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Institute of Theoretical Physics, University of Warsaw,
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Several different astrophysical sources of gravitational radiation have been discussed

at this workshop. I would like to briefly review expected properties of the cosmological

background of gravitational waves. Let me however begin with a general introduction.

After formulating the general theory of relativity Albert Einstein showed that in the

weak field approximation equations of general relativity possess wave like solutions. Let

the background spacetime be the Minkowski spacetime parametrized by the Cartesian

coordinates, then

ηαβ = Diag||+ 1,−1,−1,−1||, (1)

where α, β = 0, 1, · · · , 3. Slightly perturbed Minkowski spacetime will be described by the

metric tensor

gαβ(x
µ) = ηαβ + hαβ(x

µ), (2)

where hαβ(x) ≪ 1 represent small perturbations. Using the standard definition of the

Ricci tensor and keeping only terms linear in h we obtain

Rαβ =
1

2
(−ηγδhαβ,γδ + hα

γ ,γβ +h
γ
β ,γα −h,αβ), (3)

where h = hαβη
αβ , hα

γ = ηγβhαβ . Using still existing coordinate freedom xµ → xµ +

ξµ(x), where ξµ are assumed to be small, we can impose the following gauge conditions

hα
β
,β = 0; h = hαβη

αβ = 0, (4)

and require that

hαβu
β = 0, for uαu

α = 1. (5)

This gauge is called TT-gauge (traceless-transverse gauge). In this gauge the Einstein
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field equations in vacuum reduce to

ηγδhαβ,γδ = 0. (6)

For a plane wave propagating in the z direction we obtain the following two independent

solutions

h+ = hxx = −hyy = Re{A+e
−iω(t− z

c
)}, (7)

h× = hxy = hyx = Re{A×e
−iω(t− z

c
)}, (8)

where A+ and A× denote amplitudes of the two waves.

It took much longer to study and understand properties of gravitational waves pro-

duced by a bounded distribution of matter. Only late in 50s mostly due to the work

of Petrov, Pirani, Trautman, Bondi, Sachs, Penrose, and many others, it became clear

that gravitational waves in an asymptotically flat space are linked to asymptotic prop-

erties of the Riemann tensor and its algebraic classification. Riemann tensor produced

by a bounded distribution of matter in an asymptotically flat space can be, far from the

sources, expanded along the future null cone and written in the form

Rαβγδ =
Nαβγδ

r
+
IIIαβγδ
r2

+
IIαβγδ
r3

+ · · · . (9)

where r is the affine parameter along outgoing null rays spanning the future null cone,

and

Nαβγδk
δ = 0,

IIIαβγ[δkσ]k
γ = 0, (10)

IIαβγ[δkσ]k
βkγ = 0,

where kα ∼ u,α, and u = const describes the future null cone.

Study of gravitational waves in cosmological spacetimes was initiated early in 40s by

E. M. Lifshitz [7] who in his pioneering paper published in 1946 discussed the general

perturbations of the Friedman models. Among the three basic perturbations he included

tensor perturbations describing gravitational waves. This analysis was later repeated by

many authors. Properties of gravitational waves propagating in the Friedman cosmolog-

ical spacetimes were discussed by L. P. Grishchuk [5]. A few years later L. Ford and L.

Parker [4] described the quantum process of graviton creation.

Let me present basic results concerning gravitational waves obtained by Lifshitz and

Grishchuk. Let us consider a general background spacetime with the line element

ds2 = γαβdx
αdxβ , (11)

and introduce small perturbations by changing the background metric to

gαβ = γαβ + hαβ , (12)

where |hαβ | ≪ 1. It turns out that the equations for small perturbations can be written

down in a simpler form if instead of hαβ we use a new quantity ψαβ defined by

ψαβ = hαβ − 1

2
γαβh, (13)

where h = hαβγ
αβ .
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The division of the spacetime into the background and small perturbations does not

fix the coordinate system uniquely. We still have the freedom to perform coordinate

transformations of the form xµ → xµ + ξµ(x). Using this freedom we can set

ψαβ
;β = 0, (14)

where the covariant derivative is taken with respect to the background metric. With this

additional restriction on ψ the Einstein field equations linearized with respect to ψαβ

lead to

ψµν;α
;α − 2R

(0)
αµνβψ

αβ + ψµαR
(0)α

ν + ψανR
(0)α

µ = T (1)
µν (15)

where R
(0)
αβµν is the background Riemann tensor, R

(0)
αβ is the background Ricci tensor, and

T
(1)
αβ describes small perturbations of the background matter. The remaining coordinate

freedom xµ → xµ + ξµ(x) is restricted by

ξµ;α
;α + ξαR(0)

