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Abstract. In this paper we propose a new model of the coherent pulsar radio emission,

based on previous work of Ruderman and Sutherland (1975). We assume a non-stationary polar

gap braking down via a number of localized spark discharges, feeding a corresponding subpulse-

associated plasma columns in the pulsar magnetosphere. Central spark operates at the local

pole of the surface magnetic field and other sparks perform more or less ordered circumferential

motion around it due to the E×B drift. We argue that such an arrangement of the polar cap is

supported by the observational data. We demonstrate that each spark occupies a region of the

polar cap with a characteristic dimension approximately equal to the height of the gap. This

is also a typical distance between sparks. The life time of each spark is very short (≤ 10µs)

but they can reappear at approximately the same places due to heating of the surface beneath

them by the back-streaming electrons. Thus, the sparks can operate at approximately the same

place quite long, alternating between the developing and the terminating phase. The typical

time span between two consecutive sparks is less than about 1 µs. We assume that the local

surface magnetic field has a complicated multipolar structure with a radius of curvature of

field lines smaller than the neutron star radius. Although this is not critical for our model, we

further assume that the actual surface field has a sunspot like structure. If this is so, then charged

particles accelerated within the high voltage gap region never leave the neutron star surface. This

avoids the long standing “current closure” problem. However, the high energy curvature photons

produced within the gap during the motion along closed field lines can reach the region above the

gap, where the physical conditions are still suitable to produce clouds of secondary plasma due to

the Sturrock’s multiplication process. Each cloud has a broad energy distribution function. The

Lorentz factor γ of a bulk plasma is about 100 but γ of the high energy tail is about few hundreds.

The faster particles of the following plasma cloud can overcome the slower bulk particles of
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the preceding one, acting as a beam penetrating plasma. This ignites a typical beam-plasma

instability generating well known electrostatic Langmuir waves. Detailed calculations show that

the amplitude of these waves is high enough to cause a non-linear evolution, leading to soliton

formation. The net charge of a relativistically moving soliton is a source of the coherent curvature

radiation powerful enough to explain observed pulsar luminosities. It is worth emphasizing that,

for the first time, this is a self-consistent model of pulsar radiation. The coherent curvature radio

emission by solitons in our model is a consequence of a putative existence of a non-stationary

polar gap braking down via exponentially developing sparks.

1. Introduction. Although almost 30 years have past since discovery of pulsars,

their radiation still remains mystery. This concerns both the fundamental problem of

the coherent radio emission as well as the specific modulation of pulsar radiation in the

form of individual pulses and the characteristic stable mean profiles. Ruderman and col-

laborators in a series of papers (Ruderman and Sutherland 1975, Cheng and Ruderman

1977, 1980) have proposed an attractive theory of pulsars. They attempted to solve for

both the mechanism of coherence of single particle radiation as well as the organization

of emitting regions. Although their two-stream plasma instability has proven inefficient

in producing observable radio emission, the latter was partially successful in explaining

details of pulsar radiation modulation. The major feature of their pulsar picture is the

non-stationary polar gap above the polar cap, braking down via a number of isolated spark

discharges. The sparks develop wherever the gap potential drop is above the threshold for

the electron-positron pair production in the strong pulsar magnetic field, populating the

polar cap as densely as possible. These sparks feed a corresponding subpulse-associated

plasma columns in the pulsar magnetosphere, where the pulsar radio emission originates.

From the phenomenological point of view this picture seems to be supported by obser-

vational data (Gil and Krawczyk 1996a, Gil et al. 1995). Problems arise when one tries

to understand an underlying physics. The existence of the polar gap has been criticized

on the grounds of quantum-mechanical calculation of the binding energy on the neutron

star surface. It has been shown that the work function is too small for the polar gap to

form. However, recently Björnsson (1996) argued that the short time scale variability of

the global current distribution could prevent a steady flow of charged particles from the

pulsar surface, even for negligible binding energy. As a result, a situation similar to that

delineated by Ruderman and Sutherland (1975, hereafter RS) may arise. In this paper

we propose a pulsar model based on a putative existence of non-stationary polar gap.

The properties of the curvature radiation explain most naturally the complex polar-

ization characteristic of individual as well as average pulse profiles (Gil and Snakowski

1990a, b; Gil 1992, Gil et al. 1993a, Gil and Lyne 1995). The smooth variations of the

average position angle curve are very consistent with the Rotating Vector Model (Rad-

hakrishnan and Cooke 1969, Manchester and Taylor 1977; henceforth RVM), in which

the mean pulsar radiation is polarized in direction either parallel or perpendicular to the

planes of axially symmetric (dipolar) magnetic field, with the axis of symmetry coincid-

ing with the beam axis. This geometrical model applies to a variety of physical radiation

mechanisms, including the curvature radiation. Blaskiewicz et al. (1991) generalized the

RVM model to include the special relativistic correction due to fast corotation, which
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apply exclusively to the curvature radiation. They argued that the particle acceleration

follows not only from the curvature of field lines but also from the corotational mo-

tion. The relativistic corrections are easily detectable and they have been found in a

number of bright pulsars (Blaskiewicz et al. 1991, Gil and Krawczyk 1996b). The clear

demonstration of relativistic effects modifying the curvature acceleration by corotational

component is the most convincing argument supporting the mechanism of coherent cur-

vature radiation as the actual source of pulsar radio emission. In this paper we propose

a new, self-consistent pulsar model based on plasma physics and properties of curvature

radiation.

