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Abstract. The symmetry operators for Klein–Gordon equation on quantum Minkowski
space are derived and their algebra is studied. The explicit form of the Leibniz rules for derivatives
and variables for the case Z = 0 is given. It is applied then with symmetry operators to the
construction of the conservation law and the explicit form of conserved currents for Klein–Gordon
equation.

1. Introduction. The existence of currents fulfilling the conservation laws is the

important feature of invariant models in classical mechanics and field-theory. They can

be derived by Noether theorem where each symmetry of the action yields the connected

conserved current. In the case of linear equations of motion with constant coefficients

(such as for example Klein–Gordon and Dirac equations) the procedure was simplified

by Takahashi and Umezawa [10]. We have studied the extension of this procedure to

the discrete models with generalized difference derivatives [1-3]. It appeared that after

modifying the Leibniz rule for this calculus we were able to construct the conservation

laws and constants of motion for this type of models. In the presented paper we would like

to show that the extension also works for Klein–Gordon equation on quantum Minkowski

space

(2 +m2)Φ = 0 (1)

where the d’Alembert operator looks as follows

2 = gij∂
i∂j (2)
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This equation was constructed by Podleś [7] within the framework of covariant differential

calculi and exterior algebras on quantum homogenous spaces endowed with the action of

quantum Poincaré group [8,9].

The fundamental rules for derivatives and variables are given by the formulae:

∂j(xi) = gji (3)

∂l∂k = Rlk ij∂
i∂j

∂ixk = gik + (Rik abx
a − (RZ)ikb )∂b

(R− 1)ij kl[x
kxl − Zkls x

s + T kl] = 0

with R-matrix fulfilling QYBE R23R12R23 = R12R23R12 and the condition R2 = 1.

As we have mentioned in the construction of conservation law and explicit form of

currents we shall follow the classical procedure proposed by Takahashi and Umezawa for

linear differential equations in field theory. However, in the classical case the Leibniz rule

for commutative differential calculus is known. Thus our investigation shall include the

description of Leibniz rules for noncommutative differential calculus (3). The construction

consists of the following steps:

• we need solutions of Klein–Gordon equation. They were obtained by Podleś [7] as

formal power series of noncommuting variables. He considered two cases R = τ and

Z = 0

• then we describe and modify Leibniz rule for derivatives in the noncommutative

differential calculus on quantum Minkowski space (section 2 and 4)

• we construct the symmetry operators of Klein–Gordon equation and study their

algebra (section 3)

• the symmetry operators and modified Leibniz rule for derivatives are applied in the

conservation law and explicit formulae for conserved currents (section 4).

In the paper we shall study the case Z = 0, the general case will be presented in the

next paper [4].

2. The Leibniz rules in differential calculi on quantum Minkowski spaces.

The condition Z = 0 yields the following rules for the variables and derivatives:

∂i∂j = Rij kl∂
k∂l (4)

∂jxk = gjk +Rjkabx
a∂b (5)

xixj = Rij klx
kxl + vij (6)

where the metric tensor g is R-symmetric and v = RT − T is R-antisymmetric:

Rg = g Rv = −v

In order to study the explicit form of Leibniz rules for products of functions understood

as formal power series of monomials we denote an arbitrary monomial as follows:

[k1, k2, ..., kn] = xk1xk2 ...xkn

where the indices ki denote the number of variable.
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Let us notice that the property of the covariant differential calculus (1.10) from [7]

yields the Leibniz rule for derivatives:

∂ifg = (∂if)g + (ζf)
i
j ∂

jg (7)

where the transformation operator obeys the rule:

[ζ(fg)]
i
j = (ζf)

i
m (ζg)

m
j (8)

The result of taking the derivative of function written down for monomials looks as follows

(∂i[k1, ..., kn]) =

n∑
l=1

(ζ[k1, ..., kl−1])
i
j g

jkl [kl+1, ..., kn] (9)

with the initial and the last term of the form:

l = 1 gik1 [k2, ..., kn] l = n (ζ[k1, ..., kn−1])
i
j g

jkn (10)

The expression (9) is reformulation of the formula given in [7] written down using the

introduced transformation operator ζ which for the case Z = 0 acts on monomials as

follows:

(ζ[k1, k2, ..., kn])
i
j = Rik1m1α1

Rα1k2
m2α2

...R
αn−1kn

mnj
[m1,m2, ...,mn] (11)

This formula determines also the way it transforms an arbitrary function on quantum

Minkowski space expanded into formal power series:

f(x) =
∑

ak1k2...kn [k1, k2, ..., kn] (ζf)
i
j =

∑
ak1k2...kn (ζ[k1, k2, ..., kn])

i
j (12)

The analogous Leibniz rule holds also for the variable xi:

xifg = (xif)g = (xif)actg + (ζf)
i
j x

jg (13)

where the action of variable on monomial is determined by properties of quantum Min-

kowski space (6):

(xi[k1, ..., kn])act =

n∑
l=1

(ζ[k1, ..., kl−1])
i
j v

jkl [kl+1, ..., kn] (14)

with the following initial and last term

l = 1 vik1 [k2, ..., kn] l = n (ζ[k1, ..., kn−1])
i
j v

jkn (15)

In the case when the quantum variables R-commute xixj = Rij klx
kxl the Leibniz rule

for variables reduces to the formula:

xifg = (xif)g = (ζf)
i
j x

jg (16)

in which no selfinteraction of variables term appears.

