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1. Introduction. The purpose of this paper is to indicate how one can use Fourier

integral operators and techniques from harmonic analysis to prove a sharp global existence

theorem for nonlinear wave equations with power-type nonlinearities. Specifically, if f, g ∈
C∞0 (Rn), n ≥ 2 are fixed, then one always has global existence for equations of the form{

2u = ±|u|p, (t, x) ∈ R+ × Rn = R1+n
+

u(0, x) = εf(x), ∂tu(0, x) = εg(x),
(1.1)

provided that ε > 0 is small and p > 1 satisfies

(n− 1)p2 − (n+ 1)p− 2 > 0.(1.2)

Here 2 = ∂2
t − ∆x denotes the D’Alembertian. Also, one can replace ±|u|p by Fp(u)

if F
(j)
p (u) = O(|u|p−j), j = 0, 1. Results for superconformal nonlinearities were already

known (see, e.g. [11]), so in what follows we shall also always assume that p is smaller

than the conformal power, that is,

p < (n+ 3)/(n− 1).(1.3)

This existence theorem is due to V. Georgiev, H. Lindblad and the author [3]. Many

earlier partial results have been known for some time. The first, and most important,

goes back to John [9] who solved the problem when n = 3. He showed that, as in (1.2),

global solutions always exist for small ε if p > 1 +
√

2, while, conversely, if p < 1 +
√

2

there can be blowup even for small ε > 0. Based on this, and his related work [23] Strauss

conjectured in [24] that the aforementioned n-dimensional version should hold. This was

quickly verified by Glassey [5] when n = 2. In the other direction Sideris [17] showed

that even for small ε solutions blowup if p does not satisfy (1.2). More recently, Zhou
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[27] showed that Strauss’ conjecture holds when n = 4, and Lindblad and the author [12]

showed that it holds when n ≤ 8, and also for any n under the assumption of spherical

symmetry. The latter result was also obtained independently for odd n by Kubo [10].

The proof of the aforementioned existence results hinges on a certain weighted version

of an inequality of Strichartz [25] for the inhomogeneous wave equation. Before stating

the new results, let us explain what happens in the unweighted case.

If we consider the inhomogeneous wave equation{
2w = F, (t, x) ∈ R1+n

+

0 = w(0, x) = ∂tw(0, x),
(1.4)

and if n ≥ 2, then the main estimate from [25] is that

‖w‖Lq(R1+n
+

) ≤ Cn‖F‖Lq/(q−1)(R1+n
+

), q = 2(n+ 1)/(n− 1).(1.5)

Notice that the inequality involves conjugate exponents and that it is scale invariant since

(n+ 1)(1/q − (q − 1)/q) = 2, q = 2(n+ 1)/(n− 1).

Inequality (1.5) is a hyperbolic version of the classical inequality of Hardy, Littlewood

and Sobolev for the Laplacian

‖φ‖Lq(Rd) ≤ Cp,q,d‖∆φ‖Lq(Rd), φ ∈ S(Rd), 1 < p < q <∞, d(1/p− 1/q) = 2.(1.6)

Inequality (1.6) extends to some exponents off of the line of duality; however, Harmse [6]

showed that if d = n+ 1 and if we replace ∆ by 2, then the inequality holds if and only

if min(1/p− 1/2, 1/2− 1/q) ∈ (1/2n, 1/(n+ 1)]. This restriction in part makes problems

like (1.1) difficult to analyze.

It turns out that much more favorable weighted inequalities hold for the Laplacian as

opposed to the D’Alembertian, even if one considers dual exponents. Indeed, results of

Jerison and Kenig [8] and Müller [14] yield

‖ |x|τ−2+2d(1/2−1/q)φ ‖Lq(Rd) ≤ Cn,δ‖ |x|τ∆φ ‖Lq/(q−1)(Rd),(1.7)

if φ ∈ C∞0 (Rd\0), dist (τ,Z + (d− 2)/2) ≥ δ > 0, and 2 ≤ q ≤ 2d/(d− 2).

Like the preceding ones, this inequality is scale invariant.

The inequality that is used to establish the existence results for (1.1) involves what

is, in some sense, an optimal extension of [8] to the hyperbolic setting. Here the weights

should evidently involve the Lorentzian distance from the origin as opposed to the one

given by the Euclidean metric. Since the former is well defined inside the light cone

Γ+ = {(t, x) ∈ R1+n
+ : t2 − |x|2 > 0} it is natural to consider solutions of (1.4) which are

supported in this set. Also, since generic solutions of (1.4) only decay like O(t−(n−1)/2)

as t → +∞, even if F ∈ C∞0 (Γ+), one could not hope for the variant of (1.7) for the

D’Alembertian to hold for arbitrarily large τ .

Keeping these things in mind, let us state the main inequality from [3]:

Theorem 1.1. Let n ≥ 2 and assume that F ∈ S satisfies

F (t, x) = 0 if |x| > t− 1.(1.8)
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Then if w is the solution of (1.4), and if ε > 0 there is a constant C = C(ε, n, q) so that

‖ (t2 − |x|2)−1/2+n(1/2−1/q)−εw ‖Lq(R1+n
+

) ≤ C‖ (t2 − |x|2)1/q+εF ‖Lq/(q−1)(R1+n
+

),(1.9)

if 2 ≤ q ≤ 2(n+ 1)/(n− 1).

With d = n+ 1 being the space-time dimension (1.9) corresponds, up to an endpoint,

to (1.7) with τ = 1/q. We also remark that (1.9) is essentially scale invariant. The dilation

invariant version would involve ε = 0, in which case we could also weaken the support

assumptions to F (t, x) = 0 if |x| ≥ t. Unfortunately, this version can never hold, even if

we assume that F is supported in a fixed compact set since the norms in the left would,

in general, be infinite since we could choose F so that w is bounded below by t−(n−1)/2

for large t in, say, {(t, x) : 1 ≤ t ≤ 2}. This explains one of the differences between

(1.9) and its elliptic counterpart (1.7) that we mentioned earlier. We also remark that

when q = 2(n + 1)/(n − 1), (1.9) should be thought of as a weighted version of (1.5).

By interpolating with the latter, one sees that the inequality extends to one involving

weights with a larger range of powers; however, the ones in (1.9) are the most difficult to

prove and are what are needed to prove optimal existence results for (1.1).

