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Abstract. We review the main ideas of the two dimensional Sen geometry and apply these
concepts i. in finding the ‘most natural’ quasi-local energy-momentum, ii. in characterizing the
zero energy-momentum and zero mass configurations and iii. in finding the quasi-local radiative
modes of general relativity.

1. Introduction. As a consequence of the exact diffeomorphism invariance of gen-

eral relativity the familiar Lagrangian scenario [1,2] does not yield reasonable energy-

momentum and angular momentum density for the gravitational field. More precisely, if

for the gravitational field variables we choose the components gab of the metric in some

coordinate system {xa} then the canonical energy-momentum, the canonical spin and

the canonical Noether current will be pseudotensorial; whilst if a rigid (e.g. orthonormal

or complex null) tetrad field {Eaa } is chosen for the field variables then the canonical

Noether current will be SO(1, 3)-gauge dependent [3-5].

If however the spacetime is asymptotically flat then one can define global energy-

momentum, i.e. it is possible to associate an energy-momentum four-vector with the

whole spacetime. Namely, if the spacetime is asymptotically flat at spacelike infinity

then this four-vector is the ADM energy-momentum [6], P aADM [$∞], associated with a

spherical cut $∞ of the spacelike infinity H of Beig and Schmidt [7,8]. If the spacetime is

asymptotically flat at future null infinity then this energy-momentum is the Bondi–Sachs

energy-momentum P aBS [$∞] associated with a spherical cut $∞ of the future null infinity

I+ of Penrose [9,10]. The 2-surfaces $∞ can always be considered as the intersections

H∩Σ and I+ ∩Σ, respectively, where Σ is a smooth spacelike hypersurface extending to
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spacelike/future null infinity. By the positive energy theorem [10-29] these four-vectors

are future directed and timelike provided the matter fields satisfy the dominant energy

condition; futhermore they are zero iff the domain of dependence D(Σ) is flat [18,23,24].

The most elegant proof of this theorem is probably that based on the use of two-

component spinors. (A general and exhaustive introduction to the theory of two-compon-

ent spinors is the volume of Penrose and Rindler [10]. Our conventions and notations are

mostly those of [10]. *) To recall the basic idea let us define the Nester–Witten 2-form

associated with any pair of smooth spinor fields λA and µA by

u(λ, µ̄) := iµ̄A′∇BB′λAdxa ∧ dxb. (1.1)

The importance of this complex valued 2-form is shown by the following three facts. First,

its exterior derivative takes the form

du(λ, µ̄) = −1

2
λAµ̄A

′
Gab

1

3!
εbcdedx

c∧dxd∧dxe+i∇BB′λA∇CC′ µ̄A′dxa∧dxb∧dxc. (1.2)

The second term on the right, denoted by Γ(λ, µ̄), is known as Sparling’s 3-form [10,30].

This equation looks like a superpotential equation in the Lagrangian field theory: the

Nester–Witten 2-form is the superpotential, Sparling’s 3-form corresponds to the Noether

current and the pair of spinor fields as a single object is the generator the Noether

current is associated with. In fact, Sparling’s form can be extended to be a 3-form on the

bundle of linear frames over the spacetime manifold and the various energy-momentum

pseudotensors can be recovered simply as the pull back of Sparling’s form along various

local sections of the linear frame bundle [31,32]. Second, if $ is any closed, orientable

smooth spacelike 2-surface then one can define the integral

H$[λ, µ̄] :=
2

κ

∮
$

u(λ, µ̄). (1.3)

It is easy to prove that H$ is a Hermitian scalar product on the infinite dimensional

complex vector space C∞($,SA) of the smooth covariant spinor fields on $. Thus if

λ
A
A = (λ0

A, λ
1
A) is a smooth normalized spinor dyad on $ then H$[λA , λ̄B

′
] is a 2 × 2

Hermitian matrix. Now recall that both at spacelike and null infinity there are precisely

two linearly independent constant spinor fields 0λ
A
A = (0λ

0
A, 0λ

1
A) that can be normalized

by εAB0λ
A
A 0λ

B
B = εAB , where εAB is the alternating symbol. Then for any constant

Hermitian matrix KAB ′ the vector (or rather 1-form) field Ka := KAB ′0λ
A
A 0λ̄

B ′

A′ is a

translation at spacelike/null infinity. If we blow up our 2-surface $ to tend to a spherical

cut $∞ of the spacelike/future null infinity such that the dyad λ
A
A tends to the dyad of

the constant spinor fields 0λ
A
A then

H$[λA , λ̄B
′
] −→

{
P
AB ′

ADM [$∞] if $→ $∞ := H ∩ Σ

P
AB ′

BS [$∞] if $→ $∞ := I+ ∩ Σ.
(1.4)

Third, let Σ be a spacelike hypersurface with future directed unit timelike normal ta.