The Leibniz rules (7,13) can be written in the vector form:

~∂fg = (~∂f)g + (ζf)~∂g (17)

~xfg = (~xf)g = (~xf)actg + (ζf)~xg (18)

where the ζ operator acting on the scalar function gives matrix.

The Leibniz rules for derivatives and variables require the introduction of the new

operator ζ which does not appear in classical differential calculus. Let us notice however

that this kind of deformation of Leibniz rules is also characteristic for discrete calculus
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of generalized difference derivative on functions of commuting variables [1-3]. The form

of the transformation operator is then different from (11) but nevertheless the rule looks

very similar to (7). In section 4 we use this analogy in modification of the Leibniz rule

and its application to the conservation law.

3. The symmetry operators for Klein–Gordon equation and their algebra.

In this section we shall look for operators commuting with the operator of Klein–Gordon

equation. These operators transform a solution into solution.

In the calculations we have used the followig splitting of the Kronecker delta:

1

2
( )ab cd +

1

2
[ ]ab cd = δabcd (19)

( )ab cd = (δabcd −Rab cd) [ ]ab cd = (δabcd +Rab cd) (20)

As we see the symbol ( )ab cd denotes the R-antisymmetric part of splitting and corre-

spondingly [ ]ab cd the R-symmetric one.

The set of symmetry operators can be divided analogously to the classical case into

two parts - momenta P i ( as shown in [7]) and the angular momentum M ij . These

operators are defined by the following formulae:

P i = ∂i (21)

M ij = ( )ij cdx
c∂d = (δij cd −Rij cd)x

c∂d (22)

Both these operators commute with the d’Alembert operator (2) and therefore also with

the Klein–Gordon equation. The angular momentum (22) is R- antisymmetric and tra-

celess operator:

RabklM
kl = −Mab gabM

ab = 0 (23)

In the sequel we apply the following formulae for R- symmetric and R- antisymmetric

symbols resulting from QYBE and the assumption R2 = 1:

( )ab cdR
yc
stR

td
mn[ ]smkl = 0 (24)

( )ij yzR
za
klR

lb
stR

yk
pγR

γs
TV [ ]V tmn = 0

( )ab cdR
yc
stR

td
mnM

sm = 2RyaAtR
tb
BnM

AB

( )ij yzR
za
klR

lb
stR

yk
pγR

γs
TVM

pTMV t = 2RjaklR
lb
stR

ik
pγR

γs
TVM

pTMV t

Using the above formulae we derive the commutation rules :

- for momenta P i = ∂i

P aP b −Rab cdP
cP d = 0 (25)

- for momentum and angular momentum operator

P yMab −RyaklR
lb
stM

ksP t = ( )ab cdg
ycP d (26)

- for components of the angular momentum

M ijMab −RjaklR
lb
stR

ik
pγR

γs
TV MpTMV t = Γij,ab T tP

TP t + Λij,ab T tM
Tt (27)

where the constant coefficients look as follows

Γij,ab T t = ( )ij yzR
za
klR

lb
st( )kspT v

yp
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Λij,ab V t = ( )ij V z( )ab ctg
zc

In terms of R-commutators the algebra of symmetry operators is similar to the classical

Poincaré algebra with exception of the term quadratic in momenta which is due to the

selfinteraction of variables (6).

We can as well rewrite the algebra with R-commutators (25,26,27) using the Lie

brackets and then we obtain the algebra quadratic in all operators.

For the set of symmetry operators we can consider also the Leibniz rules. It was

described in section 2 for momenta (7). Additionaly using the Leibniz rule derived for

variables (13) we obtain the Leibniz rule for the angular momentum operator (we denote

the product as fg = f ⊗ g)

M ij(f ⊗ g) = M ijf ⊗ g + ζiβζ
j
αf ⊗Mβαg + ( )ij abζ̃

aζbαf ⊗ ∂αg (28)

with the additional operator ζ̃ (being the result of selfinteraction of variables) acting as

follows on monomials:

ζ̃a[k1, ..., kn] = (xa[k1, ..., kn])act =

n∑
l=1

(ζ[k1, ..., kl−1])
a
j v

jkl [kl+1, ..., kn]

l = 1 vak1 [k2, ..., kn] l = n (ζ[k1, ..., kn−1])
a
j v

jkn

We have investigated the algebraic properties of symmetry operators and derived for

them Leibniz rules. The problem whether they define also the coalgebraic structure is

open and needs further study.

