, which

symbolically can be written:
(

1

C2
s

∂2

∂t2
− ∂2

∂r2∗

)

W + F (W ′,W,Z ′, Z; ℓ) = 0 (7)

(

1

c2
∂2

∂t2
− ∂2

∂r2∗

)

Z +G(W ′,W,Z ′, Z; ℓ) = 0 . (8)

Here Cs is the sound speed and r∗ the tortoise radial coordinate. To analyze these two

equations we assume a harmonic time dependence Z,W ≈ exp iωt. We also need to

introduce suitable boundary conditions. These are (i) regular behaviour of all functions

at the center of the star, (ii) vanishing of the lagrangian variation of the pressure at the

surface and (iii) no incoming waves from infinity. This then formulates an eigenvalue

problem, in which the eigenvalues are the frequencies ω of the oscillation. Each of the

two wave equations describes the motion of one of the two components of the system,

the fluid and the spacetime. The first equation describes the fluid perturbation. That is,

W can be δp or δρ (δ stands for lagrangian variation), or one of the components of the

fluid displacement vector, or any combination of these quantities. The second equation

describes the perturbation of the spacetime. In this case Z can be either htt or hθθ

or a combination of them. Thus we expect that equation (7) will describe mainly the

fluid oscillations while (8) corresponds to the spacetime ones. This can easily be seen in

two limiting cases. Let us first assume that the gravitational field is very weak. Then

equation (8) can be omitted and we can find that one equation is enough to describe

(with acceptable accuracy) the oscillations of the fluid (Cowling approximation [12]). In

the alternative case we assume that the coupling between the two equations is weak and

can consequently derive all the features of the spacetime perturbations from equation (8)

(Inverse Cowling Approximation [5]).

The decomposition of the above system of equations into tensor spherical harmonics

leads to two classes of oscillations according to the parity of the harmonics. The first
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ones called even (or spheroidal or polar) produce spheroidal deformations on the fluid,

while the second are the odd (or toroidal or axial) which produce toroidal deformations.

If rotation and shear stresses are absent, the odd parity oscillations are degenerate in the

Newtonian limit. In the relativistic case they don’t produce any fluid deformations at all.

Instead they produce a non-varying continuous rotation in the fluid.

4. Normal mode analysis. The study of stellar oscillations in a general relativis-

tic context has already a history of 30 years. Nevertheless, recent results have shown

remarkable features which had previously been overlooked. Until recently most studies

treated the stellar oscillations in a nearly Newtonian manner, thus practically ignoring

the dynamical properties of the spacetime. The spacetime was used as the medium upon

which the gravitational waves produced by the oscillating star propagate.

Inspired by a simple but instructive model [21] Kokkotas and Schutz [22] showed the

existence of a new family of modes: the w-modes. These are clearly spacetime modes and

their properties, althought different, are closer to the black-hole normal modes than to the

standard fluid stellar modes. The main characteristics of the w-modes are high frequencies

accompanied with very rapid damping. Furthermore, these modes hardly excite any fluid

motion. The existence of these modes has been verified by subsequent work [23], [4] and

it has been shown that they exist also for axial oscillations [20]. Moreover, subfamilies

of w-modes have been found for both the polar and axial oscillations i.e. the interface

[23], [3] and the trapped modes [11], [19], [3]. Recently, it has been proven that one can

reveal all the properties of the w-modes even if one “freezes” the fluid oscillations (Inverse

Cowling Aproximation) [5]. In the rest of this section we shall describe the features of

both families of oscillation modes.

4.1. Families of fluid modes. The fluid modes exist only for even parity oscillations.

Here we will describe the properties of the most important modes for gravitational wave

emission. These are the fundamental, the pressure and the gravity modes. For an extensive

discussion of other families of fluid modes we refer the reader to [17]

• The f -mode (fundamental) is a stable mode which exists only for non-radial os-

cillations and describes surface waves. The frequency is proportional to the mean

density of the star and it is nearly independent of the details of the stellar structure.

Its eigenfunctions have no nodes inside the star, and they grow towards the surface.

The f -mode is due to the interface between the star and its surroundings. A typical

neutron star has an f -mode with a frequency of 1.5-3kHz and the damping time of

this oscillation is less than a second.

• The p-modes (pressure or acoustic) exist for both radial and non-radial oscillations.