To see this, let us set u−1 ≡ 0 and then define um, m = 0, 1, 2, . . . recursively by

requiring that 2um = Fp(um−1), um(0, x) = εf(x), ∂tum(0, x) = εg(x), where f and g

are as in (1.1). We clearly may assume without loss of generality that they are supported

in the unit ball. Notice that we can split um = u0 +wm, where 2u0 = 0 with data (f, g)

and 2wm = Fp(um−1) with zero data at t = 0. To proceed, note that if p satisfies our

assumptions (1.1), (1.3) then we can always chose γ satisfying

1/p(p+ 1) < γ < −1/2 + n(1/2− 1/(p+ 1)).

If we shift the time coordinate and if w and F are as in (1.4), then (1.9) clearly yields

‖(1 + |t2 − |x|2|)γw‖Lp+1(R1+n
+

) ≤ Cγ,p‖(1 + |t2 − |x|2|)γ/pF‖L(p+1)/p(R1+n
+

),(1.10)

if F (t, x) = 0, |x| ≥ t+ 1.

If we replace w by u0 in the left, then the resulting quantity is O(ε), in view of our earlier

discussion, since u0 = O([(1 + |t− r|)t]−(n−1)/2). Furthermore, if we apply the preceding

inequality to w = wm we conclude that

Am ≤ Cε+ CApm−1, m ≥ 1,

if Am = ‖(1 + |t2 − |x|2|)γum‖Lp+1(R1+n
+

). Since A0 = O(ε), this implies that Am ≤ C0ε

for some uniform constant if ε > 0 in (1.1) is small enough. Similar arguments then give

that 2Bm ≤ Bm−1 if Bm = ‖(1 + |t2 − |x|2|)γ(um − um−1)‖Lp+1(R1+n
+

) and ε is small.

Using these two bounds it is not hard to see that um must converge to a (weak) solution

of (1.1) verifying (1 + |t2 − |x|2|)γu ∈ Lp+1(R1+n
+ ). These arguments also show that this

solution is unique.

Let us conclude this section by sketching the proof of the original, unweighted estimate

of Strichartz (1.5) since this will provide a model for (1.9). For this, let χz+(t) denote the

analytic family of distributions tz+/Γ(1 + z), where if Re z > −1, the distribution equals
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tz/Γ(1 + z) for t > 0 and 0 otherwise. We then set

wz(t, x) = (2π)−nez
2

∫∫
eix·ξ sin((t− s)|ξ|)χz+(t− s)F̂ (s, ξ)|ξ|−1−zdξds,

where F̂ denotes the spatial Fourier transform of F . Since w0 = w, if we apply Stein’s

analytic interpolation theorem [22], we conclude that it suffices to show that if F is

supported in R1+n
+ then

‖wz‖L2(R1+n
+

)≤ C‖F‖L2(R1+n
+

), Re z = −1,

‖wz‖L∞(R1+n
+

)≤ C‖F‖L1(R1+n
+

), Re z = (n− 1)/2.

The first estimate follows from an application of Plancherel’s theorem and Euler’s

formula since

ez
2

∫ ∞
−∞

eitτχz+(t)dt = O(1), Re z = −1.(1.11)

The L∞ estimate is also elementary. It just follows from the fact that

ez
2

|t|(n−1)/2

∫
Rn
eix·ξ+it|ξ||ξ|−1−zdξ = O(1), Re z = (n− 1)/2.(1.12)

2. L2 estimates for nondegenerate Fourier integral operators: A review.

The proof of (1.9) splits into two parts. The first relies on standard L2 estimates for

Fourier integral operators and a simple argument exploiting the Lorentz invariance of the

weights. The other step in the proof requires estimates for degenerate Fourier integral

operators which are similar to those arising in the Goursat problem. We shall postpone

the statement of these until they are needed, but, fortunately, their proof just involves

adapting the proof of the bounds for nondegenerate operators in a straightforward way.

In this section let us review the classical L2 estimates which we shall use in the easier

half of the proof. We shall consider zero-order local Fourier integral operators of the form

(Wf)(x) =

∫∫
eix·ξ+iϕ(y,ξ)a(y, ξ)f(y) dξdy.

Here ϕ is assumed to be real, homogeneous of degree one in ξ and in C∞(Rn × Rn\0).

We assume that the symbol satisfies

a(y, ξ) = 0, (y, ξ) 6∈ K × Γ(2.1)

where K ⊂ Rn is a fixed compact set and Γ is a fixed conic subset of Rn\0. We also

assume that the symbol is zero-order, meaning here that

| (∂/∂y)αa(y, ξ) | ≤ Cα(2.2)

for all multi-indices α.

The estimate we require then is the following

Proposition 2.1. If a satisfies (2.1) and (2.2) and if

det (∂2ϕ/∂yj∂ξk) 6= 0, (y, ξ) ∈ K × Γ,(2.3)
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then

‖Wf‖L2(Rn) ≤ C‖f‖L2(Rn),(2.4)

where, if ϕ is fixed, the constant depends only on finitely many of the bounds in (2.2).

This estimate, in different forms, goes back to Hörmander [7] and Eskin [2]. As was

shown in [7], it implies the seemingly more general fact that zero-order Fourier integral

operators which are locally a canonical graph are (locally) bounded on L2.

P r o o f. The first thing to notice is that, by Plancherel’s theorem,

‖Wf‖2L2 = (2π)−n
∫
Rn
|(W̃f)(ξ)|2 dξ,

where

W̃f(ξ) =

∫
eiϕ(y,ξ)a(y, ξ)f(y) dy.

Therefore, by duality, (2.4) is equivalent to the estimate

‖W̃ ∗g‖L2(dy) ≤ C‖g‖L2 ,(2.5)

where W̃ ∗ denotes the adjoint operator.