Then the pull back of Sparling’s equation (1.2) along the natural injection i : Σ→M is

* In particular the spacetime signature is (+ – – –), the curvature and Ricci tensors are
RabcdX

b := −(∇c∇d − ∇d∇c)Xa and Rbd := Rabad, respectively, and the curvature scalar is
R := gabRab. Thus Einstein’s equations take the form Gab :=Rab − 12Rgab = −κTab with κ>0.
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equivalent to

DAA′
(
tBA

′
µ̄B

′
DBB′λA − tAB

′
µ̄A

′
DBB′λB

)
= −1

2
taGabλ

Bµ̄B
′
−

− hef tAA
′(
DeλA

)(
Df µ̄A′

)
− 2tAA

′(
DAB′ µ̄B

′)(
DBA′λB

)
,

(1.5)

where hab := gab − tatb is the induced metric, Da is the induced Levi-Civita covariant

derivation on Σ and Da is the 3 dimensional Sen operator [33]: DAA′λB := hea∇eλB =

DAA′λB + χAA′BB′tB
′
Cλ

C . Here χab is the extrinsic curvature of Σ. For µA = λA (1.5)

is the Reula–Tod form [22] of the Sen–Witten identity [33], and if the matter fields satisfy

the dominant energy condition then the first term on the right is positive definite, the

second term is always positive definite but the third term is negative definite. Thus the

right hand side of (1.5) does not have definite sign. If however Σ extends to spacelike or

null infinity then for any constant spinor 0λ
A at infinity there is a solution of the so-called

Sen–Witten equation DAA′λA = 0 on Σ which tends to 0λ
A, furthermore the integral for

$∞ of the left hand side of (1.5) becomes H$∞ [0λ, 0λ̄], yielding a nonnegativity proof of

the ADM and Bondi–Sachs energies [22]. The key object in this non-negativity proof is

therefore the Sen operator Da. This operator is not an intrinsic object on Σ, it depends

on the imbedding of Σ in M too.

Finally we can speak about gravitational energy-momentum at the quasi-local level,

i.e. between the two extrems, the density and the total energy-momentum. The idea

is that we associate energy-momentum with extended but finite pieces of the spacetime

manifold. In contrast to the ADM or Bondi–Sachs energy-momentum, however, there

is not known any generally accepted definition of the quasi-local energy-momentum.

The first expression that may be considered as a definition of the quasi-local energy-

momentum is probably that of Komar [34] (and its modification [35]). This associates an

integral with any closed orientable two-surface and a vector field (the ‘generator of the

quasi-local quantity’). There are proposals based on more or less ad hoc ideas (but yielding

useful energy or mass formulae, e.g. [36,37]), while others are based on Hamiltonian

approaches of general relativity (see e.g. [38-41]).

The definition of Penrose [42] is based on the idea of charge integrals. This associates

a (complex) integral with any closed orientable 2-surface $ and a symmetric spinor field

ωAB on it by

A$[ω] :=
i

κ

∮
$

ωABRABcddx
c ∧ dxd. (1.6)

The quasi-local energy-momentum and angular momentum might be expected to be such

charge integrals with appropriately chosen ‘generators’ ωAB for them. Penrose’s original

proposal was to consider ωAB to be a combination ωabλ
a
Aλ

b
B of the symmetrized tensor

products of the linearly independent solutions λaA of the two-surface twistor equation by

complex constants ωab = ω(ab). With this choice A$[ω] can be interpreted as the integral

of a superpotential [43], too. Finally, many of the proposals in the spinorial approach

are based on the two-surface integral of the Nester–Witten 2-form (1.3). The different

constructions correspond to different chioces for the pair of spinor fields λ
A
A [44-47].

Since we would like to retain the four dimensional spirit of spacetime physics, we

want not only quasi-local energy but a real four-vector P a$ associated with a spacelike
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topological two-sphere (and mass as its length). We think that any physically accept-

able quasi-local energy-momentum and angular momentum expression may depend only

on the intrinsic and extrinsic geometry of $ (and should not depend e.g. on the way

how its normals are extended off $). Furthermore we expect P a$ to be interpretable as

a Noether charge. These three requirements may be satisfied by an expression based on

the integral (1.3) of the Nester–Witten 2-form. Having accepted (1.3) as a definition of

the general framework for the energy-momentum the following basic question remains:

How to choose the two spinor fields λ0
A, λ1

A ∈ C∞($,SA) such that the Hermitian matrix

P
AB ′

$ := H$[λA , λ̄B
′
] represents reasonable gravitational energy-momentum. Or, in

other words, how to define the (spinor constituents of the) generator of the quasi-local

energy-momentum, the so-called ‘quasi-translations’ of $. Mathematically, we need a

linear differential operator /D, depending on the intrinsic and extrinsic geometry of $,

such that dim ker /D = 2 and the two spinor fields λ
A
A are expected to span ker /D. For

example Dougan and Mason [46] chose holomorphic or anti-holomorphic spinor fields:

m̄a∇aλR = 0 or ma∇aλR = 0. Their choices, however, were justified a posteriori by the

nice, acceptable properties of their energy-momentum expression [46,48-50]. Thus the

question arises whether there are other possibilities or the Dougan–Mason choices are the

‘natural’ ones. Furthermore, one may asks how the different constructions (e.g. those

based on charge integrals (1.6) and on the Nester–Witten integrals (1.3)) are related to

each other. Obviously, it is a natural claim to clarify the properties of the ‘most natural’

quasi-local energy-momentum.

