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1. Introduction. In this article, we explain how compact quantum groups are re-

lated to groupoids.

It is remarkable that in the (algebraic) theory of quantum groups developed by Drin-

feld and many others [D, RTF], one gets a deformation of both the Poisson structure and

the group structure simultaneously, for a multiplicative Poisson structure on a Lie group.

Further studies showed that [So1] the algebra of compact quantum groups is closely

related to the underlying singular symplectic foliation [We, LuWe] and that Rieffel’s

deformation quantization [Ri1, Ri2, Ri3] in this context exhibits very subtle properties

[Ri4, Sh2, Sh3, Sh4] with regard to the symplectic foliation.

Parallel to the algebraic theory of quantum groups, Woronowicz initiated an analyt-

ical (C*-algebraic) theory of quantum groups [Wo1, Wo2] which successfully provides a

general C*-algebraic framework for compact quantum groups. Since Connes’ successful

use [Co] of groupoid C*-algebras [Re] in the study of foliations, it has been well rec-

ognized that groupoid C*-algebras provide a useful tool in studying operator algebras

[CuM, MRe, Sh1] (which often arise from geometric objects). We found that Vaksman

and Soibelman’s result [So1, VSo2] relating the singular symplectic foliation to repre-

sentations of the algebra of compact quantum groups and quantum spheres can be used

to establish a relation between these quantum spaces and some fundamental ‘discrete’

groupoids [Sh5]. In fact, the algebra of such a quantum space forms the ‘core’ of the

groupoid C*-algebra of a ‘discrete’ groupoid, and for quantum spheres and quantum

SU(3), it is actually equal to some groupoid C*-algebras.

2. Compact matrix quantum groups. In this section, we follow the setting used

in [LeSo] to summarize the results about compact matrix quantum groups that we need
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in establishing a connection with groupoid.

For a simple complex Lie group G, we fix a root system Λ with (positive) simple

roots {αi}ri=1 for its Lie algebra g. (Here we use Λ for the root system instead of ∆

which will be used for the comultiplication.) There corresponds a Cartan-Weyl basis

{Xα}α∈Λ ∪ {Hi}ri=1 with Hi = [Xαi
, X−αi

] for each i. Let k be the real form (i.e. the

+1-eigenspace) for the antilinear involution ω : g → g defined by ω (Xα) = −X−α and

ω (Hi) = −Hi for all α ∈ Λ and 1 ≤ i ≤ r. It is easy to see that k is the R-linear

span of Xα −X−α, iXα + iX−α, and iHi in g. It is well-known that k is the Lie algebra

of a maximal compact subgroup K of G. The pair (G,K) = (SL (n,C) , SU (n)) is a

fundamental example.

It is known [B-D, So2] that all multiplicative Poisson structures on G and on K are

determined (up to an isomorphism) by p = ar + v with a ∈ R and v ∈ h ∧ h, where

r =
i

2

∑
α∈Λ+

(X−α ⊗Xα −Xα ⊗X−α) ∈ k ∧ k

and h is the real Cartan subalgebra linearly spanned by Hi’s over R. In fact, πx :=

Lxp − Rxp gives the Poisson 2-tensor [We] at x ∈ K where Lx and Rx are the left and

right translations by x.

Each fixed p determines a family of quantum groups pKq, q ≥ 1, (or more precisely, a

family of Hopf *-algebras C (pKq)
∞

of regular functions on pKq) which deforms the Pois-

son structure corresponding to p. In the following, we shall concentrate on the standard

case of Kq = rKq with p = r.

By classifying all irreducible *-representations of C (Kq)
∞

on Hilbert spaces, Soibel-

man completed C (Kq)
∞

into a type-I C*-algebra C (Kq). On the other hand, starting

from a purely C*-algebraic setting, Woronowicz developed a general framework for C*-

algebraic (compact) quantum groups [Wo2] and proved the existence of the important

invariant Haar functional h which will be discussed later.