Next, notice that by the mean value theorem and homogeneity

∇y(ϕ(y, ξ)− ϕ(y, η)) =
(∂2ϕ(y, ξ)

∂y∂ξ

)
(ξ − η) + r(y, η, ξ),

where, by compactness,

|r(y, ξ, η)| ≤ C| ξ/|ξ| − η/|η| | · |ξ − η|,

uniformly on the support of a. If we break up the operator into a finite number of pieces,

then we conclude from (2.3) that we may assume that

|∇y(ϕ(y, ξ)− ϕ(y, η))| ≥
∣∣(∂2ϕ(y, ξ)

∂y∂ξ

)
(ξ − η)

∣∣/2
when (y, ξ), (y, η) ∈ K × Γ. If we make another decomposition, we find that we see that

there is no loss of generality in strengthening this assumption to

| (∂/∂y1)(ϕ(y, ξ)− ϕ(y, η)) | ≥ c|ξ − η|,(2.6)

on the support of a for some uniform c > 0.

To use this, we note that

‖W̃ ∗g‖2L2 =

∫∫
K(ξ, η)g(ξ)g(η) dξdη,(2.7)

where

K(ξ, η) =

∫
ei(ϕ(y,ξ)−ϕ(y,η))a(y, ξ)a(y, η) dy.

Clearly, by (2.1),

K = O(1).

Also, since

L(y,D)ei(ϕ(y,ξ)−ϕ(y,η)) = ei(ϕ(y,ξ)−ϕ(y,η)),
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where L = (i∂/∂y1(ϕ(y, ξ)− ϕ(y, η)))−1∂/∂y1, if we integrate by parts we obtain

K(ξ, η) =

∫
ei(ϕ(y,ξ)−ϕ(y,η))(L∗)Na(y, ξ)a(y, η) dy,

for a given N = 1, 2, 3, . . .. Since (2.1) and (2.6) imply that for |ξ − η| ≥ 1

(L∗)Na(y, ξ)a(y, η) = O(|ξ − η|−N ),

we conclude that K = O(|ξ− η|−N ) for any N if |ξ− η| ≥ 1. If we combine this with our

earlier bound, we conclude that

K(ξ, η) = O((1 + |ξ − η|)−N ), N = 1, 2, 3, . . . .

If we take N = n + 1, then an application of Young’s inequality along with (2.7) yields

(2.5) which finishes the proof.

3. Lorentz invariance and a variation on Strichartz’s estimate. Let us start

out by seeing that, using Proposition 2.1, we can easily adapt the proof of the unweighted

Strichartz estimates to obtain the special case of (1.9) where the norms are only taken

over the “middle” of the light cone. To be more specific, if

Γmid = {(t, x) ∈ R1+n
+ : |x| < t/2},

then we have the following

Proposition 3.1. Assume that F = 0 if t2 − |x|2 ≤ 1 and that w is the solution of

the inhomogeneous wave equation (1.4) with zero data. Then if T ≥ 2,

‖ (t2 − |x|2)−1/2+n(1/2−1/q)w ‖Lq({(t,x)∈Γmid :T/2≤t≤T})(3.1)

≤ C(log T )1/q‖ (t2 − |x|2)1/qF‖Lq/(q−1) , 2 ≤ q ≤ 2(n+ 1)/(n− 1).

Notice that, except for the restriction (t, x) ∈ Γmid , the bounds here are stronger than

those in (1.5). Also, by Stein’s interpolation theorem, to prove (3.1), it suffices to prove

the inequality for the endpoints where q = 2 or q = 2(n+ 1)/(n− 1).

The first step in proving the inequality for q = 2(n+ 1)/(n− 1) is to notice that the

unweighted version, (1.5), yields (3.1) if we assume that F (t, x) = 0 when t−|x| ≤ T/10,

say. Under this assumption the L2 estimate is also trivial since

‖w‖L2({(t,x):T/2≤t≤T}) ≤ CT 2‖F‖L2(R1+n
+

).

Hence, in proving (3.1), we can also assume that t− |x| ≤ T/10 in the support of F .

For the next easy reduction, we need to recall that w = E+ ∗ F , where

E+ = π(1−n)/2/2 · χ−(n−1)/2
+ (t2 − |x|2).

Since E+(t − s, x − y) = O(T−(n−1)) if T/2 ≤ t ≤ T , |x| ≤ t/2, and |y| ≤ T/10, (3.1)

trivially holds if |y| ≤ T/10 in the support of F . If we combine this with the preceding

step we conclude that, to prove (3.1), we may assume that

F (s, y) = 0 if |y| ≤ T/10 or s− |y| 6∈ [1/2T, T/10].(3.2)

The lower bound on s− |y| comes from our assumption that F = 0 when s2 − |y|2 < 1.
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To proceed, we recall that

(2π)nw(t, x) =
1

2i

∑
±

∫ t

0

∫∫
ei(x−y)·ξ±i(t−s)|ξ|F (s, y)

dξ

|ξ|
dyds.

Note that the absolute value of the ξ-gradient of the phase function satisfies

|x− y ± (t− s)ξ/|ξ| | ≥ cT, if | ξ/|ξ| ∓ y/|y| | ≤ c,
if (t, x) ∈ Γmid , T/2 ≤ t ≤ T, (s, y) ∈ supp F,

for some uniform constant c > 0. Consequently, we can integrate by parts to see that we

can write

w(t, x) =
∑
±

∫∫∫
|ξ|≥1/T

ei(x−y)·ξ±i(t−s)|ξ|a±(y, ξ)F (s, y)
dξ

|ξ|
dyds+ (R±F )(t, x),

where

a±(y, ξ) = 0 if | y/|y| ∓ ξ/|ξ| | ≤ c/2, and ∂αy a± = O(T−|α|)∀α,(3.3)

and where R± is an integral operator with a kernel which is O(T−(n−1)). Consequently, if

we replace w by R±F , the variant of (3.1) holds under our assumption (3.2), and therefore

it suffices to show that for q = 2 or q = 2(n+ 1)/(n− 1)

T−1+2n(1/2−1/q)‖W±F‖Lq({(t,x)∈R1+n
+

:T/2≤t≤T})(3.4)

≤ C(log T )1/q‖(t2 − |x|2)1/qF‖Lq/(q−1) ,

assuming that F is as in (3.2), with

(W±F )(t, x) =

∫∫∫
|ξ|≥1/T

ei(x−y)·ξ±i(t−s)|ξ|a±(y, ξ)F (s, y)
dξ

|ξ|
dyds.