2. Polar gap, sparks and structure of the pulsar beam. Sparks as primary

sources of the subpulse associated plasma columns have also been criticized, mostly due

to short dynamical times scales (∼ 10 µs) as compared with the subpulse time scales.

We propose a modification of the sparking model in a following way: the most intense

sparking discharge occurs at the local surface magnetic pole (1), where the magnetic field

is strongest. The life-time of this spark, that is the period needed to develop the corota-

tional charge density within the gap volume occupied by the spark, is very short (≤ 10µs).

However, the polar cap surface beneath the spark is heated up to X-ray temperatures

by the back streaming electrons, which ignites an intense thermo-emission. These seed

charged particles should cause reappearance of the spark after short time at approxi-

mately the same place. Therefore, an oscillating sparking discharge should be active on

the local surface magnetic pole for a long time, comparable with the subpulse time scales.

The same should occur at any other part of the polar cap area where the gap potential

drop is above the threshold for electron-positron pair creation.

2.1. Spark characteristic dimension. From the width of subpulses interpreted as

plasma columns fed by sparks (RS) one can estimate the fraction f = (D/rp)
2 of the

polar cap area filled by spark in the range 10−1 to 10−2, where D is a characteristic spark

dimension and rp = 1.45 ·104P−1/2 cm is the polar cap radius defined by the dipolar com-

ponent of the pulsar magnetic field1. As argued by the RS, each spark inhibits formation

of another spark within a distance approximately equal to the polar gap height

h = 5 · 103R
2/7
6 P 3/7B

−4/7
12 [cm], (1)

where B12 = Bs/10
12G ≈ 3.9·107(P ·Ṗ )1/2 andR6 = R/106 cm is the radius of curvature

of the surface magnetic field1 in units of 106 cm. One can form a dimensionless parameter

a ≈
rp
h

=
5 · 104

R
2/7
6

Ṗ 2/7P−9/14, (2)

(1) It is assumed that the local surface magnetic field has a sunspot like structure with the

radius of curvatureR ≤ 106 cm. It seems that there exist both theoretical (Ruderman 1991 a,b,c)

and observational (Page and Sarmiento 1996, Bulik et al. 1992) support for such a structure of

surface magnetic field. The strength of this multipolar magnetic field should be comparable with

the surface value of the global dipole pulsar magnetic field. Thus, the polar cap radius rp is

determined by the Goldreich-Julian value, at least in typical pulsars.
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describing the ratio of polar cap to spark dimensions. For a typical pulsar with P = 0.6 s,

Ṗ = 10−15 andR
2/7
6 ≈ 1 the Eq. 2 gives h ≈ 0.3 rp. On the other handD/rp = f1/2 ≈ 0.3

or D ≈ 0.3 rp. By comparison one can conclude that the characteristic spark dimension

is approximately equal to the RS gap height D ≈ h (Eq. 1).

One can estimate the spark dimension using an independent physical arguments. The

number density of the e−e+ pairs in the sparking avalanche should develop exponentially

with time

n ≈ n
GJ

e−τ/t, (3)

where n
GJ

is the Goldreich-Julian (1969) number density, t is the time and τ is the ex-

ponentiation time scale, describing a time interval after which the spark charge density

reaches the corotational value screening the gap. Let us notice that the exponentiation

time scale τ should be inversely proportional to the radius of curvature R of the surface

magnetic field. In fact, a copious pair production within the gap requires large perpendic-

ular component of the magnetic field B⊥ ∼ hB/R. For a given B, the curvature photon

has to travel a distance l ≤ h to reach the value of B⊥ high enough to produce a pair.

The smaller the radius of curvature R, the smaller the distance l. Thus, τ ∝ 1/B⊥ and

a natural spark exponentiation time scale is

τ ≈ R/c. (4)

For small radius of curvature1 R ≈ 3 · 105 cm this is about 10 µs, which is equal to the

value obtained by independent argument in RS (1975).

If the surface magnetic field has a sunspot like structure1, then there should exist a

quasi-axial symmetry of the planes of field lines centered on the local pole (generally not

coinciding with the global dipole axis). First, let us consider a spark developing near the

local pole. In a curved magnetic field the spark plasma is subject to drift motion towards

the pole with a speed

v‖ ≈ ch/R, (5)

(Cheng and Ruderman 1977, 1980). Thus, during the time τ (Eq. 4), the spark will cover

a distance D ≈ v‖ · τ ≈ (hc/R)(R/c) = h moving towards the pole. Another drift motion

to be taken into account is the well known E × B drift, which causes circulation of the

plasma around the pole. The maximum speed of this drift corresponds to empty gap and

can be expressed by

v⊥ ≈ c∆E/B, (6)

where ∆E is the gap component of pulsar electric field (RS). Since the velocities v‖
and v⊥ are comparable, they will both cause the spread of initially plane spark to a

two dimensional entity with a characteristic dimension h. The same arguments apply to

non-central sparks. One should consider both drift motions, parallel and perpendicular

to the field line planes (Eqs. 5 and 6), and notice that the existence of the central spark

will prevent to some extent the drift along the planes of drift lines toward the pole. In

fact, sparks have to be separated from each other by about h and quasi-stable position

of the central spark on the local pole determines range of distances from the pole that

can be occupied by other sparks. On the other hand, the perpendicular E ×B drift will

cause the spread of spark plasma across the planes of field lines. As a result both drift
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motion will cause spreading of initially small and plane discharge into a two-dimensional

entity of diameter

D ≈ h, (7)

which means that a characteristic spark dimension is approximately equal to the RS polar

gap height (Eq. 1).