4. The conservation law for Klein–Gordon equation. Now we apply the Le-

ibniz rule for derivatives (7) in construction of the conservation law. In this deformed

formula we have obtained on the right-hand side operator acting on both functions of

the product. At this point it is usefull to remind the Leibniz rule of discrete calculus of

generalized difference derivative [1,3]:

∂ifg = (∂if)g + (ζf)
i
∂ig (29)

where the derivative is defined for functions of real variables as follows :

∂if(~x) = [φi(xi) − xi]−1[ζi − 1]f(~x) (30)

and the transformation operator acts as translation in the direction i to the next point of

the lattice ζif(~x) = f(x1, ..., xi−1, φi(xi), xi+1, ..., xn). In the discrete models described

using the derivatives (30) we solved the problem modyfing the Leibniz rule to obtain

on the right-hand side of (29) the operators acting only on one of the functions of the

product [1,3]:

∂i(ζ− if)g = (−∂† if)g + f∂ig

The modification consists of changing the product on the left-hand side by the inverse

operator which in the discrete calculus is of the form

ζ− if(~x) = f(x1, ..., xi−1, φ
−1
i (xi), xi+1, ..., xn)

what means that it translates the point to the previous one in the direction i and of re-

placing one of the derivatives on the right-hand side with its conjugation ∂† i = −∂iζ− i.
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Now the question arises whether in noncommutative differential calculus on quantum

Minkowski space the inverse transformation operator exists. The answer for the studied

case Z = 0 is positive. Let us introduce the operator ζ− by its action on monomials:(
ζ−[k1, ..., kn−1, kn]

)i
j

= Rkniαn−1mn
Rkn−1αn−1

αn−2mn−1
...Rk1α1

jm1
[m1, ...,mn−1,mn] (31)

It is easy to check that its action on products of functions is analogous to the formula

(8) describing it for the transformation operator

(ζ−fg)ij = (ζ−f)mj (ζ−g)im (32)

For the operators ζ and ζ− the following proposition is valid.

Proposition.

ζ− ja ζij = ζjaζ
− i
j = δia (33)

ζ− ja = ∗ζja∗ (34)

where ∗-operation acts on Minkowski space and derivatives as described in [7, 8].

P r o o f. We shall show that formulae (33, 34) are valid on monomials and therefore by

linearity of operators ζ , ζ− and ∗ζ∗ they are fulfilled for arbitrary function on quantum

Minkowski space. From associativity of quantum Minkowski space it follows that the

monomials can be written as a products:

[k1, ..., kn−1, kn] = [k1, ..., kn−1][kn] (35)

Let us check the formula (33) for monomials of the first order:

ζ− ja ζij [k] = Rik mjR
mj
al[l] = δik al[l] = [k]δia

We have used here the property R2 = 1. Now we apply the mathematical induction

principle assuming that the proposition holds for monomials of order < n. We check the

formula for arbitrary monomials of order n:

ζ− ja ζij [k1, ..., kn−1, kn] = ζ− ja ζij [k1, ..., kn−1][kn] =

(ζ− ma ζil [k1, ..., kn−1])(ζ− jm ζlj [kn]) = (ζ− ma ζil [k1, ..., kn−1])[kn]δlm =

(ζ− ma ζim[k1, ..., kn−1])[kn] = [k1, ..., kn−1][kn]δia = [k1, ..., kn−1, kn]δia

We have used the properties of operators ζ and ζ− with respect to the product of functions

(8,32). As the proposition holds for arbitrary monomial of order n we conclude that by

induction principle it is valid for all monomials and therefore for all functions expanded

into formal power series. The proof of the second part of (33) is analogous to the presented.

In the proof of (34) we use the property of R matrix [8]:

Rijab = Rji ba (36)

Let us start with an arbitrary monomial of the first order and use (31,36):

∗ζja ∗ [k] = ∗ζja[k] = ∗Rjkma[m] = [m]Rjkma = Rkj am[m] = ζ− j
a [k]

Now we assume that (34) holds for monomials of order < n and use the property of

transformation operator (8,32). Then for monomial of order n we get:

∗ζja ∗ [k1, ..., kn] = ∗ζja ∗ ([k1, ..., kn−1][kn]) =



SYMMETRY ALGEBRA AND CONSERVED CURRENTS 393

∗ζja[kn] ∗ [k1, ..., kn−1] = ∗(ζjl [kn])ζla ∗ [k1, ..., kn−1] =

(∗ζla ∗ [k1, ..., kn−1]) ∗ (ζjl [kn]) = (ζ− l
a [k1, ..., kn−1])ζ− j

l [kn] = ζ− j
a [k1, ..., kn]

We conclude that by induction principle (34) is valid for monomials of arbitrary order

and therefore by linearity for arbitrary function on quantum Minkowski space expanded

into formal power series. 2

We have proved the proposition for matrices fulfilling R2 = 1 but (33) can be ex-

tended to invertible R-matrices. This is the case in the braided differential calculus [5,6].