To prove this inequality, we first notice that if we write (s, y) = (τ + |y|, y) and apply

Hölder’s inequality we obtain

|W±F (t, x)| ≤ C(log T )1/q(3.5)

×
(∫ T/10

1/2T

∣∣∫∫
|ξ|≥1/T

ei(x−y)·ξ±i(t−τ−|y|)|ξ|a±(y, ξ)τ1/qF (τ+ |y|, y)
dξ

|ξ|
dy
∣∣q/(q−1)

dτ
)(q−1)/q

Using Plancherel’s theorem, we conclude that∫
|W±F (t, x)|2dx

≤ C log T

∫ ( ∫ ∣∣∫∫
|ξ|≥1/T

ei(x−y)·ξ±i|y|·|ξ|a±(y, ξ)τ1/2F (τ + |y|, y)
dξ

|ξ|
dy
∣∣2dx)dτ

Let

ϕ±(y, ξ) = |y| · |ξ| ± y · ξ(3.6)

be the phase function in the preceding Fourier integral. Since

det (∂2ϕ±/∂yj∂ξk) = ±y/|y| · ξ/|ξ| − 1 6= 0 on supp a±,
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we can apply Proposition 2.1 and a change of scale argument to conclude that∫ ∣∣∫∫
|ξ|≥1/T

ei(x−y)·ξ±i|y|·|ξ|a±(y, ξ)τ1/2F (τ + |y|, y)
dξ

|ξ|
dy
∣∣2dx

≤ CT 2

∫ ∣∣τ1/2F (τ + |y|, y)
∣∣2dy.

Combining this with the preceding inequality yields (3.4) when q = 2.

To prove (3.4) for the other endpoint, q = 2(n + 1)/(n − 1), we need to also use the

interpolation argument that was used to establish the unweighted Strichartz inequality

(1.5). Specifically, if we let

(W z
±F )(t, x)(3.7)

= ez
2

∫∫∫
|ξ|≥1/T

ei(x−y)·ξ±i(t−s)·|ξ|χz+(t− s)|ξ|−1−za±(y, ξ)F (s, y)dξdyds,

then it suffices to show that

‖W z
±F‖L∞({(t,x)∈R1+n

+
:T/2≤t≤T, |x|≤t/2})≤ C‖F‖L1 , Re z = (n− 1)/2,

T‖W z
±F‖L2({(t,x)∈R1+n

+
:T/2≤t≤T})≤ C(log T )1/2‖(t2 − |x|2)1/2F‖L2 , Re z = −1,

assuming in both cases that F satisfies (3.2) and that T is large.

Note that t − s ≈ T in the support of the integrand in (3.7) if |x| ≤ t/2. Because of

this the L∞ estimate follows immediately from (1.12). Since in (3.7) χz+(t− s)|ξ|−1−z =

O(1/T ), Re z = −1, one obtains the L2 estimate by repeating the arguments which gave

(3.4) for q = 2.

Let us now see how Proposition 3.1 yields the following special case of our main

estimate (1.9).

Proposition 3.2. Fix T ≥ 2 and assume that F (t, x) vanishes if |x| > t − 1 or if

t ≤ T/10. Then, if w is the solution of the inhomogeneous wave equation (1.4), there is

a constant C, depending only on the dimension n ≥ 2, so that

‖(t2 − |x|2)−1/2+n(1/2−1/q)w‖Lq({(t,x)∈R1+n
+

:T/2≤t≤T})(3.8)

≤ C(log T )2/q‖(t2 − |x|2)1/qF‖Lq/(q−1) , 2 ≤ q ≤ 2(n+ 1)/(n− 1).

We first note that to prove (3.8) we may assume that T is large since the estimate for

small fixed T is a simple consequence of (1.5) and the support assumptions on F . The

next thing to notice is that (3.8) follows from Proposition 3.1 and the dyadic estimates

‖(t2 − |x|2)−1/2+n(1/2−1/q)w‖Lq({(t,x):T/2≤t≤T, 2−k−1T≤t−|x|≤2−kT})(3.9)

≤ C(log T )1/q‖(t2 − |x|2)1/qF‖Lq/(q−1) , 2 ≤ q ≤ 2(n+ 1)/(n− 1), 0 ≤ k ≤ log2 T.

Uniform bounds of this type yield (3.8) if one raises both sides to the q-th power and

sums over k.

The key observation behind the proof of (3.9) is the following simple geometric fact

(cf. [1], [18], [26]).



NONLINEAR WAVE EQUATIONS 99

Lemma 3.3. Let E+ be the forward fundamental solution for 2, and let T ≥ 2. As-

sume that T/2 ≤ t ≤ T , 2−k−1T ≤ t− |x| ≤ 2−kT , |y| ≤ s, and T/10 ≤ s. Then

|x/|x| − y/|y| |2 ≤ C2−k if (t, x, s, y) ∈ supp E+(t− s, x− y), 0 ≤ k ≤ log2 T,

for some uniform constant C.

P r o o f. We first recall the following version of Huygen’s principle

E+(t− s, x− y) = 0 if |x− y| > t− s.

Because of this, our assumptions give

E+(t− s, x− y) = 0 if |y| < s− 2−kT.

Hence, assuming as we may that k and T are larger than some fixed constant, we must

have |x|, |y| ≥ T/20 if (t, x, s, y) ∈ supp E+(t−s, x−y) and the hypotheses of the lemma

are fulfilled. For the final step, notice that |x− y| ≤ (t− s)2 is equivalent to∣∣ x
|x|
− y

|y|
∣∣2 ≤ (t− s)2 − (|x| − |y|)2

|x| |y|
=

(t− |x| − (s− |y|))(t+ |x| − (s+ |y|))
|x| |y|

.

Since |y| ≤ s, the right side is ≤ (t − |x|)(t + |x|)/|x| |y| = O(2−k), due to the fact that

t, |x|, |y| ≈ T and t− |x| ≈ 2−kT by our assumptions.

Using this lemma and Proposition 3.1 it is easy to prove (3.9). We simply need to

exploit the fact that the weights involved are Lorentz-invariant and that our assumptions

clearly imply that t2 − |x|2 ≥ 1 if (t, x) ∈ supp F .