2.2. Spark dynamics. When the initial electron-positron pair is produced, it ex-

periences the full polar gap potential drop ∆Vmax = 2πBsh
2/cP (RS), where Bs ≈

B12 · 10
12 G is the surface magnetic field, and h is the height of the polar gap (Eq. 1)

determined by the mean free path for the photon pair production in the strong pulsar

magnetic field (Erber 1966, RS 1975). Assuming that Bs is comparable with the surface

value of the global dipole field Bd = 3.2 · 1019(PṖ )1/2 G, the maximum potential drop

in the polar gap can be written as

∆Vmax = 5.2 · 109B
−1/7
12 P−1/7R

4/7
6 [g1/2cm1/2s−1] = 1.7 · 1012R

4/7
6 B

−1/7
12 P−1/7 [V ]. (8)

The electron and positron are accelerated to relativistic velocities in the opposite direc-

tions within the polar gap. Since the relativistic motion along curved magnetic field lines

(R6 ≤ 1)1, they emit high frequency curvature photons which are able to produce addi-

tional pairs on adjacent field lines as long as h̄ω > 2mec
2, where me is the electron mass

and ω ≈ γ3c/R (here h̄ is the Planck constant). The positron leaves the gap acceleration

region with the maximum Lorentz factor

γmax =
e∆Vmax

mec2
= 3.4 · 106R

4/7
6 B

−1/7
12 P−1/7. (9)

On the other hand, the electron hits the polar cap and deposits its kinetic energy just

beneath the surface. This will result in the thermal X-ray emission and/or thermionic

emission of charged particle(s), which will cause discharge exponentiation along the orig-

inal field line. As argued in section 2.1 this initial discharge will spread rapidly during

the exponentiation time τ ≈ R/c into a two-dimensional entity, with the characteristic

dimension D ≈ h (Eq. 1). The polar gap is filled with a number of isolated flux tubes

with exponentially growing density, called sparks. Their characteristic dimensions as well

as typical distances between them are approximately equal to the RS gap height (Eq. 1).

At the beginning of the sparking discharge t ≪ R/c and n ≪ n
GJ

= Bs/(π
2Pce).

During most of the exponentiation time τ ≈ R/c (Eq. 4) n < n
GJ

(Eq. 3). At this stage

the spark delivers to the magnetosphere above the polar cap a column of low density

n < n
GJ

and high energy positrons with the Lorentz factor γ ≈ 3 · 106R
4/7
6 (Eq. 9).

These high energy positrons form a secondary electron-positron plasma via the Sturrock

multiplication process (Sturrock 1971, RS). And in the final stage of sparking discharge

when t ≈ R/c and n ≈ n
GJ

, the maximum potential drop (Eq. 8) is rapidly reduced to

the value slightly below the threshold for the copious pair production

∆Vmin = γminmec
2/e, (10)

where γmin = (2mec
2R/ch̄)1/3 or

γmin ≈ 3.3R
1/3
6 · 105. (11)
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From Eqs. (10 and 11) it follows that the sparking discharge terminates (after τ ≈ R/c ∼

few microseconds) when the potential drop decreases by the factor

F =
∆Vmin

∆Vmax
≈ 0.108 · R

−5/21
6 B

1/7
12 P 1/7 ≈ 0.1R

−5/21
6 . (12)

When this stage is reached, the spark delivers for a short time ∆t ≈ h/c a beam of high

density (n ≈ n
GJ

) monoenergetic positrons with a low Lorentz factor γ determined by

Eq. 11. We will call this stage the “spark-emptying” or “gap-emptying” phase. During

this phase the E×B drift velocity (Eq. 6) is also reduced by the filling factor F (Eq. 12).

Thus, the initially plane discharge expands rapidly with the maximum velocity v ≈

ch/R ≈ c∆E/B (Eqs. 5 and 6) during τ ∼ R/c, but a fully developed beam of high

density n = n
GJ

positrons drifts with much lower velocity

vd = cF∆E/Bs [cm/s], (13)

where ∆E is the gap component of the electric field near the pulsar cap surface (RS). This

could explain the slow subpulse drift observed in some pulsars, provided that the spark

can reappear at approximately the same place, modulo the E ×B drift with velocity vd
(Eq. 13). This however is a natural property of the sparking discharge. In fact, due to

the slow drift in the gap-emptying phase, the back side edge of the spark (with respect

to the direction of E × B motion) will still feel the potential drop slightly above the

pair production threshold value (Eqs. 10 and 11). Thus, the seed thermionic particles

can restart exponentiation at the back side of terminating spark, which will then expand

rapidly (in the direction of E ×B drift) with the fast drift velocity corresponding to the

empty gap (Eq. 6). Then again a fully developed spark (and a corresponding subpulse-

associated plasma column above this spark) will drift with a slow velocity described by

Eq. 13 (see section 4).