The usual formalism in the spinorial approaches is the elegant GHP formalism, which

has been applied extensively to study the geometry of spacelike 2-surfaces [10,51]. Al-

though it has some sophisticated form of covariance, a lot of experience is needed to ‘see’

the geometric content of the formulae in this formalism. The traditional covariance of

a formalism may help and suggest why and what to calculate. Moreover, the extrinsic

curvatures of $ play important role in the present problems. Thus, to clarify the ques-

tions above, we want a covariant spinor formalism on the spacelike 2-surfaces in which

the extrinsic curvatures are fit nicely. This lead us to the two dimensional Sen geometry

of spacelike 2-surfaces [52,53]. From the study of the Sen geometry an interesting, unex-

pected relationship between the two dimensional Ashtekar connection, the Sen- and the

2-surface twistor geometry appeared. The two dimensional Sen geometry was applied to

determine the ‘most natural’ spinor propagation law /DλR = 0. Assuming that /D is first

order and is built up only from the irreducible parts of the Sen operator, it was shown

[54] that /D must be the holomorphy or anti-holomorphy operator of Dougan and Mason.

Thus their choices have been supported. To clarify the properties of the Dougan–Mason

energy-momentum further, we determined the zero energy-momentum and zero mass

spacetime configurations [50]. It turned out, however, that these configurations can be

characterized completely by constant spinor fields admitted by the two dimensional Sen

geometry [54].

In Section 2 we review the main points of the two dimensional Sen geometry. We will

see that this is not simply a copy of the three dimensional one in one fewer dimensions. An

important difference between the one and two co-dimensional submanifolds is that while
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in the co-dimension one case the normal is uniquely determined, in the co-dimension

two case there is a 1-parameter family of unit normals, and as a consequence of this

‘boost-gauge freedom’ the two dimensional Sen and spin connections always have ‘normal’

pieces as well, and the induced spin connection is precisely the two dimensional anti-

self-dual Ashtekar connection. Section 3 is devoted to the study of the Dougan–Mason

energy-momentum. We recall the main idea how the /D operator is determined by the

Sen connection, and then we characterize the zero mass and zero energy-momentum

spacetime configurations. They are flat and pp-wave spacetime geometries with pure

radiation, respectively. In Section 4 we show that the pp-wave Cauchy developments can

be characterized completely not only by the usual Cauchy data on a three dimensional

Cauchy surface Σ but by the two dimensional Sen geometry of its boundary ∂Σ, too.

Finally, in Section 5, we dicuss the possibility of finding the quasi-local representation of

the unconstrained (i.e. radiative) degrees of freedom of general relativity.

2. The Sen geometry of two-surfaces. The usual way of introduction of a new

concept in mathematics is to give a list of symbols and to define the meaning of them.

The Sen geometry of two-surfaces can be defined in this abstract way. Although, for the

sake of simplicity, we will introduce the two dimensional Sen geometry of a two-surface

$ from the imbedding of $ in a four dimensional Lorentzian spacetime, first we list the

main objects of this construction and explain their meaning very briefly. Thus by a two

dimensional Sen geometry we mean a collection ($,SA($), γAB , ϑ
AA′

a , εAB ,∆a), where $

is an orientable 2-manifold, SA($) is a complex vector bundle of rank two over $, γAB
is a bundle automorphism leaving the base points fixed and satisfying γAA = 0 and

γABγ
B
C = δAC , ϑAA

′

a is a certain imbedding of the complexified tangent bundle TC$ of $

into the product bundle SA($)⊗ S̄A
′
($), εAB is a symplectic fibre metric and, finally, ∆a

is a certain covariant derivation on SA($), the so-called two dimensional Sen connection,

which annihilates εAB . Here γAB defines some form of chirality on SA($), playing the role

of the γ5 matrix, and ϑAA
′

a is the 2-surface soldering form, which maps TC$ isomorphically

onto a certain subbundle of SA($)⊗ S̄A
′
($) defined by γAB .