To apply these observations we note that, since w = E+ ∗F , Lemma 3.3 implies that

(3.9) would be a consequence of the further localized estimates

‖(t2 − |x|2)−1/2+n(1/2−1/q)w‖Lq({(t,x):T/2≤t≤T, 2−k−1T≤t−|x|≤2−kT, |x/|x|−ν|≤2−k/2})(3.10)

≤ C(log T )1/q‖(t2 − |x|2)1/qF‖Lq/(q−1) ,

with 2 ≤ q ≤ 2(n+ 1)/(n− 1), 0 ≤ k ≤ log2 k, and ν ∈ Sn−1. The next thing to notice is

that if we pick two points (tj , xj), j = 1, 2, in the support of the norm in the left, then

we have the uniform bounds

dist((t̃1, x̃1), (t̃2, x̃2)) ≤ C(3.11)

if (t̃, x̃) = (t, x)/
√
t2 − |x|2 denotes the projection onto the unit hyperboloid in Lorentz

space and dist((t, x), (s, y)) =
√
|x− y|2 − (t− s)2 is the associated metric. Because of

(3.11) and the preceding observations, (3.10) follows immediately from Proposition 3.1 if

one makes a Lorentz rotation sending (t1, x1) to (
√
t21 − |x1|2, 0).

4. Estimates related to the Goursat problem. To finish our proof of (1.9) it

suffices to show that we have uniform bounds of the form

‖(t2 − |x|2)−1/2+n(1/2−1/q)−εw‖Lq({(t,x)∈R1+n
+

:T/2≤t≤T})(4.1)

≤ Cε‖(t2 − |x|2)1/q+εF‖Lq/(q−1) , 2 ≤ q ≤ 2(n+ 1)/(n− 1), ε > 0,

assuming now that

F (t, x) = 0 if t− |x| < 1 or t > T/10.(4.2)



100 C. D. SOGGE

Since ε is arbitrary and since t2 − |x|2 ≥ t in the norms, this inequality and (3.8) yield

(1.9) if the parameter ε there is larger than the one in (4.1).

This estimate is more delicate than (3.8) since, after scaling, we shall be forced to han-

dle cases where F is supported near the light cone and the norm on the left is taken over

a region near the light cone containing characteristic rays emanating from the support

of F . Because of this and the presence of the weights we cannot appeal to Proposition

2.1. Instead, we need to estimate certain degenerate Fourier integral operators which are

similar to those arising in the solution of the Goursat problem.

Specifically, we shall require the following

Proposition 4.1. Suppose that

f(y) = 0 if |y| 6∈ [1, 2] or |y/|y| − e1| ≥ c0δ1/2,

where e1 = (1, 0, 0, . . . , 0). Then if c0 > 0 is smaller than a uniform constant which is

independent of δ < 1∫
|ξ/|ξ|−e1|≥δ1/2

∣∣∣ ∫ eiy·ξ−i|y| |ξ|f(y) dy
∣∣∣2 dξ ≤ Cδ−1 ‖f‖2L2 .(4.3)

P r o o f. The proof is modeled after that of Proposition 2.1.

To start, we notice that by decomposing the conic region {ξ : |ξ/|ξ|−e1 | ≥ δ1/2} into

a finite number of pieces, we see that it suffices to prove the estimate when we integrate

over a convex conic subset Γδ. Note then, for later use, that there is a uniform constant

C1 so that if δ < 1

| ζ ′/|ζ| | ≤ C1δ
−1/2 | 1− ζ1/|ζ| |, ζ ∈ Γδ.(4.4)

To be able to apply an integration by parts argument we need to make one further

reduction. Specifically, suppose that 0 ≤ aδ ∈ C∞ is supported in the set where 1/2 ≤
|y| ≤ 4 and |y/|y| − e1| ≤ 2c0δ

1/2 and satisfies the natural bounds

| (∂/∂y1)j(∂/∂y′)αaδ(y) | ≤ Cj,αδ−|α|/2 , ∀j, α,

associated with this support assumption. Here y′ = (y2, . . . , yn). If we then set

(Sδf)(ξ) =

∫
eiy·ξ−i|y| |ξ|aδ(y)f(y) dy,(4.5)

then it suffices to show that

δ

∫
ξ∈Γδ

|Sδf(ξ)|2 dξ ≤ C‖f‖2L2 .(4.6)

The dual version of this is equivalent to

δ‖SδS∗δh‖L2(Γδ) ≤ C‖h‖L2 , supp h ⊂ Γδ,(4.7)

where SδS
∗
δ is the integral operator with kernel

Kδ(ξ, η) =

∫
eiΦ(y,ξ,η) a2

δ(y) dy , ξ, η ∈ Γδ,

with the phase being

Φ(y, ξ, η) = y · (ξ − η)− |y| ( |ξ| − |η| ).
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Recall that aδ(y) = 0 if |y/|y| − e1| ≥ 2c0δ
1/2. Assuming, as we may, that c0 is small

enough, we claim that there is a constant A so that, for every N ,

Kδ(ξ, η) ≤ CN
{
δ(n−1)/2(1 + δ|ξ1 − η1|)−N , if δ1/2|ξ1 − η1| ≥ A|ξ′ − η′|
δ(n−1)/2−N (δ−1 + |ξ′ − η′|2)−N , if δ1/2|ξ1 − η1| ≤ A|ξ′ − η′| .

(4.8)

This yields (4.7) by Young’s inequality since for large N

δ(n−1)/2

∫
A|ξ′−η′|≤δ1/2|ξ1−η1|

(1 + δ|ξ1 − η1|)−N dξ(4.9)

+ δ(n−1)/2−N
∫
δ1/2|ξ1−η1|≤A|ξ′−η′|

(δ−1 + |ξ′ − η′|2)−N dξ = O(δ−1) .

To prove the first bound we need to integrate by parts with respect to y. To do so we

note that, by the mean value theorem,

|∂Φ/∂y1|=
∣∣ (ξ1 − η1)− y1/|y| (|ξ| − |η|)

∣∣
=
∣∣ (ξ1 − η1)− y1/|y| · |ζ|−1ζ · (ξ − η)

∣∣
≥ |ξ1 − η1| · | 1− ζ1/|ζ| | − | | ζ|−1ζ ′ · (ξ′ − η′) |,

where ζ is a point on the line segment connecting ξ and η. Since we are assuming that

Γδ is convex we must have ζ ∈ Γδ and so | 1 − ζ1/|ζ| | ≥ cδ for some uniform c > 0.