2.3. Polar cap structure. As argued in previous sections, the polar cap should be

populated by a number of sparks of diameter D ≈ h (Eq. 7), separated from each other

also by about h (Eq. 1). The strongest spark (core) is operating on the local magnetic

pole and other sparks (conal) circulate around the polar one due to E × B drift phe-

nomenon (RS). This leads to the ring structure of the polar cap and in consequence to

the core/conal structure of the average pulsar beam (Rankin 1983, 1990, 1992, 1993;

Gil and Krawczyk 1996a). A number of cones surrounding the central, quasi-stationary

“core” beam associated with the polar spark is determined by the ratio

n =
1

2
a ≈ 2.5 · 104 · R

−2/7
6 · Ṗ 2/7 · P−9/14. (14)

The number of actual profile components is

N ≤ Nmax = a+ 1, (15)

depending on the impact angle of the closest approach of the observer to the magnetic

axis, where the equality corresponds to the case when the observer’s line-of-sight passes

close to the magnetic axis.

Whithin the above scenario one can expect that for a complex profiles of types cT

(conal Triple), Q (Quadruple) and M (Multiple) the value of a should be about 4 (two
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cones), which according to Eq. 2 means that 5 · 104Ṗ 4/14P−9/14 = 4 · R
2/7
6 . Thus, the

cT, Q and M profiles should follow a definite slope

Ṗ = 5 · 10−15R6P
2.25 (16)

on the P − Ṗ diagram. As one can see from Fig. 1, this is apparently so.

Pulsars marked with (×) corresponding to the complex profiles (cT, Q and M) follow

the slope expressed in Eq. 16, where the adopted value of R6 = 1., 0.1, 0.01 is marked

on the right side of a dead line. It is worth noting that the slope predicted by the RS

(Eqs. 2 and 16) extends over four orders of magnitude in P and at least nine orders of

magnitude in Ṗ .

The parameter a = rp/h describing the ratio of polar cap to spark dimensions covers

the range 2 < a < 200 (assuming R
−2/7
6 ≈ 1 in Eq. 2). Generally, the P − Ṗ relationship

following from Eq. 2 is

Ṗ = 3.6 · 10−17R6 · a
3.5P 2.25. (17)

For a = 4 the Eq. 17 reduces to the Eq. 16 describing slopes presented in Fig. 1. The

actual value of a is reflected by the size of the circle. Both the pulsars with complex

profiles (marked by ×) and those with drifting subpulses (marked by +) occupy the

region of small a < 10. On the other hand pulsars with large values of a > 10 should have

simple, amorphous profiles with no hints of subpulses in single pulses. The large number

of small sparks will correspond to the microstructure rather than to subpulses in such

cases. The stars within the circles indicate pulsars with amorphous and simple profiles.

These pulsars demonstrate unuasually high degree of linear polarization (Gould 1994),

which we believe is also a consequence of large value of a (Gil et al. 1996).

The structure of the P − Ṗ diagram presented in Fig. 1 strongly supports the idea

of subpulse-associated sparks drifting circumferentialy around the local surface magnetic

pole on the polar cap. The natural interpretation of Fig. 1 is that the sparks do exist on

the Goldreich-Julian (1969) polar cap and they determine the morphology of the mean

pulsar profiles. Indeed, the complexity of the profile and appearance of drifting subpulses

increases with decreasing parameter a (size of the circle). Moreover, the complex profile

pulsars (cT, Q, M) as well as pulsars showing drifting subpulses follow the slope which

can be derived from the RS model (Eqs. 1 and 2). The stability of mean profiles as well

as drifting subpulse patterns is a consequence of permanent sparking activity on the

local surface magnetic pole, which restricts the degrees of freedom of spark motion to a

circumferential movement around the pole.

3. Coherent pulsar radio emission. From the observational evidence presented

in section 2 it follows that the coherent pulsar radiation originates within the subpulse-

associated plasma columns developed by sparks operating on the polar cap. Most proba-

bly this is a coherent curvature radiation originating at altitudes lower than about 10%

of the light cylinder radius RL = cP/2π (Blaskiewicz et al. 1991). To examine the struc-

ture of the electron-positron plasma in the subpulse-associated column we have to take

into account the spark dynamics discussed in sections 2.1 and 2.3. Although we will

concentrate on the dynamics of just one spark, we keep in mind that the polar cap is
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Fig. 1. P − Ṗ diagram for 600 known pulsars. The value of the parameter a = rp/h is marked

by the size of the circle (largest corresponding to the Crab pulsar with a ≈ 200 and smallest

corresponding to a ≈ 2). Pulsars marked additionally by (×) correspond to stars with complex

cT, Q and M profiles, for which a ≈ 4. Those marked additionally by (+) show drifting sub-

pulses (thick cross corresponds to the case of PSR 0809+74). The star within a circle indicate

simple, amorphous profiles. Three dashed lines describe the slopes corresponding to the values

of R6 = 1, 0.1 and 0.01, respectively (calculated for a = 4, i.e. Ṗ = 5 · 10
−15
R6P

2.25). The

Hubble time and dead line limits correspond to P/Ṗ = const and Ṗ /P 5 = const relationships,

respectively.

populated with a number of sparks as densely as possible, i.e. they develop wherever the

gap potential drop is above the threshold for the copious pair creation (Eq. 10). The

characteristic dimension of sparks as well as typical distance between them is about the

polar gap height (Eq. 1).
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3.1. Linear theory. The properties of the secondary electron-positron plasma created

via the Sturrock’s multiplication process by the primary positrons with γ = γmax depend

on the radius of curvature R of magnetic field lines above the gap, where the accelerating

electric field is negligible. Since we assumedR ≤ 106 cm, then the Sturrock multiplication

factor χ ≈ 104 and the Lorentz factor of the secondary plasma γp ≈ 100 (Gil et al. 1996).