Recall that [Wo1, VSo1] the C*-algebra C(SU(2)q) is generated by uij , with 1 ≤ i, j ≤
2, satisfying u22 = u∗11, u12 = −q−1u∗21, and u∗u = uu∗ = 1. An important irreducible

(non-faithful) *-representation π0 of C(SU(2)q), q > 1, on `2(Z≥) is given by

π0(u) =

(
α −q−1γ

γ α∗

)
where α(ej) = (1 − q−2j)1/2ej−1 and γ(ej) = q−jej for j ≥ 0. Here π0 is applied to

u = (uij) entrywise.

The well-known canonical embedding φi∗ : SU(2)→ K for the basic triple

{Xαi , X−αi , Hi} , 1 ≤ i ≤ r,

induces a Hopf *-algebra homomorphism φi : C(Kq)
∞ → C(SU(2)q)

∞. We call πi :=

π0 ◦ φi the fundamental representations of C(Kq)
∞.

Recall that the Weyl group W of K is a Coxeter group (c.f. [H] and the reference there

for details) generated by {si}ri=1 with (sisj)
mij = 1 for mii = 1 and some mij ∈ {2, 3, 4, 6}

if i 6= j, where si = sαi
is the reflection on h∗ determined by the root αi. If w = si1si2 ...sim

is the shortest expansion of w in si’s, then si1si2 ...sim is called a reduced expression for



GROUPOIDS AND COMPACT QUANTUM GROUPS 43

w and ` (w) := m is the length of w. The Bruhat ordering on W is the partial ordering

generated by the relations w1 < w2 satisfying sαw1 = w2 and ` (w1) + 1 = ` (w2) for

some positive root α ∈ Λ+. It is known that there is a unique maximal element in W

with respect to the Bruhat ordering.

Soibelman’s classification of irreducible *-representations of C(Kq)
∞ (or of C(Kq))

can be summarized by the following.

(1) One-dimensional irreducible *-representations τt of C(Kq)
∞ are parametrized by

t ∈ Tr, the maximal torus in K.

(2) Irreducible *-representations of C(Kq)
∞ are parametrized by elements (t, w) of

Tr × W . In fact, if t ∈ Tr and w = si1si2 ...sim is a reduced expression for w, then

(τt⊗πi1⊗πi2⊗...⊗πim)∆m is the corresponding irreducible *-representation (independent

of the choice of the reduced expression for w), where ∆ is the comultiplication on C(Kq)
∞

and ∆m is defined recursively as ∆k = (∆
⊗
id) ∆k−1.

It is an interesting discovery [So1] that the symplectic leaves L in K are in one-

to-one correspondence with elements (t, w) of Tr × W and hence with the irreducible

*-representations πL of C(Kq)
∞. Indeed if t ∈ Tr and w = si1si2 ...sim is a reduced

expression for w, then the set tSi1Si2 ...Sim ⊂ K is the corresponding symplectic leaf,

where Si = φi∗(S) with

S =

{(
α −γ
γ α

)
: α ∈ C, |α| < 1, γ =

√
1− |α|2

}
the prominent 2-dimensional symplectic leaf in SU(2). Completing C(Kq)

∞ with respect

to the norm ||x|| := supL ||πL (x)||, we get the type I C*-algebra C(Kq) [So1].

From the above result, we can talk about symplectic leaf-preserving quantizations of

K by Kq and group- (or comultiplication-) preserving quantizations of K by Kq. It is

interesting to know that there is no quantization of K by Kq which is simultaneously

leaf-preserving and group-preserving [Sh3, Sh4]. On the other hand, surprisingly, Rieffel

showed that for uKq with u 6= 0, there does exist such a quantization [Ri4].

3. Groupoids for Kq. It has been well recognized that groupoid C*-algebras provide

a very powerful tool to study the structure of concrete C*-algebras like Toeplitz C*-

algebras, Wiener-Hopf C*-algebras, etc. For the theory of groupoid C*-algebras, we refer

to Renault’s book [Re].