αµ = 0. (16)

In the vacuum spacetime the remaining coordinate freedom can be used to set ψ =

γαβψαβ = 0 and the equations governing the small perturbations assume the form

hµν;α
;α − 2R

(0)
αµνβh

αβ = 0, (17)

where now hαβ is restricted by hµ
ν
;ν = 0 and h = hαβγ

αβ = 0.

The equation (15) can be simplified when we consider the Friedman spacetime as the

background. In this case as in the case of the Minkowski background it is possible to

impose the TT-gauge and we have

ψµν
;ν = 0, ψ = ψµνγ

µν = 0, hµνu
ν = 0, uµu

µ = 1. (18)

In what follows we discuss only the case of the flat (K = 0) Friedman model with the

line element of the form

ds2 = c2dt2 −R2(t)(dx2 + dy2 + dz2). (19)

Following Lifshitz [7] we introduce the conformal time η =
∫

dt/R(t) and transform the

line element into conformally flat form

ds2 = R2(η)(dη2 − dx2 − dy2 − dz2). (20)

The equation describing propagation of gravitational waves on the Friedman background

reduces to

hki
′′

+ 2
R′

R
hki

′

+R2δlmhki ,l,m = 0, (21)

where
′

denotes differentiation with respect to the conformal time η. Let Gk
i be a tensor

eigenfunction of the Laplace operator, so

△Gm
l = k2Gm

l . (22)

Writing hki in the form

hki =
µ

R
Gk

i , (23)

we finally obtain

µ′′ + µ(k2 − R′′

R
) = 0, (24)
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where k can be interpreted as the wavenumber and it is related to the wavelength by

k = 2πR/λ.

This equation derived for the first time by Grishchuk [5] describes evolution of the

amplitude of a gravitational wave propagating on the Friedman background. As it is

apparent from (23), due to expansion of the universe, amplitude of the wave decreases

inversely proportionally to the scale factor while its wavelength increases proportionally

to R (adiabatic damping).

During the radiation dominated phase of evolution of the universe R(t) ∼ t1/2, so

R(η) ∼ η and therefore the potential term in (24) is zero. When matter determines the

expansion rate of the universe R′′ 6= 0 and the potential term appears in equation (24).

Grishchuk [6] noticed that when R′′ 6= 0 process similar to the parametric amplifica-

tion can create gravitons. However in order to estimate the present energy density of

background gravitational waves and their spectrum it is necessary to specify the initial

(primordial) density of gravitational waves and their spectrum. This information was

lacking in the standard Big Bang cosmology. Situation has changed with invention of the

inflationary scenario of the early evolution of the universe.

By now several different models of inflation have been proposed. The most economical

one was invented by Andrei Linde [8], and it is now called chaotic inflation. Chaotic

inflation is driven by a massive scalar field. In a patch of the early universe where the

scalar field is sufficiently homogeneous its evolution is described by

φ̈+ 3Hφ̇+
∂V (φ)

∂φ
= 0, (25)

where H = Ṙ/R is the Hubble constant, and V (φ) is the potential of the scalar field.