Therefore, if we let A = 2C1, where C1 is as in (4.4), we conclude that for ξ, η ∈ Γδ we

must have

|∂Φ/∂y1| ≥ cδ/2 · |ξ1 − η1| if δ1/2|ξ1 − η1| ≥ A|ξ′ − η′|.
Since we also have

|(∂/∂y1)jΦ| ≤ Cjδ|ξ − η| ≤ C ′jδ|ξ1 − η1|, j ≥ 2, y ∈ supp aδ

for such ξ and η, the integration by parts argument that was used in the proof of Pro-

position 2.1 yields the first bounds in (4.8). The factor δ(n−1)/2 comes from the support

properties of the symbol.

The argument for the other bound in (4.8) is similar except now we must use our

assumption that aδ = 0 when |y/|y| − e1| ≥ 2c0δ
1/2 with c0 small. To do this, we first

note that

|∇y′Φ|≥ |ξ′ − η′| − | y′/|y| | · | |ξ| − |η| |
≥ |ξ′ − η′| − 2c0δ

1/2|ξ − η|.

Hence if |ξ1− η1| ≤ Aδ−1/2|ξ′− η′|, where A is the fixed constant chosen in the last step,

we conclude that

|∇y′Φ| ≥ |ξ′ − η′|/2, y ∈ supp aδ

if c0 is small. Notice also that, because of our assumptions,

|(∂/∂y′)αΦ| ≤ C|ξ − η| ≤ C ′δ−1/2|ξ′ − η′|.

Using these two bounds one obtains the other part of (4.8), which finishes the proof.

The preceding proposition will be used to handle relatively high frequency contribu-

tions to the solution of (1.4). To handle the low frequency parts of the Fourier integrals

defining w we shall need the following related, but simpler, result.
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Proposition 4.2. If T ≥ 1 then∥∥∫ eix·ξ−i|x| |ξ|f̂(ξ)dξ
∥∥
L2(T/2≤|x|≤T )

(4.10)

≤ CT 1/2
(
‖f̂‖L2(|ξ|≤1) +

∞∑
k=0

2k/2‖f̂‖L2(2k≤|ξ|≤2k+1)

)
.

P r o o f. If we change variables, we can write the left side as

T−n/2
∥∥ ∫ eix·ξ−i|x| |ξ|f̂(ξ/T )dξ

∥∥
L2(1/2≤|x|≤1)

.

If, for fixed 1/2 ≤ t ≤ 1, we apply the the Sobolev trace theorem to the function

x→
∫
eix·ξ−it|ξ|f̂(ξ/T )dξ

we find that∫
θ∈Sn−1

∣∣∣∫
Rn
eitθ·ξ−it|ξ|f̂(ξ/T )dξ

∣∣∣2dθ
≤ C

(
‖f̂(ξ/T )‖L2(|ξ|≤1) +

∞∑
j=0

2j/2‖f̂(ξ/T )‖L2(2j≤|ξ|≤2j+1)

)2

.

If we now integrate over 1/2 ≤ t ≤ 1, we conclude that the left side of the inequality in

the statement of the lemma is dominated by

T−n/2
(
‖f̂(ξ/T )‖L2(|ξ|≤1) +

∞∑
j=0

2j/2‖f̂(ξ/T )‖L2(2j≤|ξ|≤2j+1)

)
≤ T−n/2

(
T 1/2‖f̂(ξ/T )‖L2(|ξ|≤T ) +

∑
2j−1≥T

2j/2‖f̂(ξ/T )‖L2(2j≤|ξ|≤2j+1)

)
≤ 2T 1/2

(
‖f̂‖L2(|ξ|≤1) +

∞∑
k=0

2k/2‖f̂(ξ)‖L2(2k≤|ξ|≤2k+1)

)
,

as desired.

5. End of proof. We now must prove (4.1). Since t2 − |x|2 ≥ t on the supports and

since ε > 0 is arbitrary, it suffices to show that the inequality holds when 1 ≤ 2j ≤
t−|x| ≤ 2j+1 and 1 ≤ 2k ≤ t ≤ 2k+1 in supp F . This special case yields (4.1) for a larger

value of ε if the constants are independent of j and k.

If we take

T0 = T/2k ≥ 10, and 1/T0 ≤ δ0 = 2j−k ≤ 1,

then the aforementioned localized inequalities are equivalent to the uniform bounds

2−4kε‖(t2 − |x|2)−1/2+n(1/2−1/q)−εw‖Lq({(t,x):T0/2≤t≤T0})(5.1)

≤ Cε‖(t2 − |x|2)1/q+εF‖Lq/(q−1) , 2 ≤ q ≤ 2(n+ 1)/(n− 1),

assuming now that

F (t, x) = 0 if t− |x| 6∈ [δ0, 2δ0] or t 6∈ [1, 2].(5.2)
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Note that the weights are essentially constant on the support of F . We can simplify

the notation if we decompose the norm in the left side of the preceding inequality into

ones over regions where t− |x| and, hence, t2 − |x|2 are essentially constant. Specifically,

since δ ≥ 1/T0, we notice that (5.1) would be a consequence of the uniform bounds(
δT0

)−1/2+n(1/2−1/q)(
δ/T0

)ε ‖w‖Lq({(t,x):T0/2≤t≤T0, δ≤t−|x|≤2δ})(5.3)

≤ Cεδ1/q
0 ‖F‖Lq/(q−1) , 2 ≤ q ≤ 2(n+ 1)/(n− 1), δ0 ≤ δ ≤ T0.

If δ > 10, say, the inequality is easy. For then E+(t−s, x−y) = O((t(t−|x|))−(n−1)/2)

for (t, x) in the support of the norm in the left and (s, y) ∈ supp F . Therefore, the estimate

for δ > 10 just follows from Hölder’s inequality, and so from now on we shall assume that

δ0 ≤ δ ≤ 10.(5.4)

As before, by interpolation, to prove (5.3), it suffices to show that the inequality holds

for the endpoints where q = 2 or q = 2(n+ 1)/(n− 1). The arguments for the two cases

are slightly different. Let us first concentrate on q = 2(n + 1)/(n − 1), since this is the

more delicate of the two cases.

For this exponent, let us notice that it is easy to handle (5.3) when δ ≈ δ0. Indeed,

since

−1/2 + n(1/2− 1/q) = 1/q, when q = 2(n+ 1)/(n− 1),

a stronger version of (5.3) for, say, δ0 ≤ δ ≤ 10δ0 would be

T
1/q
0 ‖w‖Lq({(t,x):T0/2≤t≤T0}) ≤ C‖F‖Lq/(q−1) , 2(n+ 1)/(n− 1).