This secondary plasma with a number density np = χp · nGJ
is penetrated by the beam

of plasma particles with γb ≤ γmin (Eq. 11) from the high energy tail of the distribution

function of the secondary plasma cloud associated with very next spark. This should lead

to instabilities which can be crucial for generating the coherent pulsar radio emission.

Let us consider a secondary electron-positron plasma with density np = χp · n
GJ

and

Lorentz factor γp ≈ 100 penetrated by the beam with density nb = χb · nGJ
< χpnGJ

and Lorentz factor γb ≤ γmin (Eq. 11). The stability of such plasma against the beam

penetration has been examined by several authors (RS, Benford and Buschauer 1977,

Asséo et al. 1980, 1983, Egorenkov et al. 1983). A number of instabilities have been

found but none of them has proven applicable to pulsar radio emission (e.g. Melrose

1995). Here we will propose a new possibility, which is a consequence of non-stationary

gap discharged by a number of sparks, discussed in sections 2.1, 2.2 and 2.3.

It is well known that the strong Langmuir turbulence will develop in the secondary

plasma due to the beam-plasma instability caused by resonant interaction of the beam

and plasma particles (Krall and Tripolpiece 1973). We believe that the role of the beam

is played by the faster particles of the secondary plasma produced by the primary beam

associated with the very next spark (nb < χpnGJ
and 100 < γb < γmin). At the linear

stage the necessary condition for development of the Langmuir wave can be written as

(Egorenkov et al. 1983, Usov 1987)

r

R
≪ 500 ·B12 · P

−1 · χ
2/3
b ·

( χp

104

)1/3

·
( γb
104

)−2

·
( γp
102

)−1

, (18)

where r is an altitude and R ≃ 106 cm is the neutron star radius. It follows from the above

condition that if γb ≪ 106 then r/R < 50. This is obviously possible in our non-stationary

model where γb ≤ γmin ≤ 104 (Eq. 11), but it would be impossible in the stationary gap

model (Arons 1981, 1992), where γb ≥ 106. It is worth emphasizing that there is no

other instability that can develop in the secondary pulsar plasma at altitudes below 10%

of the light cylinder radius. Investigations of possible linear effects in pulsar plasma can

be found in a number of papers (Lominadze et al. 1986, , Machabeli 1991, Kazbegi et

al. 1988,1992 and references therein). Some attractive phenomena like the drift driven

and cyclotron instabilities have been found but unfortunately they can only develop at

much higher altitudes than 100 ·R, contrary to the observational evidence that r < 0.1RL

(e.g. Cordes 1992).

As we argued in section 2.2, the two secondary plasma clouds corresponding to the

two consecutive sparks are separated by about ∆t = h/c (typically 10−7 s). Let us

estimate the time ∆T after which the faster positron beam with γb ≈ γmin will overcome

the slower secondary plasma with γp ≈ 100 ≪ γb. The corresponding velocity difference

is determined by the lower Lorentz factor ∆v = c/2γ2
p. It is easy to show that ∆T ∼

h/∆v = 2γ2
ph/c, where h = 5 ·103R

2/7
6 B

−4/7
12 P 3/7 [cm]. The distance covered during this
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time ∆r ∼ c∆T = 2γ2
pc ≈ 102Rγ2

pR
2/7
6 B

−4/7
12 P 3/7. Since ∆r ≪ R = 106 cm, one can

write the expression
r

R
∼ 102(γp/100)

2R
2/7
6 B

−4/7
12 P 3/7. (19)

This is a kinematic estimate of the emission altitude (beam-plasma instability region)

which agrees very well with the physical condition expressed by Eq. 18. For the typical

pulsar parameter r ∼ 50R, as expected (see section 4 for the case of the PSR 0809+74).

One should realize that B12 in Eq. 19 is in fact the surface magnetic field expressed in

units of 1012 G. Although its strength should be comparable with the dipole component

of pulsar magnetic field at the surface, the dependencies on P and Ṗ could be completely

different from ∝ (P · Ṗ )1/2.

3.2. The non-linear theory. The Langmuir waves generated by the beam-plasma insta-

bility are just electrostatic oscillations and they cannot leave the plasma without transfor-

mation into an electromagnetic wave. The frequency of Langmuir oscillations ωl is of the

order of 100 GHz and therefore the pulsar radio-frequencies ω < 100 GHz cannot be at-

tributed to these oscillations. In fact, the time scale of the process by which the Langmuir

bunch radiates, should be shorter than one oscillation period, that is ωl < ωc ∼ 1010 s−1.

