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Abstract. The model of generalized quons is described in an algebraic way as certain
quasiparticle states with statistics determined by a commutation factor on an abelian group.
Quantization is described in terms of quantum Weyl algebras. The corresponding commutation
relations and scalar product are also given.

1. Introduction. It is well known that all standard particles in physics like elec-

trons, photons, protons and all others can be divided into two classes according to their

statistics: fermions and bosons. In the last years particle excitations equipped with new

kind of statistics have been discovered. For example particles with fractional spin and

statistics interpolating between fermions and bosons appears in the two dimensional field

theories [1, 2, 3, 4, 5, 6]. In this paper we are going to study a generalized quons as

a generalization of Wilczek model of anyons. For our generalized quons we obtain the

following relations

a∗i ai − qi ai a∗i = 1, a∗i aj − bij aj a∗i = 0, for i 6= j,

ai aj − bij aj ai = 0, a∗i a
∗
j − bij a∗j a∗i = 0,

where −1<qi<1 are real parameters, and bij = bji are some coefficients.

2. Generalized quons. Let us consider a particle moving on a plane with N singular

points. The proper physical nature of such singularities is not important for us. Only

discrete rotations of this particle around singularities are essential for our model. The

moving between singularities is completely irrelevant. Hence it is not difficult to show

that the rotational excitations on singularities behave like a system of N independent

particles. These rotational excitations are called generalized quons. In this Section we are
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going to describe the Weyl algebra for our system of generalized quons. We assume that

the i-th singular point is characterized by a real numbers qi, −1<qi<1, i = 1, ..., N . We

also assume that σi is an operator for discrete rotation around the i-th singular point.

Next we assume for simplicity that σi, (i = 1, ..., N) generate an abelian group Γ. For

rotations on 2π angle we have Γ = Z⊕, ...,⊕Z, (N -sumands) for example. It is natural

to assume that the statistics for our quons is determined by a commutation factor in the

sense of Scheunert [7] on the group Γ. Recall that a commutation factor on an abelian

group Γ is a mapping b : Γ× Γ −→ C− {0} such that

b(α+ β, γ) = b(α, γ)b(β, γ), b(α, β)b(β, α) = 1 (1)

for every α, β, γ ∈ Γ. We assume here in addition that b(α, α) = 1 for every α ∈ Γ.

Let us give a short introduction to the concept of quantum Weyl algebras [8, 9] for

the description of quantum states of our generalized quons. Let E be a finite dimensional

Hilbert space equipped with a basis xi, i = 1, ..., N = dimH. The complex conjugate

space is denoted by E∗. Note that our notation is not covariant. We assume that the

pairing (.|.) : E∗ ⊗ E −→ C and the corresponding scalar product is given by

(u∗|v) ≡< u|v >:= ΣN
i=1u

ivi, (2)

where u∗ = ΣN
i=1u

ix∗i and v = ΣN
i=1v

ixi. We assume that the element xi describe the

quantum state corresponding to one left rotation around the i-th singular point, i.e xi

corresponds to the generator σi. In other words the space E is graded by Γ, i.e. xi is a

homogeneous element with respect to the gradation of grade σi. Similarly x∗i correspond

to the one right rotation around the i-th singularity. For the gradation we have that

grade(xi) + grade(x∗i) = 0. In this way the Hilbert space E can be understood as the

space of quantum states for left rotations and E∗ - for the right rotations. We have here

the following

Definition 2.1. An algebra generated by xi and x∗j ; (i, j = 1, ..., N) subject to

relations

x∗ixi = 1 + cii x
ix∗i for i = j, x∗ixj = cji x

jx∗i for i 6= j,

xixj = bij x
jxi for all i, j, x∗jx∗i = bji x

∗ix∗j for all i, j,
(3)

(no sum), for i, j = 1, ..., N , where cij are complex parameters such that cii ≡ qi, qi
characterize the i-th singular point on a plane, cij = bij for i 6= j and bij := b(σi, σj) are

coefficient for the commutation factor b on the grading group Γ, is said to be a quantum

Weyl algebra Wq,b(N) for quons.