But if we use a routine freezing argument (see, e.g. [19, §0.3]), we see that this follows

from the following estimates of Strichartz [25]

‖u(t− s, · )‖Lq(Rn) ≤ C|t− s|−2/q‖g‖Lq/(q−1)(Rn),

where

u(t, x) = (2π)−n
∫
eix·ξ sin(t|ξ|)ĝ(ξ) dξ/|ξ|.

This inequality implies the preceding one since if we let K(t, s) = |t − s|−2/q, when

(t, s) ∈ [T0/2, T0] × [1, 2] and 0 otherwise then, by Hölder’s inequality, the associated

integral operator sends Lq/(q−1)(R) to Lq(R) with norm O(T
−1/q
0 ).

To handle the remaining cases where 10δ0 ≤ δ ≤ 10, first notice that if we use Hölder’s

inequality, as in the proof of Proposition 3.1, then we find that w in (5.3) is dominated

by δ
1/q
0 times(∫ 2δ0

δ0

∣∣∣∫∫ ei(x−y)·ξ|ξ|−1 sin((t− τ − |y|)|ξ|)F (τ + |y|, y)dξdy
∣∣∣q/(q−1)

dτ
)(q−1)/q

.

Therefore, since we are assuming that δ ≥ 10δ0, if we replace t by t − τ , we conclude

that the remaining cases of (5.3) for q = 2(n+ 1)/(n− 1) would be a consequence of the

following

Proposition 5.1. For n ≥ 2 set

(Wg)(t, x) =

∫
Rn

∫
{y∈Rn: 1≤|y|≤2}

ei(x−y)·ξ−i(t−|y|)|ξ|g(y)dydξ/|ξ|.
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Then, if q = 2(n+ 1)/(n− 1), ε > 0, t > 5 and δ < 10

‖Wg(t, · )‖Lq({x: δ≤t−|x|≤2δ}) ≤ Ctε−2/qδ−ε−1/q‖g‖Lq/(q−1) .(5.5)

As before, we shall prove this using complex interpolation. To this end, let us set

(Wzg)(t, x) = (z − (n+ 1)/2)ez
2

∫∫
1≤|y|≤2

ei(x−y)·ξ−i(t−|y|)|ξ||ξ|−zg(y)dydξ,

so that W1 is a multiple of W . Therefore, if we apply complex interpolation we conclude

that (5.5) would be a consequence of

‖Wzg(t, · )‖L∞(Rn) ≤ Ct−(n−1)/2‖g‖L1 , Re z = (n+ 1)/2,(5.6)

and

‖Wzg(t, · )‖L2({x: δ≤t−|x|≤2δ}) ≤ Ctε/2δ−ε−1/2‖g‖L2 , Re z = 0.(5.7)

Inequality (5.6) follows immediately from (1.12) and our assumption that t ≥ 5. The

L2 estimate is much harder. For it we shall need to use ideas from microlocal analysis.

These techniques will only allow us to handle the contributions from large frequencies ξ,

depending on the scales δ and t. Fortunately, though, it is easy to handle low frequencies

by appealing to Proposition 4.2.

To be more precise, let

α = 1 + ε/2,

and fix ρ ∈ C∞ satisfying ρ(ξ) = 0 for |ξ| ≤ 1 and ρ = 1 for |ξ| ≥ 2. If we then let

(Rzg)(t, x)

= (z − (n+ 1)/2)ez
2

∫∫
1≤|y|≤2

ei(x−y)·ξ−i(t−|y|)|ξ||ξ|−z(1− ρ(t1−αδαξ))g(y)dydξ,

the dual version of (4.10) corresponding to T = 2 yields

‖Rzg(t, · )‖L2(Rn) ≤ Ct(α−1)/2δ−α/2‖g‖L2(Rn), Re z = 0.(5.8)

In view of this, we conclude that (5.7) would follow if

‖Szg(t, · )‖L2({x: δ≤t−|x|≤2δ}) ≤ Cδ−1/2‖g‖L2 , Re z = 0,(5.9)

with

(Szg)(t, x) = ez
2/2

∫∫
1≤|y|≤2

ei(x−y)·ξ−i(t−|y|)|ξ||ξ|−zρ(t1−αδαξ)g(y)dydξ.

Note that the bounds here are stronger than those in the two preceding inequalities.

However, since we shall need to apply Proposition 4.1, it is necessary to assume here that

t− |x| is bounded below by δ in the norm in the left.

To proceed we need a couple of lemmas. Both follow from straightforward integration

by parts arguments (see [3]).

Lemma 5.2. If a(ξ) belongs to a bounded subset of S0, and if ρ ∈ C∞ satisfies ρ(ξ) = 0

for |ξ| ≤ 1, and ρ = 1, |ξ| ≥ 2, then, for α > 1 and t > 1,∣∣∫ eix·ξ−it|ξ|a(ξ)ρ(t1−αδαξ) dξ
∣∣ ≤ CN,α(δ/t)N , if | |x| − t | ≥ δ/2.
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Lemma 5.3. Suppose that ψ(τ) ∈ C∞(R) vanishes near τ = 0 and equals 1 when |τ |
is large. Then if δ is small, ρ and α > 1 are as above, and t > 1,∣∣∣ ∫ eix·ξ−it|ξ|a(ξ)ψ

(
δ−1/2(x/|x| − ξ/|ξ|)

)
ρ(t1−αδαξ) dξ

∣∣∣ ≤ CN (δ/t)N ,

where, for a given N , the constants depend only on dist(0, supp ψ) and the size of finitely

many derivatives of ψ, if ρ is fixed and a belongs to a bounded subset of S0.

To apply these two lemmas we require another simple geometric lemma. In contrast to

Lemma 3.3, which concerned the intersection properties of two essentially externally tan-

gent spheres, the following is about the intersection of two essentially internally tangent

spheres.

Lemma 5.4. Suppose that t > 5, 1 ≤ |y| ≤ 2 and that | |x − y| − |t − |y|| | ≤ δ/2 and

δ ≤ t− |x| ≤ 2δ. It then follows that if δ is smaller than a fixed positive constant

| y/|y| − x/|x| | ∈ [C−1
0 δ1/2, C0δ

1/2],

for some absolute constant C0.