The relativist’s definition of the Sen geometry is much more constructive [52,53]: If

ta, va are future directed unit timelike and unit spacelike normals of $, respectively,

such that tav
a = 0, then Πa

b := δab − tatb + vavb is the projection of TpM onto Tp$ for

all p ∈ $. By means of Πa
b one can define surface tensors, e.g. qab := Πe

aΠf
b gef is the

induced two-metric on $. Let SA($) be the bundle of contravariant unprimed spinors on

$, and let us define γAB := 2tAA
′
vBA′ . γAB is invariant with respect to the ‘boost-gauge

transformation’ (ta, va) 7→ (ta cosh η + va sinh η, ta sinh η + va cosh η) and the conformal

rescalings of the spacetime metric, and it turns out that all the algebraic properties of $

are encoded in γAB . E.g. Πa
b = 1

2 (δABδ
A′

B′ − γAB γ̄A
′
B′). Obviously γ : SA($) → SA($) :

ξA 7→ γABξ
B is an automorphism of SA($). As a consequence of the definition γAA = 0

and γABγ
B
C = δAC hold. Thus γAB has two eigenvalues, ±1, and π±AB := 1

2 (δAB ± γAB)

are the projections of SA($) to the bundle SA±($) of the ±1 (right handed/left handed)

eigenspinors, respectively. Thus γAB defines a chirality on SA($). If oA is a left handed and

ιA is a right handed spinor normalized by oAι
A = 1, then they form a GHP spinor dyad
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on $. The restriction of the soldering form θAA
′

a : TCM → SA(M) ⊗ S̄A
′
(M) to TC$,

denoted by ϑAA
′

a , maps TC$ isomorphically to the Whitney-sum (SA−($) ⊗ S̄A
′+($))

⊕ (SA+($) ⊗ S̄A
′−($)). With this isomorphism the local sections oAῑA

′
and ιAōA

′
of

SA−($) ⊗ S̄A
′+($) and SA+($) ⊗ S̄A

′−($) become (1,0) and (0,1) type vector fields on

$, respectively, in the complex structure of $ [55]. γAB = γ(AB) = 2o(AιB) can also

be considered as a complex fibre metric. Thus there are two metrics on the fibres, the

symplectic εAB and the symmetric γAB .

Let us define the two dimensional Sen operator by ∆a := Πb
a∇b. The action of ∆a is

defined on every (and not only surface) tensor and spinor field, and obviously ∆eεAB = 0.

The two extrinsic curvatures of $, τab := Πe
aΠf

b∇etf and νab := Πe
aΠf

b∇evf , can be

given in a boost-gauge invariant form by Qeab := −Πe
f∇aΠf

b = τeatb − νeavb. Then

Qeab = Q(ea)b, and the expansion tensor of the out and ingoing null rays orthogonal to $

are θab = Qabel
e and θ′ab = Qaben

e, respectively, where la and na are the corresponding

null normals. The mean curvatures of $ are the traces θee and θ′ee, which are just−2 times

the GHP spin coeffitients ρ and ρ′, respectively. Let us define k := det ‖θab‖ = 1
2 (θabθcd−

θacθbd)q
abqcd and k′ := det ‖θ′ab‖ = 1

2 (θ′abθ
′
cd − θ′acθ′bd)qabqcd. These are generalizations

of the Gauss curvature known in the theory of surfaces. Note that although ρ, ρ′, k

and k′ are not boost gauge invariant, their signs are. Qeab can be reexpressed by the

‘non-γAB-metricity’ QAeB := 1
2∆eγ

A
Rγ

R
B of the Sen operator as

Qeab =
1

2

(
δE

′

B′QEaB + δEBQ̄
E′

aB′ +QEaRγ
R
B γ̄

E′

B′ + Q̄E
′

aR′ γ̄R
′

B′γEB
)
. (2.1)

The action of the commutator of two Sen operators on a spinor field is

(∆c∆d −∆d∆c)ξ
A = −RABefΠe

cΠ
f
dξ
B − 2Qe[cd]∆eξ

A. (2.2)

Thus the curvature of the Sen operator is the pull back to $ of the anti-self-dual part of

the spacetime curvature: FABcd := RABefΠe
cΠ

f
d , and T ecd := 2Qe[cd] plays the role of

the torsion. By (2.1) QAEE′B is just the anti-self-dual part of the torsion: TEE′AA′BB′ =

−(εA′B′QAEE′B + εABQ̄A′EE′B′). Expressing RABcd by the Weyl and Ricci spinors and

the Λ scalar FABcd can be reexpressed as

FABcd = − i

2

(
ψABEF γ

EF − φABE′F ′ γ̄E
′F ′

+ 2ΛγAB
)
εcd. (2.3)

Here εcd := tavbεabcd = i
2 (γCDεC′D′ − γ̄C′D′εCD) is the induced volume 2-form on $.

The induced spin connection is defined by

δeλ
A := ∆eλ

A −QAeBλB , (2.4)

which for surface tensors is precisely the induced Levi-Civita covariant differentiation.