In what follows we will argue that the non-linear evolution of Langmuir waves lead to the

formation of stable Langmuir soliton, which radiates coherent radio emission by means

of the curvature radiation. Here we will just outline the main results and apply them to

the pulsar radio emission.

A packet of plasma waves propagating in the relativistic electron-positron plasma with

phase velocities close to (but less than) the velocity of light is modulationaly unstable,

and its nonlinear evolution results in the formation of a nonlinear solitary wave solution.

This process is described by a nonlinear Schrödinger equation taking into account the

nonlinear Landau damping. The role of the low-frequency perturbations in the case of

the electron-positron plasma (in the absence of the ion sonic waves) is played by the

nonlinear beatings of the plasma waves and the nonlinear dumping is determined by the

resonant interaction of the beatings with particles.

The soliton causes the charge separation due the relative motion of electrons and

positrons. The charge separation is supported by the ponderomotive force. This kind

of charge separation is well known in the laboratory electron-ion plasma (Galeev and

Sagdeev 1973, Ichikawa et al. 1973, Karpman et al. 1975). In the electron-positron plasma

the net charge is zero due to the mass equality. But if there is some difference in the

unperturbed distribution function of electrons and positrons then the net charge of the

soliton can be described (in the plasma rest frame) by the following equation

ρ ∼
5

ω2
l

( e

m

)(vo
c

) E2
m

∆2

3− 2 cosh2 b

cosh4 b
(20)

(Melikidze and Pataraya 1984), where b = (x − vgrt)/∆, ∆ is the characteristic longitu-

dinal dimension of the soliton and vo is a relative, macroscopic difference of electrons and

positrons velocity, vgr is the group velocity, ωl is the frequency and E is the amplitude of

Langmuir waves, respectively. The qualitative behavior of the soliton charge density is

shown in Fig. 2, where the x-axis is calibrated in units of 1

2
∆ and the y-axis corresponds
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Fig. 2. Schematic representation of the soliton net charge.

Fig. 3. Spectra of the curvature radiation of the soliton (a), as compared with spectra of the

curvature radiation of the small fictitious bunch (b) with the same parameters (R, γ,Q). The

vertical scale of the soliton spectrum (a) is expanded by a factor of 500 with respect to (b).

to the net charge. As one can see the soliton is in fact a system of three charges coupled

to each other. The time evolution of such system remains to be examined but it is al-

ready obvious that the soliton can emit a coherent curvature radiation for a finite time.

If one considers the relativistic motion of the soliton along dipolar magnetic field lines

with a radius of curvature R ∼ 108 cm, the spectral power of the curvature radiation is

expressed by the equation

Iω ∼
Q2

R
F

(

ω

ωc

)[

1− cos

(

a
ω

ωc

)]2

(21)



250 J. GIL ET AL.

(Melikidze and Pataraya 1984), where Q is the soliton net charge,

F (ξ) = ξ

∞
∫

ξ

K5/3(ξ)dξ, a =
3

2
γ3
b

∆

R
and ωc =

3

2

c

R
γ3
b .

Figure 3 presents the spectra of the soliton curvature radiation calculated from the above

equations, as compared with the spectra of curvature radiation of a fictitious bunch with

the same charge Q. The maximum intensity of soliton curvature radiation, corresponds

to slightly higher frequencies (ω/ωc ∼ 5) than in the case of single bunch (ω/ωc ∼ 1).

For a typical pulsar parameters these frequencies fall into the radio-band. Preliminary

calculations show that the power radiated by solitons that can be generated by the beam-

plasma instability is high enough to explain the observed pulsar luminosity. The energy

of the soliton curvature radiation is supported by kinetic energy of the secondary plasma

created by the primary beam with γ = γmax (Eq. 9).

The soliton curvature radiation is about 100 times less efficient than the corresponding

curvature radiation of a fictitious bunch with the same charge. In fact, the power radiated

in the unit frequency range is lower by the factor of 500 but the frequency ω at which

the radiation maximum occurs is higher by the factor of 5. It is worth noting that the

vertical scale of the soliton spectrum is expanded by a factor 500 in Fig. 3. To estimate the

luminosity of pulsar radiation let us first consider the curvature radiation of a fictitious

bunch. In order to calculate the bunch net charge we will use the spark model (section 2.1

and 2.2), according to which Q = eNh2λ, where N is a number charge density within the

bunch , h is the spark height (Eq. 1) and λ < 100 cm is the wavelength of the emitted

coherent radiation. If we assume that only a tiny fraction of secondary plasma with

number density n
GJ

= n/χp is bunched (i.e. density contrast δn/n = 1/γp < 10−4),

then N = n
GJ

= 7 · 1010P−1B12 [cm−3]. Thus, the power radiated by a fictitious bunch

with charge Q is Pb ≈ Q2cγ4/R2 ≤ n2

GJ
h4λ2 · 10−16γ4

2/R
2
8 [erg/s], where (γp/100) <

γ2 = (γ/100) > 1 is the Lorentz factor of fast resonant particles and 1 < R8 = R/108 cm

is the radius of curvature of dipolar magnetic field lines in the radio emission region (in

units of 108 cm). For a typical pulsar h ∼ 103 cm and B12/P ∼ 1. Taking γ ∼ 3 and

R8 ∼ 1 one obtains Pb ≤ 1024 erg/s, which for approximately 100 times less powerful

soliton gives Ps ≤ 1022 erg/s. For a typical spark exponentiation time τ ≈ 10 µs (Eq. 4)

one gets N ∼ 105 sparks per second. Since at the any instant there is M ∼ 10 sparks on

the polar cap, the luminosity of a typical pulsar

L = Ps · N ·M (22)

should be smaller than about 1028 erg/s. The soliton curvature radiation is powerful

enough to explain the observed pulsar luminosities in the range 1023 − 1028 erg/s.