There are infinitely many of them. The pressure is the restoring force and it expe-

riences substantial fluctuations when these modes are excited. Usually, the radial

component of the fluid displacement vector is significantly larger than the tangential

component. The oscillations are thus nearly radial. The frequencies depend on the

travel time of an acoustic waves across the star. For a neutron star the frequencies

are typically higher than 4-5kHz (p1-mode) and the damping times are of the order

of a few seconds (they increase with the order of the mode).
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• The g-modes (gravity) arise because gravity tends to smooth out material inho-

mogeneities along level-surfaces with U = constant. The g-modes need non-zero

temperature to exist, and if they exist there are infinitely many of them. These

modes correspond to very small changes in pressure along the star. Usually, the

tangential components of the fluid displacement vector are dominant in the fluid

motion. The g-modes are all degenerate at zero frequency for a star in convection

and they can be unstable. For typical neutron stars they have frequencies smaller

than a few hundred Hz (the frequency decreases with the order of the mode), and

they usually damp out in time longer than a few seconds. The g-mode oscillations

can, in fact, even last a few minutes.

4.2. Families of spacetime or w-modes. The three known families of w-modes have

exactly the same behaviour both for even and odd parity stellar oscillations.

• The curvature modes are the standard w-modes. They are the most important for

astrophysical applications [22]. They are clearly related to the spacetime curvature

[2] and exist for all relativistic stars. Their main characteristic is the rapid damping

of the oscillations. The damping rate increases as the compactness of the star de-

creases: For nearly Newtonian stars these modes cannot be calculated numerically.

One of their main characteristics is the absence of significant fluid motion (this is

a common feature for all families of w-modes). Numerical studies have shown the

existence of an infinite number of modes. For a typical neutron star the frequency

of the first w-mode is around 8-12 kHz and it increases with the order of the mode.

Meanwhile the typical damping time is of the order of a few tenths of a millisecond

and decreases slowly with the order of the mode.

• The trapped modes, exist only for supercompact stars (R/M ≤ 3) i.e. when the

surface of the star is inside the peak of the gravitational field’s potential barrier

[11],[20]. They do not induce any significant fluid motions and there is only a finite

number of them (usually less than seven or so). The number of trapped modes

increases as the potential well becomes deeper, i.e. with increasing compactness of

the star. Their damping is quite slow since the gravitational waves have to penetrate

the potential barrier. Their frequencies can be of the order of a few hundred Hz to a

few kHz while their damping times can be of the order of a few tenths of a second.

In general no realistic equations of state are known that would allow the formation

of a sufficiently compact star for the trapped modes to be relevant.

• The interface modes [23] are extremely rapidly damped modes. It seems that

there is only a finite number of such modes (2-3 modes only) [3]. They are in some

ways similar to the modes for acoustic waves scattered of a hard sphere. They do

not induce any significant fluid motion and their frequencies can be from 6 to 15

kHz for typical neutron stars.

5. Estimation of the stellar parameters. For astronomy it is important not only

to observe various astronomical phenomena but also to try to mine information from

these observations. From the observations of solar and stellar oscillations (normal stars)
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Figure 1: A graph which shows all the w-modes: curvature, trapped and interface both for

axial and polar perturbations for a very compact uniform density star with M/R = 0.44. The

black-hole spectrum is also drawn for comparison. As the star becomes less compact the number

of trapped modes decreases and for a typical neutron star (M/R = 0.2) they disappear. The

Im(ω) = 1/damping of the curvature modes increases with decreasing compactness and for

a typical neutron star the first curvature mode nearly coincides with the fundamental black-

hole mode. The behaviour of the interface modes changes slightly with the compactness. The

similarity of the axial and polar spectra is apparent.

astronomers have managed to get details of the internal structure of the star. Now the

GONG program [18] for detailed observation of the solar seismology is well underway.

These ideas have prompted us to examine the possibility of getting information about the

neutron star parameters (mass, radius) and internal structure from possible detections

of gravitational waves from a pulsating neutron star.

It will be instructive to briefly examine the case of oscillating black holes since they

are much “cleaner” objects than stars. From the normal mode analysis of black hole

oscillations we can get a spectrum which is related to the parameters of the black hole

(mass and angular momentum) using the following empirical relations [14, 15] for the

frequency

ω =
1

2πM

[

1− 63

100
(1− a)3/10

]

(9)

and the damping time of the oscillations

τ =
4M

(1 − a)9/10

[

1− 63

100
(1− a)3/10

]−1

(10)
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Here M is the black hole mass and a is the angular momentum (in geometrical units).

We should point out here that only the fundamental mode of oscillation contributes; the

high-order black-hole modes are insignificant because of their extremely rapid damping.