We introduce two operators C and B by relations

C(x∗i ⊗ xj) := cji x
j ⊗ x∗i, B(xi ⊗ xj) := bij x

j ⊗ xi, (no sum) (4)

Let us introduce a linear operator Rn by the formula

Rn := id+ C̃(1) + C̃(1)C̃(2) + ...+ C̃(1)...C̃(n−1), (5)

where C̃(i) := idE ⊗ ... ⊗ C̃ ⊗ ... ⊗ idE , C̃ on the i-th place, and (C̃)ijkl = C∗kil∗j . Let us

consider a few simple examples:
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Example 2.1. In the case of N = 1 we obtain

x∗ x = q x x∗ + 1, (6)

i.e. the usual q-commutation relations, see Ref. [4] for example. The corresponding qu-

antum Weyl algebra is denoted by Wq. Here we have Γ = Z, and grade(x) = −
grade(x∗) = 1.

Example 2.2. For N = 2 we have an algebra generated by x, y and x∗, y∗ and relations

x∗ x = q x x∗ + 1, y∗ y = p y y∗ + 1, x y = + y x, (7)

where q1 = q, q2 = p, and bij = +1, Γ = Z ⊕ Z.

Example 2.3. For arbitrary N>2 we can define an algebra Wq,Θ(N) for which we

have

bij = exp
2πΘij

n
, (8)

where Θij = −Θji, Θij is an integer (mod n) for every i, j = 1, ..., N , i 6= j, and

q = {qi| − 1<qi<1, i = 1, ..., N} Γ = Zn⊕, ...,⊕Zn. The case qi = 1 for every i = 1, ..., N

corresponds to particles which are in usual called anyons.

3. The category of states and Fock representation. In this Section we would

like to describe all quantum states for the system of generalized quons. As was indicated

in the previous Section, spaces E and E∗ correspond for the left and right single rotations

around singularities. For multiply rotations we need tensor product of these spaces. In

this way all states can be described by a family of spaces. Such family forms a braided

monoidal category. In fact if we have two linear and invertible operators C : E∗ ⊗E −→
E ⊗ E∗, and B : E ⊗ E −→ E ⊗ E, then under some technical assumtions there is a

braided monoidal category C ≡ (⊗, k,Ψ) generated by E, E∗, C and B, [10, 11, 12]. The

category C contains: the underground field k = C of complex numbers, the vector space

E and the dual E∗, all tensor products of E and E∗, all direct sums, and some quotients.

We define braidings ΨE,E ,ΨE∗,E ,ΨE,E∗ , and ΨE∗,E∗ by formulae

ΨE,E ≡ B,ΨE∗,E ≡ C,ΨE,E∗ ≡ C−1,ΨE∗,E∗ ≡ B∗, (9)

where (B∗)ijkl = B∗l∗k∗j∗i . All above braidings can be extended to all tensor products of

spaces E and E∗. In this way we obtain

ΨE,E⊗l := B(l) ◦ . . . ◦B(1),

ΨE⊗k,E⊗l := Ψ
(1)

E,E⊗l ◦ . . . ◦Ψ
(k)

E,E⊗l ,

ΨE∗⊗k,E⊗l ,

:= C(l) ◦ . . . ◦ C(1) ◦ . . . ◦ C(k+l−1) ◦ . . . ◦ C(k−1) ◦ C(k+l) ◦ . . . ◦ C(k).

(10)

If we substitute the formula (4) into relations (9), then we obtain the braid symmetry

and the corresponding braided monoidal category for our quons system. Note that if

we have qi = 1 for every i = 1, . . . , N , then the category becomes symmetric! We can

understand objects of the category as all possible spaces of quantum states for our quons.

For example the tensor product E⊗k can be understand as a space for all quantum states

corresponding to the k rotations to the left.
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An algebra A ≡ AB(E) := TE/IB , is said to be B-symmetric algebra over E [16], if

it is generated by the relation

xi xj = bij x
j xi, (no sum). (11)

This algebra can be regarded as the algebra of all braid equivalent quantum states for left

rotations. On the other hand we have a B-symmetric algebra A∗ over the space E∗, it is

an algebra defined as the quotient A∗ ≡ AB(E∗) := TE∗/I∗, such we have the following

relations

x∗i x∗j = bij x
∗j x∗i.

Obviously A and A∗ are graded, quadratic, associative and unital algebras over E, and

E∗, respectively, see Baez [16]. We denote by P : TE −→ A and P ∗ : TE∗ −→ A∗ the

coresponding quotient mappings.