When the energy density of the scalar field determines the expansion rate of the universe

the main Friedman equation reads

H2 =
Ṙ2

R2
=

8π

3m2
Pl

(

1

2
φ̇2 + V (φ)

)

− K

R2
, (26)

where K = +1, 0 or -1. Equations (25) and (26) form a set of two coupled equations and

when the potential V (φ) = 1
2m

2φ2 and the scalar field is initially sufficiently excited the

general solution quickly assumes the following form

φ(t) = φ0 −
mmPl√
12π

t, (27)

R(t) = R0 exp

[

2π

m2
Pl

(φ20 − φ2(t))

]

. (28)

For t < φ0/mmPl we have

H = H(φ0) =

√

4π

3

mφ0
mPl

, (29)

and

R(t) = R0 exp (H(φ0)t). (30)

If the scalar field is initially sufficiently highly excited φ0 > mPl the universe expands

exponentially for a long time and H(φ0)tfinal ≫ 1 so the scale factor grows by many
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orders of magnitude. During the inflationary stage of evolution of the universe the mean

density of matter and its temperature exponentially decrease to zero. All primordial

perturbations become smoothed out and the universe quickly approaches the de Sitter

stage (cosmic no hair theorem).

Let us consider therefore small perturbations of the flat Friedman cosmological model.

Following Stewart and Lyth [9], we write the metric of the perturbed spacetime in the

following form

ds2 = R2(η)
[

dη2 − (δij + 2hij)dx
idxj

]

, (31)

and expand the small perturbations hij into plane waves, so

hij =

∫

d3~k

(2π)3/2

2
∑

s=1

ψ~k,s(η)eij(
~k, s)ei

~k·~x, (32)

where eij(~k, s) is the polarization tensor, which satisfies the following normalization and

gauge conditions

eij = eji, eijδ
ij = 0, kieij = 0,

eij(~k, s1)e
∗
ij(
~k, s2) = δs1s2 , (33)

eij(−~k, s) = e∗ij(
~k, s),

here ∗ denotes the complex conjugation.

The general action for the gravitational field and the scalar field is

S = −1

2

∫

R√−gd4x+

∫
[

1

2
(~∇φ)2 − V (φ)

]√−gd4x, (34)

where R is the Ricci scalar.

For tensor linear perturbations the action reduces to

S =
1

2

∫

R2
[

(h′ij)
2 − (∂lhij)

2
]

dηd3~x =

=
1

2

∫

d3~k
2

∑

s=1

∫
[

|µ′
~k,s

|2 − (k2 − R′′

R
)|µ~k,s|

2

]

dη, (35)

where the prime denotes differentiation with respect to the conformal time η and µ~k,s =

Rψ~k,s.

To describe the spectrum of gravitational waves created during inflation it is useful

to quantize the tensor perturbations by introducing creation and annihilation operators.

The operator describing an elementary tensor perturbation (a graviton) can be written

in the form

µ̂~k,s = µkâ~k,s + µ∗
kâ

†
−~k,s

, (36)

provided that â~k,s satisfy the following commutation relations
[

â~k,s1 , â
†
~l,s2

]

= δs1s2δ
(3)(~k −~l), (37)

and

â~k,s|0 >= 0, (38)
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where |0 > is the vacuum state and the dagger denotes hermitian conjugation. The

equation of motion for µk is

µ′′
k + (k2 − R′′

R
)µk = 0. (39)

It is easy to find solutions of this equation in two asymptotic regions: when RH/k → 0,

µk → 1√
2k
eikη , and when RH/k ≫ 1, µk ∼ R.

Let us note that R′′/R can be written in the following form

R′′

R
= 2R2H2(1− 1

2
ǫ), (40)

where ǫ = −Ḣ/H2. The conformal time η can be expressed as

η =

∫

dt

R(t)
=

∫

dR

R2H
= − 1

RH
+

∫

ǫdR

R2H
, (41)

and when ǫ = const we obtain

η = − 1

RH

1

1− ǫ
. (42)

Using (42) we can rewrite equation (40) as

R′′

R
=

1

η2
(µ2 − 1

4
), (43)

where µ = 1/(1− ǫ) + 1/2.