P r o o f. As in the proof of Lemma 3.3 we shall use the identity∣∣∣ x|x| − y

|y|

∣∣∣2 =
|x− y|2 − (|x| − |y|)2

|x| |y|
=
|x− y|+ |x| − |y|

|x| |y|
· |x− y| − (|x| − |y|)

δ
· δ.

By our assumptions the first factor on the right is bounded from above and below. Writing

|x − y| − (|x| − |y|) = |x − y| − (t − |y|) + t − |x|, we reach the same conclusion for the

second factor, yielding the result.

To use Lemma 5.4 we note that if 1 ≤ |y| ≤ 2, |x| ≥ 4, ν ∈ Sn−1 and |x/|x|−ν| ≥ δ1/2

then |(x− y)/|x− y|−ν| ≥ δ1/2/2 if δ is small and |y/|y|−ν| ≤ c0δ1/2, with c0 > 0 being

a small uniform constant. With this in mind, we conclude that, for small δ, (5.9) follows

from Proposition 5.1. Thus we have established the inequalities when δ < δ1, with δ1
being a uniform small constant.

Clearly, though, the above arguments will also show that (5.9) holds if δ1 < δ < 10.

To see this we note that, by an integration by parts argument, if t−|x| ≥ δ1 and Re z = 0

we can write

(Szg)(t, x)

= ez
2/2

∫∫
1≤|y|≤2

ei(x−y)·ξ−i(t−|y|)|ξ||ξ|−zρ(t1−αδαξ)b(y/|y| − ξ/|ξ|)g(y)dydξ +O(t−N ),

if b ∈ C∞ vanishes near ξ = 0 but equals one outside of a sufficiently small neighborhood

the origin (depending on δ1). Because of this, the estimate for δ > δ1 just follows from

Proposition 2.1.

To finish, we still need to see that (5.3) holds when q = 2, assuming (5.2) and (5.4).

To do this, as in the preceding case, it is convenient to split things into a low and high

frequency part. To this end, let us write w = w0 + w1, where

w0 =

∫∫
ei(x−y)·ξβ(δξ) sin((t− s)|ξ|)F (s, y)dsdydξ/|ξ|,
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where β ∈ C∞0 satisfying β = 1 near the origin has been fixed. It then suffices to show

that when q = 2, (5.3) holds when w is replaced by wj , j = 0, 1.

Since (1 − β(δξ))/|ξ| = O(δ), the bound for the high frequency part just follows

from Schwarz’s inequality and the variant of (5.7) where |ξ|−z, Re z = 0 is replaced by

δ−1(1−β(δξ))/|ξ|. Since this inequality clearly follows from the proof of (5.7), we are left

with estimating the low frequency part w0.

For this piece, we first note that∫
|ξ|≤1

ei(x−y)·ξβ(δξ) sin((t− s)|ξ|)dξ/|ξ| = O((1 + |x− y|)−(n−1)/2).

Because of this, we conclude that the variant of (5.3) holds when q = 2 if we replace w

by ∫∫
|ξ|≤1

ei(x−y)·ξβ(δξ) sin((t− s)|ξ|)F (s, y)dsdydξ/|ξ|.

Consequently, our proof of (5.3) and hence (1.9) would be complete if we could show that

when

w̃(t, x) =

∫∫
|ξ|≥1

ei(x−y)·ξ+i(t−s)|ξ||ξ|−1β(δξ)F (s, y)dsdydξ,

we have

T
−1/2
0 δ−1/2‖w̃‖L2({(t,x): T0/2≤t≤T0, δ≤t−|x|≤2δ }) ≤ C(1 + | log δ|)δ1/2

0 ‖F‖L2 .(5.10)

To prove this, we first notice that the Schwarz inequality and Proposition 4.2 give

T
−1/2
0 δ−1/2‖w̃‖L2({(t,x): T0/2≤t≤T0, δ≤t−|x|≤2δ })

≤ C
∞∑
k=0

(∫ ∣∣∣∫∫
2k≤|ξ|≤2k+1

ei(x−y)·ξ−is|ξ||ξ|−1/2β(δξ)F (s, y)dξdsdy
∣∣∣2dx)1/2

.

If we recall (5.2) and use Schwarz’s inequality as before, we see that the right side is

dominated by δ
1/2
0 times

∞∑
k=0

(∫∫ ∣∣∣ ∫∫
2k≤|ξ|≤2k+1

ei(x−y)·ξ−i(τ+|y|)|ξ||ξ|−1/2β(δξ)F (τ + |y|, y)dξdy
∣∣∣2dxdτ)1/2

,

yielding (5.10) by the dual version of Proposition 4.2 since the k-th summand vanishes

if k is larger than a fixed multiple of (1 + | log δ|).

6. Further problems. It would be interesting to try to sharpen the inequalities

stated here in a number of ways. First, one would like to have a scale invariant version

of (1.9). For odd spatial dimensions, in the spherically symmetric case, it was shown in

[3] that if F = 0 for |x| > t and if w solves (1.4), then

‖(t2 − |x|2)−αw‖Lq(R1+n
+

) ≤ Cγ‖(t
2 − |x|2)βF‖Lq/(q−1)(R1+n

+
),(6.1)

if β < 1/q, α+ β + γ = 2/q, where γ = (n− 1)(1/2− 1/q),

provided that 2 < q ≤ 2(n+1)/(n−1). Presumably this inequality extends to the general

case. In view of the discussion in the introduction, such an inequality would be sharp.

It would also be interesting to try to prove a natural weighted Strichartz inequality

which does not involve assuming a lower bound on t − |x| in the support of F . Such
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estimates might allow one to drop the assumption that the data in (1.1) have compact

support and replace it by sharp decay assumptions at infinity (cf. [12]).

Finally, it would be interesting to obtain sharp lifespan estimates for subcritical powers

p < 1, that is, those satisfying

(n− 1)p2 − (n+ 1)p− 2 ≤ 0.

In [12], sharp estimates were obtained if 1 < p ≤ (n+ 1)/(n− 1). However, it is not clear

that the techniques in the present paper can be used to obtain sharp results for larger

subcritical powers.
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