δe annihilates both εAB and γAB , and its curvature, defined by −$RABcdξ
BXcY d :=

Xcδc(Y
dδdξ

A)− Y cδc(Xdδdξ
A)− [X,Y ]eδeξ

A for any spinor field ξA and surface vector

fields Xa and Y a, takes the form

$RABcd = −1

2
γAB

((
δcAd − δdAc

)
−

$R

4

(
εC′D′γCD − εCDγ̄C′D′

))
. (2.5)

Here Ae := (∆etf )vf , which, under a boost-gauge transformation, transforms as an

SO(1, 1)-boost-gauge potential. With this extension of δa from surface tensors to spinors



QUASI-LOCAL ENERGY-MOMENTUM 211

we have extended the Levi-Civita covariant derivation to arbitrary tensors. The ‘normal’

piece of this connection is represented by Ae.

Next let us consider ±A
a
eb := Πf

e (ω
a
fb∓

i
2ε
a
b c dω

c d
f ), the pull back to $ of the twice the

self-dual (anti-self-dual) part of the spacetime connection [56]. Here underlined indices

run from 0 to 3 and they refer to an orthonormal basis {Eaa }. If {Eaa } is adapted to $ in

the sense e.g. that Ea0 = ta and Ea3 = va, then ±Ae := 1
2
±A

a b
e εa b = Ea1 qabδeE

b
2 ± iAe;

and, for m,n , ... = 1, 2, ±A
mn
e = ±Aeε

mn is the two dimensional version of the self-dual

(anti-self-dual) Ashtekar connection. Then it is natural to define the two dimensional self-

dual (anti-self-dual) Ashtekar covariant derivative of the (complex) tangent vector field

Xa = EamX
m by ±δeX

a := Eam (∂eX
m + ±Aeε

m
nX

n ) = δeX
a ± iAeε

a
bX

b. Thus, if

εAA , A = 0, 1, is a GHP spinor dyad (whose elements are eigenspinors of γAB) then the

action ±δe on λA = εAA λ
A should be defined by ±δeλ

A := εAA (∂eλ
A − i

2
±Aeγ

A
B λ

B ). A

short calculation shows that our spin connection, defined by (2.4), is precisely −δe.

Because of the presence of the extra, complex metric γAB on the spin spaces, the

decomposition of a two-index spinor φAB into its symmetric and anti-symmetric parts,

φ(AB) and 1
2εABφR

R, respectively, is not irreducible any more. The symmetric part can

be decomposed further as the sum of its γAB-trace and its trace-free part. Similar de-

composition can be carried out in the unprimed indices of the Sen-derivative of a spinor

field λA:

∆A′AλB =
1

2
εAB∆A′Rλ

R − 1

2
γABγ

RS∆A′RλS + TA′AB
RλR =

= ΠR′R
A′AεRB∆R′Kλ

K + TA′AB
RλR.

(2.6)

The equation ∆A′Aλ
A = 0 would be analogous to the Sen–Witten equation, thus ∆A′Aλ

A

may be called the Sen–Witten part of ∆AA′λB . The trace-free symmetric part TA′AB
RλR

turns out to be the two-surface twistor derivative of λR. E.g. the two-surface twistor

equations [42,57] are equivalent to TA′AB
RλR = 0, and i∆A′Aλ

A is just the secondary

part of a local twistor [57]. Finally, one can define the right/left handed parts of these

operators in their primed indices:

∆±R′
RλR : = π̄∓S

′

R′∆S′
SλS ,

T ±R′RS
KλK : = π̄∓K

′

R′TK′RS
KλK .

(2.7)

These four operators form the complete irreducible decomposition of the Sen operator

in the sense that any further application of the symmetry operations and projections on

them yields zero or acts as identity.

Finally, suppose that $ is closed. Then, using the commutator (2.2) and the definitions,

one can derive the two dimensional version of the (integrated) Sen–identity:∮
$

γ̄R
′S′(

∆R′
RλR∆S′

SωS + TR′RS
KλKTS′

RSLωL
)
d$ = − i

2

∮
$

λAωBRABcddx
c ∧ dxd,

(2.8)

where d$ is the volume element on $. The right hand side of (2.8) is just Penrose’s charge

integral. If the spinor fields are solutions of the two-surface twistor equation then (2.8)

reduces to Tod’s formula expressing the charge integral in terms of the secondary parts

of the two-surface twistors [57]. Furthermore, since in our formalism the integrand of
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(1.3) takes the form γ̄R
′S′

∆R′RλRµ̄S′ , Penrose’s charge integrals for the solutions of the

two-surface twistor equation, and hence his energy-momentum expression, can be written

as the Nester–Witten integral H$[λA,∆A′Bω
B ].