Definition 3.1. We define a right contraction as a family of linear mappings ck :

E∗ ⊗Ak −→ Ak−1 by the following formulae

c1(x∗i ⊗ xj) := (x∗i|xj) = δij ,

ck(x∗i ⊗ xjf) := c1(x∗i ⊗ xj)f + cij x
jck−1(x∗i ⊗ f),

(12)

for f ∈ Ak−1.

One can see that the above definition is consistent, see [19]. The left contraction

mapping can be also defined. Note that in the above contraction is the same as the

evaluation mapping from the previous papers, see Ref.[17, 18]. One can see that the

contraction c is well defined on the algebra A. Observe that for the contraction c we also

have

ck−1(x∗i ⊗ ck(x∗j ⊗ f))− bijck−1(x∗j ⊗ (ck(x∗i ⊗ f)) = 0. (13)

on E∗⊗E∗⊗Ak. We are going to construct a representation a :Wq,b(N) −→ End(A) of

the quantum Weyl algebraW on the algebra A. For generators xi and x∗j , (i, j = 1, ..., N)

we define

axif := m(xi ⊗ f) ≡ xif, ax∗if ≡ c(x∗i ⊗ f) (14)

for every f ∈ A. One can extend this representation for the whole algebra W. One can

also consider the representation of the quantum Weyl algebra W on the algebra A∗ in a

similar way. We have here the following important

Theorem 3.1. We have on the algebra A the following commutation relations for the

representation of Weyl algebra Wq,b(N)

ax∗i axj − cij axj ax∗i = δij , ,

axi axj − bij axj axi = 0, ax∗i ax∗j − bij ax∗j ax∗i = 0,
(15)

P r o o f. Using the relations (14) for the first relation (15) we obtain

[ax∗i axj − cij ax∗j axi ] f

=
[
cl+1(x∗i ⊗ xjf)− cij xjcl(x∗i ⊗ f)

]
= c1(x∗i ⊗ xj)f = δijf,

(16)

where f ∈ Al and the relation (12) has been used. 2

We introduce here the following state vector

|n1...nN >= (x1)n1 ...(xN )nN (17)
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up to some normalization factor. For the ground state vector |0 >≡ 1A we have as usual

ax∗i|0 >= 0. The scalar product can be given by the following formula

< s|t >C := δmn < s|Pnt > (18)

for s ∈ Am and t ∈ An, where Pn is an operator defined by induction

Pn+1 := (id⊗ Pn) ◦Rn, (19)

where P1 ≡ id and the operator Rn is given by the formula (5). Note that there is a very

interesting result of Bożejko and Speicher [20]. If the operator C̃ is a bounded operator

acting on some Hilbert space such that

C̃ = C̃∗, ||C̃||<1, C̃ is Yang-Baxter, (20)

then the scalar product given by the relation (18) is positive definite. It follows from

the mentioned above theorem of Bożejko and Speicher that the corresponding scalar

product for our generalized guons is positive definite if all qi are real, −1<qi<1, and

bij = bij . Note that in our quonic interpretation the vector |n1...nN > describe the

state corresponding to n1 left rotations corresponding to the first singularity,...,and to

nN left rotations corresponding to the last singularity. It is interesting that creation

and anihilation operators create and anihilate rotations (or more precisely - rotational

excitations) not particles! Observe that in the above representation we have only left

rotations. For right rotations we need the representation on the algebra A∗.
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Antoine et al, Plenum Press 1995.

[16] J. C. Baez, Lett. Math. Phys. 23, 1333, (1991).

[17] W. Marcinek and R. Ra lowski, Particle operators from braided geometry, in ”Quantum

Groups, Formalism and Applications” XXX Karpacz Winter School in Theoretical Physics,

1994, Eds. J. Lukierski et al., 149-154 (1995).

[18] W. Marcinek and Robert Ra lowski, On Wick Algebras with Braid Relations, Preprint

IFT UWr 876/9, (1994) and J. Math. Phys. 36, 2803, (1995).

[19] W. Marcinek, On Commutation Relations for Quons, q-alg/9512015.

[20] M. Boże jko, R. Speicher, Math. Ann. 300, 97, (1994).