Thus, our radiation model, which is a natural consequence of a non-stationary gap

model (sections 2.1, 2.2 and 2.3) agrees with observations well, at least from the en-

ergetical point of view. Moreover, it is obvious that the polarization properties of the

soliton radiation will be similar to that of the single-particle curvature radiation, which

was shown to be consistent with the pulsar polarization characteristics (Gil et al. 1995,

Gil and Lyne 1995, Gil and Snakowski 1990, Gil et al. 1993b).
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4. Drifting subpulses. Individual emission of bright pulsar reveals the structure of

single pulses which often consist of a number of subpulses. In some cases these subpulses

demonstrate a more or less regular drift. This phenomenon manifests itself by a systematic

change of phase in succesive pulses (e.g. Manchester et al. 1975, Rankin 1986). The

subpulses drift slowly across the profile, forming the so called drift bands. The intensity

of drifting subpulses is monotonically modulated along a drift band. The best studied

pulsar with drifting subpulses is the PSR 0809+74 (Fig. 4).

Fig. 4. Comparison of modelled and actual emission of PSR 0809+74 at 147 MHz (after Manch-

ester et al. 1975, their Fig. 6a). The modelling includes only the total power modulation (smooth

lines).

The most natural interpretation of drifting subpulses phenomenon is a slow rotation

of the subpulse-associated plasma column around the symmetry axis (RS 1975, Gil et

al. 1996), which for simplicity will be identified with the dipole moment axis here. As

follows from considerations of section 2, the subpulse emission can be generated at the

final stage of spark evolution, which feed the subpulse-associated plasma column above

it. This stage lasts about ∆t/c and it takes about τ ∼ R/c to develope a spark from the

vacuum to the “gap-emptying phase”. Thus, in order to estimate the effective velocity
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corresponding to the subpulse drift one has to multiply the drift velocity expressed in

Eq. 13 by the factor ∆t/τ ∼ h/R. Then the linear rotation velocity of the (drifting)

subpulse-associated plasma column can be expressed in the form

vds =
h

R
Fc∆E/Bs

[cm

s

]

, (23)

where

∆E =
2π

cP

Bsh
2

rp(1 − s)
, (24)

(RS 1975). Here Bs is the surface magnetic field, rp is the Goldreich-Julian (1969) polar

cap radius, h is the gap height (Eq. 1), F is the filling factor expressed by Eq. 12 and

0 ≤ s ≤ 1 is the mapping parameter (s = 0 at the pole and s = 1 at the polar cap

boundary).

The subpulse-associated plasma column completes one rotation in a time interval

P̂3 =
2πsrp
vds

=
r2pRs(1 − s)

h3F
P =

R

h

s(s− 1)

F
a2P, (25)

where a ≈ rp/h (Eq. 2). Thus, the vertical distance between the driftbands is P3 = P̂3/Ns

(Fig. 4), where Ns is the number of sparks circulating at a distance d = s · rp from the

pole. We can now calculate the so called drift rate

D =
P

P̂3

360◦ =
hF360◦

Rs(s− 1)a2
, (26)

which describes the rate of circular drift motion of subpulse-associated plasma columns

expressed in degrees per pulsar period P .

We have modelled the radio emission of the PSR 0809+74, using a technique developed

in Gil et al. 1995 and Gil and Krawczyk 1996. The results of modelling are compared

with the actual modulation pattern of PSR 0809+74 in Fig. 4. The modelling procedure

gives n = 1

2
a = 2 (Eqs. 1 and 14) and the drift rate Dm ≈ 4◦ per period P = 1.29 s.

This means that the drifting subpulses in PSR 0809+74 correspond to the second ring

of sparks circulating on the polar cap at s ≈ 0.8. Since a = rp/h = 4 then from Eq. 2

we obtain R6 = 0.02 or R = 2 · 104 cm (Ṗ = 1.7 · 10−16) and from Eq. 12 we obtain

F = 0.25. Assuming that Bs = B12 · 10
12 G, where B12 = 3.2 · 107(PṖ )1/2 = 0.47 one

obtains from Eq. 1 that h = 2.76 · 103 cm and h/R = 0.14. Putting the above quantities

into the Eq. 26 one gets D = 4.8◦, very close to Dm = 4◦ adopted in the modelling

procedure (Fig. 4). Moreover, the location of PSR 0809+74 on the P − Ṗ diagram (thick

cross in Fig. 1) corresponds exactly to R6 = 0.02 provided that a = 4. These facts are

not trivial and demonstrate high degree of self-consistency of our model.