3.The Dougan–Mason energy-momentum. Having accepted (1.3) as the frame-

work in which the quasi-local energy-momentum is searched for, we must specify the

spinor propagation law /DλA = 0 within $; i.e. the linear differential operator /D :

C∞($,SA) → E∞($), where E∞($) is the space of the smooth sections of some vector

bundle E($) over $. Since we would like to interpret the solutions of /DλA = 0 as the

spinor constituents of the quasi-translations of $, dimC ker /D = 2 is expected. Further-

more, if $ is imbedded in the Minkowski spacetime then the quasi-translations defined

according to the definition we are intending to introduce here are expected to coincide

with the restriction of the familiar translational Killing vectors to $. This, however, can

be ensured only if /D depends on the extrinsic curvatures of $, too. Thus, in the GHP

formalism, /D is built up from the operators ′∂ and ′∂′ and the spin coeffitients σ, ρ, σ′

and ρ′ (and perhaps from certain curvature components). However, without further idea

these resrtictions do not determine /D, too much freedom remain. On the other hand, the

Sen operator contains all the information about the extrinsic curvatures of $, since it is

just the sum of the two dimensional spin connection and the (spinor form of the) extrinsic

curvature. Thus, in principle, the Sen operator, or more precisely its chiral irreducible

parts,

∆+, ∆−, T +, T − : E∞(−1, 0)⊕ E∞(1, 0) ' C∞($,SA)→ E∞(p, q), (3.1)

might be enough to determine /D, where E(m,n) is the bundle of (m,n) type scalars

over $ [51], m,n ∈ R such that m − n ∈ Z, and the actual values p, q depend on the

chiral irreducible part considered. It turns out that this expectation is in fact correct [54],

namely, if $ is homeomorphic to S2 then the only first order linear differential operators

on C∞($,SA) built up only from the chiral irreducible parts (3.1 ) of the Sen operator and

whose kernel is generically two complex dimensional are −H+ := ∆+⊕T + and −H− :=

∆−⊕T −, the holomorphy and anti-holomorphy operators. These are precisely the choices

of Dougan and Mason [46]. The symplectic inner product of the certainly existing

two holomorphic (anti-holomorphic) spinor fields is always constant, and in the generic

case this is non-zero; i.e. the two holomorphic (anti-holomorphic) spinor fields span

the spin space at each point of $. If however this inner product is zero (these two-spheres

are called ‘exceptional two-spheres’), the two linearly independent solutions of /DλA = 0

do not form a pointwise linearly independent system of spinor fields on $ and they cannot

be interpreded as quasi-translations of $. There might also be exceptional two-spheres for

which there are more than two holomorphic or anti-holomorphic spinor fields. In these

exceptional cases the Dougan–Mason energy-momentum is not well defined.

In what follows we assume that $ is generic, and let λ
A
A , A = 0, 1, be two linearly

independent anti-holomorphic spinor fields normalized by εABλ
A
A λ

B
B = εAB . Then the

the Dougan–Mason quasi-local energy-momentum and mass are

P
AB ′

$ := H$[λA , λ̄B
′
], (3.2)
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m2
$ := εAB εC ′D ′P

AC ′

$ P
BD ′

$ = 2
(
P 00′

$ P 11′

$ − P 01′

$ P 10′

$

)
, (3.3)

respectively. These expressions have a number of nice properties [46,48-50]:

i. P
AB ′

$ = 0 in flat spacetime.

ii. P
AB ′

$ yields the correct results in the weak field approximation.

iii. For round spheres in spherically symmetric spacetimes P
AB ′

$ yields the standard

result of [58].

iv. For small spheres of radius r, P
AB ′

$ is 4
3πr

3 times the energy-momentum vector

of the matter, while in vacuum it is proportional to r5 times the Bel–Robinson

energy-momentum with positive factor of proportionality.

v. If $ tends to a spherical cut $∞ of spacelike infinity then P
AB ′

$ tends to P
AB ′

ADM [$∞].

vi. If $ tends to a spherical cut $∞ of the future null infinity then P
AB ′

$ tends to

P
AB ′

BS [$∞]. At the same time the expression in which the holomorphic rather than

the anti-holomorphic spinor fields are used tends to infinity in general, and tends

to P
AB ′

BS [$∞] in stationary spacetimes. This gives the correct Bondi–Sachs energy-

momentum at past null infinity.

vii. If Σ is a smooth spacelike hypersurface with boundary $ := ∂Σ such that $ is convex

in the sense that the ingoing null normals of $ are not diverging on $ (i.e. the GHP

spin coefficient ρ′ is non-negative) and the dominant energy condition is satisfied on

Σ then H$[λ, λ̄] ≥ 0 for any λA ∈ ker T −. This implies that P 00′

$ ≥ 0, P 11′

$ ≥ 0 and

m2
$ ≥ 0; i.e. the Dougan–Mason energy-momentum is a future directed nonspacelike

vector.

Thus the Dougan–Mason energy-momentum has several nice physical properties. One

may ask, however, whether the converse of i. is true or not; and whether the vanishing

of m2
$ implies the flatness, like in the case of the ADM and Bondi–Sachs masses, or not.

If not, then what are the zero-mass spacetimes? The answer is given by the next two

theorems [50,54]:

Theorem 1. Suppose that $ = ∂Σ, $ is convex in the sense that ρ′ ≥ 0 and the

dominant energy condition is satisfied on the domain of dependence D(Σ) of Σ. Then the

following statements are equivalent :

1. P
AB ′

$ = 0,

2. D(Σ) is flat ,

3. there exist two linearly independent spinor fields on $ that are constant with respect

to the two dimensional Sen connection.