Considering the Leibniz rule introduced there by Majid we conclude that on monomials it

is similar to (7) and probably can be modified the way we propose in the formula (37). It

seems therefore that the construction of conservation law and conserved currents would

also be possible in models built within the framework of the braided differential calculi.

Now we can modify Leibniz rule (7) in order to obtain on the right-hand side operators

acting only on one of the functions in the product :

∂i(ζ− ai f)g = (−∂† af)g + f∂ag (37)

where we use the notation ∂† a = −∂iζ− ai = −∂i ∗ ζai ∗.

The Leibniz rule for conjugated derivative looks as follows:

∂† afg = (∂† if)ζ− a
i g + f∂† ag (38)

Let us notice that we can identify the operator ∂† a with ∗(−∂a)∗. Indeed the Leibniz

rule for this operator is the same as (38):

∗(−∂a) ∗ fg = ∗(−∂a)(∗g)(∗f) = ∗[−(∂a ∗ g) ∗ f − (ζai ∗ g)∂i ∗ f ] = (39)

= (− ∗ ∂i ∗ f)ζ− a
i g + f(− ∗ ∂a ∗ g)

We check the equality of these operators on arbitrary monomials of first order:

∗(−∂a) ∗ xk = −gak = −gka ∂† axk = −Rkaimgim = −gka (40)

We have used the properties of the metric tensor: Rg = g and gij = gji from [7]. From

Leibniz rules (38,39) and from the equality of action of both operators on monomials of

the first order (40) we see that application of the induction principle yields the identical

action of ∂† a and ∗(−∂a)∗ on monomials of arbitrary order. Thus they act in the same

way on all the functions on quantum Minkowski space and therefore are identical:

∂† a = ∗(−∂a)∗ (41)

This identity we use in the sequel in the construction of conserved currents.

Let us consider the modified Leibniz rule (37) for the following expression:

∂i
[
−(ζ− ai ∂† mF )gmaG− (ζ− ai F )gam∂

mG
]

= (2†F )G− F2G (42)

where F and G are arbitrary functions on quantum Minkowski space.

Let us now choose the functions F and G as follows:

- the function G is a transformed solution of Klein–Gordon equation

G = δωΦ (2 +m2)δωΦ = 0 (43)
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where the transformation δω is given by symmetry operators - the momentum or the

angular momentum:

δi = ∂i δij = M ij (44)

- the function F = ∗Φ where Φ is a solution of Klein–Gordon equation.

This function fulfills the conjugated Klein–Gordon equation:

(2† +m2) ∗ Φ = (∂† a∂† mgma +m2) ∗ Φ = (45)

= (∗∂a ∗ ∗∂m ∗ gma +m2) ∗ Φ = ∗(∂agam∂
m +m2)Φ = ∗(2 +m2)Φ = 0

The solutions δωΦ and ∗Φ we insert into the currents. Let us notice that each symmetry

operator allows to construct the conserved current:

Jωi = (ζ− ai ∂† m ∗ Φ)gmaδ
ωΦ + (ζ− ai ∗ Φ)gam∂

mδωΦ (46)

which in consequence of (42) fulfills on-shell the following equation:

∂iJωi = −(2† ∗ Φ)δωΦ + (∗Φ)2δωΦ = 0 (47)

The above formula yields on-shell the conservation law for Klein–Gordon equation on

quantum Minkowski space:

∂iJωi = 0 (48)

obeyed by currents defined in (46).

5. Final remarks. We have discussed the construction of the conservation law and

conserved currents for Klein–Gordon equation connected with differential calculi fulfilling

the condition Z = 0.

The interesting problem is the extension of the presented method to an arbitrary li-

near equation of motion (including the Dirac equation on quantum Minkowski space [7])

and to the general differential calculus on quantum Minkowski space. After modification

of the Leibniz rule for derivatives we can follow the analogy between the discrete and

noncommutative models and construct the currents for equations on the quantum Min-

kowski space similarly to the general solution of the discrete problem given in [3]. The

results will be presented in the next paper [4].

The other open problem is the understanding and the construction of constants of

motion from conserved currents what requires the application of integral calculus on

quantum Minkowski space and would be important for developing mechanical and field-

theoretic models on noncommutative spaces.
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[7] P. Podle ś, Commun. Math. Phys. 181 (1996), 569.
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