Finally, we can refer to the Eq. 19, which describes the location of pulsar radio

emission region. The succesful modelling procedure leading to the Fig. 4 requires the

emission altitude r = 45 ·R. Thus, for P = 1.3 s, B12 = 0.47 and R6 = 0.02 one obtains

the Lorentz factor of the secondary plasma γp ≈ 85, in consistency with an independent

arguments based on the physics of the Sturrock’s reproduction process (Gil et al. 1996).

5. Summary. In this paper we propose the pulsar model, which seems to offer a

natural explanation of all phenomena observed in pulsar radiation. The proposed model is
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self-consistent and based upon a few simple and natural assumptions. It relates conditions

for the coherent radio emission in the lower magnetosphere with phenomena occurring

within the polar gap, where a very high potential drop ∆V ≥ 1012 V developes. We

argue that the morphological pulsar properties (Rankin 1983, 1990, 1992, 1993, Gil et al.

1993a) are consistent with the non-stationary gap, in which the unipolar potential drop is

discharged via a number of sparks (RS 1975). We estimated that both the characteristic

dimension of sparks, as well as a distance between them is approximately equal to the RS

polar gap height h ∼ 103 cm. The sparks develop on dynamical time scale of the order

of 10 microseconds, after which they reappear at approximately the same place due to

intense thermo-emission caused by the back streaming electrons heating the base of the

spark on the polar cap surface. One spark operates at the local surface magnetic pole and

other sparks perform more or less ordered circumferential motion around the pole. Such

an organization of the polar cap results in a core/multiconal structure of the mean pulsar

beam, evidence of which was clearly demonstrated by several authors (Rankin 1983, 1990,

1992, 1993, Gil et al. 1993b). The observed number of profile components N ≤ a + 1

(Eq. 15) is apparently smaller than 9. This explains why pulsars with complex profiles

(cT, Q and M) occupy regions of small a ≈ rp/h < 10 (Eq. 2) on the P − Ṗ diagram.

Moreover, pulsars with drifting subpulses also appear in regions of small a (crosses in

Fig. 1). Obviously, drifting subpulses can be observed in pulsars which show subpulses

in their single pulse emission in the first place. Within our model this is possible only if

a < 10. On the other hand, simple and amorphous (with no hints of subpulse modulation)

profiles require large values of a > 10. These pulsars are apparently separated from those

with complex profiles on the P − Ṗ diagram (stars in Fig. 1).

The physical processes leading to the sparking avalanche development require that

the surface magnetic field has relatively low radius of curvature R < 106 cm. We argue

that the best candidate for the surface magnetic structure is a sunspot like magnetic field.

Evidence for such surface magnetic field has already been presented on both theoretical

(Ruderman 1991 a,b,c) and observational (Page and Sarmiento 1996, Bulik et al. 1992)

grounds.

The spark avalanche develops rapidly during τ ∼ R/c, increasing exponentially the

number density of the produced electrons and positrons. When the number density

reaches the Goldreich-Julian (1969) corotational value, the spark terminates via a short

gap-emptying phase of duration about h/c. This is a time interval separating two consec-

utive sparks. When the surface magnetic field has a sunspot like structure, the electrons

and positrons accelerated within the gap always flow along closed magnetic field lines,

despite the open dipolar field lines determining the polar cap region. It is worth stressing

that this solves the long standing “current closure” problem. In fact, the charged par-

ticles within the gap never reach the open dipolar field lines. However, the high energy

curvature photons emitted by positrons moving relativistically along closed lines within

the accelerating gap reach the regions above the polar gap, where the radius of curvature

of magnetic field lines is still suitable to produce additional electron-positron pair via the

so-called Sturrock multiplication process (RS, Sturrock 1971). Since the potential drop in

this region is negligible, the very high density np = χp ·nGJ
secondary plasma originates,

where the multiplication factor χp ∼ 104. The kinetic energy of this plasma is extracted
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from the polar gap via the curvature gamma photons. Since the maximum Lorentz factor

within the gap is about 106, it is obvious that the Lorentz factor of the bulk of secondary

plasma γ ≤ 100. However, one should expect a large thermal spread ∆γ ∼ γ, with the

tail values of γ up to a few hundreds.

Two clouds of the secondary plasma corresponding to the two consecutive sparks are

separated in time by about h/c. The bulk of the secondary plasma of the previous spark

is penetrated by the beam of faster plasma particles corresponding to the high energy tail

of the distribution function of the secondary plasma associated with the next spark. This

excites the Langmuir waves in the secondary plasma (the same beam-plasma penetration

applies to any pair of consecutive sparks). The amplitude of electrostatic oscillations

associated with Langmuir waves is high enough to cause their non-linear evolution due

to the modulational instability. As a result the soliton with a net charge is formed, which

moves relativistically along curved dipolar magnetic field lines with a Lorentz factor

corresponding to the resonant particles of the beam. Due to this motion the coherent

curvature radio emission is generated, with polarization properties similar to that of a

single particle curvature radiation. The altitude at which the solitons can be formed

agrees well with other emission altitude estimates (e.g. Cordes 1992), including the one

obtained by the method of first order relativistic corrections to the curvature radiation

polarization characteristics (Blaskiewicz et al. 1991). It is argued that one soliton can

easily radiate as much as 1021 erg/s, which for all available solitons gives a power of about

1023 − 1028 erg/s. This is just a typical range of pulsar radio luminosities.
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