Theorem 2. Suppose that $ = ∂Σ, ρ′ ≥ 0 and the dominant energy condition is

satisfied on D(Σ). Then the following statements are equivalent :

1. m2
$ = 0,

2. D(Σ) is a pp-wave geometry and the matter is pure radiation (i.e. D(Σ) admits a

constant null vector field La and TabL
b = 0),

3. there exists a Sen-constant spinor field on $.
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The equivalence of the first two statements means that the converse of property i.

above is also true, but the vanishing of the mass does not imply the flatness of D(Σ). Zero

mass is the characteristic property of pure matter plus gravitational waves with special

symmetry, and these results are in accordance with our physical picture. However, the

equivalence of the second and third statments are surprising from the viewpoint of the

standard initial value problem of general relativity. Namely, the information that the

four dimensional D(Σ) is flat or is a pp-wave geometry with pure radiation is completly

encoded not only in the familiar initial data set on the three dimensional Σ, but in the

Sen geometry of the two dimensional boundary of Σ, too. Thus gravity, together with

matter fields satisfying the dominant energy condition, is a system which has some form

of rigidity.

4. pp-wave geometry encoded in $. Although the theorems of the previous section

appear to characterize the zero energy-momentum and zero mass cases on equal footing,

there is an important difference between these two. While in the zero energy-momentum

case we can determine the metric of D(Σ) from the Sen geometry of $ by the first theorem,

that is flat, in the zero mass case we can determine the class the metric of D(Σ) belongs to.

Thus one may ask whether all the information about the metric of D(Σ) itself is encoded

in the Sen geometry of $. The answer is in the affirmative [59], and in the present section

we sketch its proof.

In what follows we assume that the conditions of the second theorem are satisfied.

Let λA be a Sen-constant spinor field, µA be a non-constant anti-holomorphic and νA a

nonconstant holomorphic spinor field on $. Then these spinor fields are nowhere vanishing

and can be normalized by λAµ
A = 1 and λAν

A = 1. Thus {λA, µA} and {λA, νA} are

normalized anti-holomorphic and holomorphic spin frames, respectively. Their deviation

can be characterized by the globally defined complex function Φ := µAν
A since(

λA, νA
)

=
(
λA, µA

)( 1 −Φ
0 1

)
. (4.1)

Thus Φ is the only non-trivial component of the SL(2,C) matrix connecting the holo-

morphic and anti-holomorphic spin frames. For a moment let us fix ($, γAB , εAB) and

let λA be a fixed nowhere vanishing spinor field on $. Then it is not difficult to prove

that there is a one-to-one correspondence between the functions Φ : $ → C modulo

constants and the gauge equivalence classes of Sen connections on $ admitting λA as a

constant spinor field. Applying the commutator (2.2) e.g. to µA and using (2.3), we

obtain qabδaδbΦ = (ψABCDγ
CD − φABC′D′ γ̄C

′D′
+ 2ΛγAB)µAµB . Thus Φ is a potential

for the curvature.

By theorem 2 we know that the domain of dependence D(Σ) is a pp-wave geometry.

Then, at the points of D(Σ), ψABCD = ψλAλBλCλD for some complex function ψ. (For

the sake of simplicity let us concentrate only on the vacuum case, when φABA′B′ = 0 and

Λ=0.) Substituting this expression into the spinor Bianchi identity we get λA∇AA′ψ=0;

while substituting it into the potential equation we obtain qabδaδbΦ = ψ|$γABλAλB .

Therefore ψ|$, the value of the only independent component of the spacetime curvature on

$, is determined by the Sen geometry of $. On the other hand, we know that La := λAλ̄A′
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is constant on D(Σ), and hence it is a gradient: La = ∇au for some smooth u : D(Σ)→R.

Let us define the level surfaces of the function u by Su := {p ∈ Σ|u(p) = u}. The surfaces

Su form a smooth foliation of Σ, furthermore by the Gauss equation it is easy to show

that they are locally flat Riemann surfaces. Let (ζ, ζ̄) be local holomorphic and anti-

holomorphic coordinates on Su; i.e. Ma := ( ∂∂ζ )a and M̄a := ( ∂
∂ζ̄

)a are (1,0) and (0,1)

type vector fields, respectively, in the complex structure of Su. Then there is a uniquely

defined spinor field IA on Σ such that λAI
A = 1 and λAĪA

′
= Ma, IAλ̄A

′
= M̄a hold.