Substituting (43) into (39) we transform equation (39) into a Bessel type equation

and now it is easy to write a particular solution of this equation in the form

µk =

√
π

2
ei(µ+

1

2
)π/2(−η)1/2H(1)

µ (−kη). (44)

Asymptotically, for RH/k → ∞

µk → ei(µ−
1

2
)π/22µ−

3

2

Γ(µ)

Γ(32 )

1√
2k

(−kη) 1

2
−µ. (45)

The power spectrum of primordial background of gravitational waves is defined by

< 0|ψ̂~k,sψ̂
†
~l,σ

|0 >= 2π2

k3
P (k)δ(3)(~k −~l)δsσ. (46)

Using (45) we finally obtain

P 1/2(k) = 2µ−
3

2

Γ(µ)

Γ(32 )
(1− ǫ)µ−

1

2

H

2π
|RH=k. (47)

As expected, similarly to the density perturbations, the power spectrum of gravitational

waves generated during inflation is flat. The spectrum of gravitational waves produced

during inflation is shown in Fig. 1.

Inflation ends with a short reheating period. Universe becomes radiation dominated

and resumes further evolution according to the Big Bang scenario. During the radiation

dominated era R ∼ η, so R′′ = 0 and the potential term in the equation (24) vanishes.

Therefore during the radiation dominated era the spectrum of primordial gravitational

waves does not change. The energy density of primordial gravitational waves decreases

due to adiabatic ”cooling”. Shortly before the hydrogen-helium plasma recombines the

universe becomes matter dominated and starts to expand faster with R ∼ η2, so now
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Fig. 1. Schematic representation of spectrum of gravitational waves produced during inflation.

The wave vector is drawn on x axis and Ωgw on y axis.

Fig. 2. Schematic representation of expected spectrum of cosmological background of gravita-

tional waves. The wave vector is drawn on x axis and Ωgw on y axis.

R′′/R ∼ η−2 and the potential term in the equation (24) becomes different from zero.

Characteristic scale determined by the moment of transition from the radiation to the

matter dominated epoch of evolution of the universe appears. The amplitude of gravita-

tional waves with wavelengths larger than this characteristic scale becomes amplified and

the spectrum of primordial gravitational waves is altered. The final expected spectrum

of the cosmological background gravitational waves is shown in Fig. 2.

Only recently reliable limits of the energy density of primordial gravitational waves

of very small frequencies have been established. To compare theoretical predictions with

observational limits let us recall that the critical energy density is defined as

ρcrit =
3c2H2

0

8πG
≈ 1.6× 10−8ergs/cm3, (48)

where H0 is the present value of the Hubble constant in km/sMpc, and h = H0/100.

To describe the spectrum of primordial gravitational waves we introduce a dimensionless

function of frequency

Ωgw(f) =
1

ρcrit

dρgw
d ln f

, (49)
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where ρgw(f) is the energy density of primordial gravitational waves of frequency f.

Assuming that the observed anisotropy of the microwave background radiation detected

by the COBE satellite is produced by cosmological background of gravitational waves we

obtain the following restriction on Ωgw for frequencies in the range H0 < f < 30H0

Ωgwh
2 < 7× 10−11(

H0

f
)2. (50)

Another interesting restriction has been obtained from radio pulsar observations. Sev-

eral millisecond radio pulsars turned out to be very stable clocks. They have been mon-

itored for almost ten years yielding the following limit on Ωgw at 10−8Hz

Ωgw(10
−8Hz) < 10−8. (51)

Recently new possibilities of observing the background gravitational waves appeared.

Several groups are building gravity wave detectors which will use the new technique of

laser interferometry. Four projects LIGO, VIRGO, GEO-600, and TAMA-300 should

be completed before the end of the century. More sensitive and space based detectors

are planned for the first decade of the next century. From the theoretical estimates of

Ωgw at frequencies accessible to the LIGO, VIRGO, GEO-600, and TAMA-300 detectors

it unfortunately follows that none of these detectors will be sufficiently sensitive to ob-

serve the cosmological background of gravitational waves if it has been produced by the

inflationary mechanism.

However it should be kept in mind that there are other scenarios of the very early

evolution of the universe, for example a multidimensional stage or creation of cosmic

strings which give different estimates of the expected energy density of the cosmologi-

cal background of gravitational waves. More details about cosmological background of

gravitational waves created in these scenarios can be found, for example in [1], [2], and [3].
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