A similar set of empirical relations cannot be derived in the case of neutron star

oscillations since the stars are not as “clean” as black holes. For example there is no unique

way of connecting the mass with the radius since the details of the stellar structure are

involved. Additionally, more than one frequency contributes. Although we expect that

most of the dynamical energy stored in the fluid oscillations will be radiated away in

the f -mode, some of the p-modes may be excited as well and a significant amount of

energy could be radiated away through these modes [1]. As far as the spacetime modes

are concerned we expect that only the curvature modes (the standard w-modes) will be

excited but it is possible that the radiated energy can be shared between the first 2-3

w-modes [1].

However, it is possible to derive relations similar to (9) and (10) for the frequencies

and the damping times of the various families of modes. From such relations (since we

will have more than two of them) we can put strong constraints on the equation of state.

In order to get such relations one must calculate the normal mode frequencies for the

fluid and spacetime modes for different equations of state. But in order to get the correct

relation between the stellar parameters and the frequencies one should understand the

nature of each family of modes and normalize them accordingly. In the following we shall

give some hints to how this can be done.

As has been mentioned earlier the characteristic pulsation time of the f -mode is

proportional to the mean density of the star. This is clear from the following qualitative

relations

Tf ∼ R

v̄
∼ R

(M/R)1/2
∼

(

R3

M

)1/2

∼ 1

ρ̄1/2
(11)

where v̄ is the average speed of sound. In the same way we can get for the damping time

of the f -mode that

τf ∼ Lint

LGW
Tf ∼ Tf

Lint
∼ Tf

Ekin/Tf
∼

(

R

M

)3

R (12)

where Lint is the internal power flow and LGW the power output in gravitational waves

[25].

For the frequency of the w-modes we do not have any similar relation. We can only

say that the order of the mode is inversely proportional to the radius of the star

ωw ∼
(

n+
1

2

)

π

R
(13)

But although this is not very encouraging it can be useful in identifying the stellar

equation of state.

Finally, a very useful relation can be derived from the observation that the damping

times of the w-modes are proportional to the compactness of the star i.e.

τw ∼ M

R
(14)
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Table 1

Using the relations (15), (17), and (16) we estimate the masses and the radii for polytropic stars

with N=0.8, 1, 1.2. The errors of these estimates are shown. The notation ωf -τw (etcetera)
means that we use the frequency of the f -mode, eqn (15), and the damping of the w-mode, eqn
(16), to approximate the stellar parameters.

N R ωf - τw ωf - τf M/M⊙ ωf - τw ωf - τf
(Km) error % error % error % error %

0.8 10.026 .96 .95 1.084 6.30 .76
0.8 9.493 1.02 1.08 1.357 1.46 7.46
1.0 8.863 5.98 7.72 1.266 8.72 13.69
1.0 7.415 .99 .31 1.351 .43 1.63
1.2 12.771 4.34 5.10 1.237 4.26 1.80
1.2 8.968 5.18 3.46 1.459 1.54 7.16

Using data for a set of stars with seven different equations of state, we have derived

several empirical relations . The compactness M/R of the considered stars lies in the

interval 0.15-0.30. For the f -mode frequency we find that

ωf(kHz) ≈ 0.247 + 2.195

(

M̄

R̄3

)1/2

, (15)

while the damping rate of the w-mode behaves as (τω is the e-folding time of the pulsation)

1

τw
(MHz) ≈ 103.7− 63.5

(

M̄

R̄

)

(16)

Finally, the f -mode damping is

1

τf
(Hz) =

(

M̄3

R̄4

)

[

31.63− 31.28

(

M̄

R̄

)

+ 7.58

(

M̄

R̄

)2
]

(17)

where M̄ = M/(1.4M⊙) and R̄ = R/(10km).

This idea seems promising and is simple enough, but will it be useful in practice?

Let us give an example for stars with polytropic equations of state: We have constructed

a set of independent polytropic stellar models (p = Kρ1+1/N ) with varying polytropic

index (N = 0.8; 1; 1.2). We have determined the f -mode and the slowest damped polar

w-mode for each of these models. This data represents the “observed” gravitational-wave

signal. Then we used the empirical relations (15), (17) and (16) to estimate the mass and

radius of each star. Finally, the resulting values were compared to the true ones. The

results of this comparison — shown in Table 1— clearly demonstrate the robustness of

the empirical relations: The error is usually smaller than 10%.

The presented results provide the first step towards a full discussion of this problem.

Much future work is required before definite conclusion about the usefulness of the propo-

sed scheme can be drawn. It is important to incorporate the estimated effect of statistical

and measurement errors in the analysis. Early results [7] show that these effects add an

error in the calculation of radius and mass of the star which is less than a few percent for
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Figure 2: Data for 33 stellar models and seven equations of state (as defined in [24]) are plotted.