Then contracting the spinor Bianchi identity with ĪA
′

we get Ma∇aψ = 0; i.e. the

function ψ is anti-holomorphic on each Riemann surface Su. Thus if Bu := $ ∩ Su, the

boundary of the Riemann surfaces Su, were nonempty and had simple structure then the

value of ψ on $ would determine ψ completely on the whole Σ and hence on the whole

D(Σ), too. In general Bu may have very complicated structure. However, a certain

generalization of the usual convexity condition of the theory of surfaces rules out the

strange boundary structure [59]:

Proposition. If k > 0 and k′ > 0 on $, and ρ ≤ 0 and ρ′ ≥ 0 somewhere on $, then

Su is homeomorphic to R2 and Bu is a single closed smooth curve in $.

Therefore qab, Φ and γABλ
AλB determine ψ on D(Σ). To show that the Sen geometry

determines the metric of D(Σ) too, we should choose a coordinate system.

By the proposition above the complex coordinates (ζ, ζ̄) are globally defined on Σ,

and they can be extended in a natural way along the maximally extended integral curves

of La. Similarly, we can extend the function u along these integral curves too. Finally,

let v be the affine parameter of the null geodesic integral curves of La, measured from

Σ. Then (v, ζ, ζ̄, u) is a coordinate system on the set of points of the integral curves

of La crossing Σ somewhere. In these coordinates the metric takes the form ds2 =

2dvdu−2dζdζ̄+2(Gdζ+Ḡdζ̄)du+2Hdu2, where H is a real and G is a complex function

of ζ, ζ̄ and u; and by an approporiate allowed transformation ζ 7→ ζ ′ := exp(ia(u))ζ one

can ensure that G satisfies the condition ∂G
∂ζ̄
− ∂Ḡ

∂ζ = 0. In these coordinates Einstein’s

equations take the form ∂
∂ζ (∂H

∂ζ̄
− ∂Ḡ

∂u ) = 0 and ∂
∂ζ̄

(∂H
∂ζ̄
− ∂Ḡ

∂u ) = ψ. Their integrability

condition is just ∂ψ
∂ζ = 0. To see that the boundary conditions determine the solution of

Einstein’s equations completely, let us restrict the coordinates further. Observe that for

any smooth function V of ζ, ζ̄ and u the mapping V : (v, ζ, ζ̄, u) 7→ (v+V (ζ, ζ̄, u), ζ, ζ̄, u)

is a smooth diffeomorphism of the domain of the coordinate system onto itself and such a

transformation preserves the form of the line element with H ′ := H + ∂V
∂u , G′ := G+ ∂V

∂ζ .

This freedom can be used to reduce the number of unknown functions in the line element.

The usual choice is that in which G′ = 0 [60,61]. For such a transformation, however, the

‘generating function’ V would not vanish on $ = ∂Σ; i.e. V would deform the 2-surface

$. Since $ is fixed in our problem and the boundary data are given on $, we should

find a weaker coordinate condition such that the corresponding transformation V leaves

$ fixed. In fact, there exists a uniquely determined function V (ζ, ζ̄, u), vanishing on $,

such that G′ is a holomorphic function of ζ. Thus G′ is determined by its value on $,

and by the Einstein equations, ∂2H′

∂ζ∂ζ̄
= 0 and ∂2H′

∂ζ̄2
= ψ + ∂2Ḡ′

∂u∂ζ̄
, H ′ is also uniquely

determined by its value on $. Finally, it is a direct calculation to check that the value
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of H ′ and G′ on $ is determined by the Sen geometry of $ and the boost gauge defined

by V(Σ) on $.

5. Quasi-local radiative modes? In Minkowski spacetime the source free Maxwell

and linear Einstein equations take the form of the linear zero-rest-mass-field-equations,

whose solutions can always be written as superpositions of Fourier modes. If $ is a space-

like convex two-surface homeomorphic to S2, then each Fourier mode can be characterized

completely by its value on $. Thus the two transversal radiative modes of Maxwell and

linear Einstein theory are encoded in certain fields on $. In exact general relativity (with-

out any Killing symmetry) the radiative modes are defined only at null infinity, where the

field equations become linear [6,62]. From the point of view of radiative modes property

vi. of the Dougan–Mason energy-momentum is especially interesting: In stationary space-

times (i.e. in absence of radiation) the energy-momentum based on the holomorphic and

anti-holomorphic spin frames give the same result, P
AB ′

BS [$∞]. Thus it is the deviation

of the holomorphic and anti-holomorphic structures that characterizes the presence of

radiation. As a by-product of the investigations of the properties of the Dougan–Mason

energy-momentum we obtained a similar result for the pp-wave configurations of exact

general relativity, namely the (purely radiative) four-metric is encoded into the deviation

of the holomorphic and anti-holomorphic structures of $, again. In these special cases the

field equations are linear, and the radiative modes, defined by the Fourier componenets,

coincide with the unconstrained degrees of freedom. The deviation of the holomorphic and

anti-holomorphic structures can however be defined for generic 2-spheres in generic space-

times too, which might yield the possibility of finding a nice quasi-local representation of

the unconstrained degrees of freedom.
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