We show (A) the pulsation frequency of the f -mode as a function of the average density, (B) the

e-folding time for the f -mode as a function of the stellar compactness, (C) the frequency of the

w-mode as function of the stellar compactness, (D) the e-folding time for the slowest damped

w-mode as a function of the stellar compactness (dimensionless).

stars in our galaxy. For this work to be complete it is important to obtain fits similar to

(15), (17) and (16) for a larger number of realistic EOS. Nevertheless, it seems likely that

the general principle discussed here will not be significantly changed by the inclusion of

data from further equations of state. Moreover, if the star is rotating the mode-spectrum

changes and the degree of deviation from the non-rotational case can then help us estimate

the rotation rate of the star just as for the black-hole case [15]. This is an interesting

prospect for the future.

6. Exciting the stellar modes. The discussion in the previous sections has shown

that we have an acceptable knowledge of stellar pulsations and that we can extract

information from the detection of such oscillations. But as was clear from the discussion

in section 2, the energy released as gravitational radiation during the stellar collapse is

basically unknown. Additionally, it is not known how the energy is distributed in the

various fluid and spacetime modes. Both uncertainties depend stongly on the details

of gravitational collapse, or in general the mechanism that excites the modes. Unless

full 3D general relativistic codes are generated for the gravitational collapse or the final
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stages of binary coalescence we will never be able to give definite answers to the above

questions. In the meantime, perturbation theory is a reliable way to get some first hints

and indications. It should certainly be able to tell us which of the modes can be excited.

Recently, Andersson and Kokkotas [6] have studied the excitation of odd parity or

axial modes by sending gravitational wave pulses to hit the star. The results of this study

are encouraging because they provide the first indication that the w-modes can be excited

in a dynamical scenario. Similar results have recently been obtained by Borelli and Ferrari

[9]. They study the excitation of the axial modes due to particles falling towards the star.

These results have prompted the study of an astrophysically more relevant problem;

the excitation of even parity (or polar) stellar oscillations. In recent work Allen et al [1]

have studied the excitation of the polar modes using two sets of initial data. First, as

previously for the axial case, they excited the modes by an incoming gravitational wave

pulse. In the second case, the initial data described an initial deformation of both the

fluid and the spacetime. In the first case the picture was similar to that of the axial modes

i.e. the star was excited and emitted gravitational waves in both w and the fluid modes.

Nearly all of the energy was radiated away in the w-mode frequencies. This should be

expected since the incoming pulse does not have enough time to couple with the fluid

(which has a much lower speed of propagation of information). The infalling gravitational

waves are simply affected by the spacetime curvature associated with the star, and the

outgoing radiation contains an unmistakable w-mode signature. In the second case one

has considerable freedom in choosing the degree of initial excitation of the fluid and

the spacetime. In the study the choice was some “logical” initial data inspired by the

treatment of the problem in the Newtonian limit. Then the energy emitted as gravitational

waves was more evenly shared between the fluid and the spacetime modes, and one could

see the f , p and w modes in the signal. The characteristic signal was (as expected) a

short burst (w-modes) followed by a slowly damped sinusoidal wave (fluid modes).

These new results show the importance of general relativity for the calculation of the

energy emission in violent processes. Up to now the general way of calculating the energy

emission has been the quadrupole formula. But it only accounts for the fluid deformations

and motions, and as we have seen this accounts only for part of the total energy.

7. Conclusions. From the previous discussion we can draw some general conclusions

and suggestions for future work

7.1. From Perturbation Theory we will expect to (i) complete the statistics and to

improve the empirical relation including all available EOS. This will be of great impor-

tance if we will ever be in a position to analyze gravitational-wave signals from neutron

stars. (ii) to include in the empirical relations the effects of rotation.

7.2. From Numerical Relativity we will expect (i) to enhance the results of [1] by

providing initial data for stellar collapse in ways similar to the pioneering work of [13, 27,

28, 29]. (ii) to produce 3D general relativistic codes for both the stellar collapse and the

final stages of binary coalescence (iii) to explain in detail the observed high velocities of

pulsars, the conditions under which these high velocities have been achieved during the

collapse and the way that they are connected to the gravitational wave emission.
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7.3. The Detectors have to be improved. Specifically they must become sensitive in a

larger bandwidth: Most present detectors operate in the 1-3kHz regime while for example

the w-modes are in the 8-12 kHz regime [16]. We also need detectors to cover the whole

bandwidth from 1-10kHz i.e. a gravity Xylophone.

I thank G. Allen and N. Andersson for useful comments and discussions. The financial

support from Max-Planck is greatfully acknowledged. This work was supported by an

exchange program from the British Council and the Greek GSRT.
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