Recall that the transformation group groupoid Zm × Zm (with Zm acting on Zm

by translation) when restricted to the positive cone Zm≥ gives an important (Toeplitz)

groupoid

Zm × Zm|Zm

≥
:= {(j, k) ∈ Zm × Zm≥ | j + k ∈ Zm≥}

where Z = Z ∪ {+∞} and Z≥ := {0, 1, 2, 3, ...} ∪ {+∞}.
Let si1si2 ...siN be a reduced expression for the unique maximal element in the Weyl

group with respect to the Bruhat ordering. Then all irreducible *-representations of

C (Kq) factor through the Tr-family (τt ⊗ πi1 ⊗ πi2 ⊗ ... ⊗ πiN )∆N of representations.

The Tr-family {τt}t∈Tr of one-dimensional irreducible *-representations of C (Kq) can

be viewed as a C*-algebra homomorphism τ : C (Kq) → C (Tr) ∼= C∗ (Zr). Now it is
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clear that all irreducible *-representations of C (Kq) factor through the homomorphism

(τ ⊗ πi1 ⊗ πi2 ⊗ ...⊗ πiN )∆N . Thus we get the following theorem [Sh5].

Theorem 1. C(Kq) can be embedded into

C∗(Zr × ZN × ZN |ZN

≥
) ⊆ C(Tr)⊗ B(`2(ZN≥ ))

by (τ ⊗πi1⊗πi2⊗ ...⊗πiN )∆N , where Zr acts trivially on ZN and ZN acts by translation

on ZN .

Let us consider the special case of G = SL(n + 1) and K = SU(n + 1) with n ≥ 1,

for which r = n. The C*-algebra C(SU(n + 1)q) is generated by uij , 1 ≤ i, j ≤ n + 1,

satisfying u∗u = uu∗ = I and some other relations [Wo3, So1].

Irreducible 1-dimensional *-representations of C(SU(n+1)q) are defined by τt(uij) =

δijtj for t ∈ Tn (with tn+1 = t−1
1 t−1

2 ...t−1
n ), and we set τn+1 = τ : C(SU(n + 1)q) →

C∗(Zn). There are n fundamental *-representations πi = π0φi with φi : C(SU(n+1)q)→
C(SU(2)q) given by φi(ujk) = uj−i+1,k−i+1 if {j, k} ⊆ {i, i + 1} and φi(ujk) = δjk if

otherwise.

The unique maximal element in the Weyl group of SU (n+ 1) can be expressed in

the reduced form

s1s2s1s3s2s1...snsn−1...s2s1.

So C(SU(n+ 1)q) can be embedded into

C∗(Gn) ⊆ C∗(Zn)⊗ B(`2( ZN≥ ))

by

(τn+1 ⊗ π121321...n(n−1)..21)∆N

where N = n(n+ 1)/2,

πi1i2...im := πi1 ⊗ πi2 ⊗ ...⊗ πim ,
and Gn is the groupoid Zn × ZN × ZN |ZN

≥
with Zn acting trivially on ZN , and ZN acts

by translation on ZN .

With a minor modification, we can study the related quantum U(n)q in a similar way.

4. Structure theorems for C(SU(n)q). Applying the above groupoid approach to

SU (n)q, we get the following structure theorems for C(SU (n)q) [Sh5].

For any subset J of {1, 2, ..., N}, we define

XJ := {k ∈ ZN≥ | ki =∞ if i /∈ J}

an invariant closed subset of the unit space of Gn, called a face of ZN≥ . By restricting

the embedded algebra C(SU(n + 1)q) to various faces XJ , we can analyze its algebra

structure and get interesting composition sequences of C(SU(n+ 1)q).

C(SU(n + 1)q) is determined by C(SU(n + 1)q)|XJ
with admissible J only. (J is

called admissible if sι(j1)sι(j2)...sι(jm) is a reduced element in the Weyl group where

ι : {1, 2, ..., N} → {1, 2, ..., n} is defined by

(ι(1), ..., ι(N)) = (1, 2, 1, 3, 2, 1, ..., n, n− 1..., 1).)
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In fact, J is admissible if and only if for each 0 ≤ k < n, there is some 0 ≤ mk ≤ k + 1

such that

J =

{
j|

(
k2 + k

2

)
< j ≤

(
k2 + k

2

)
+mk, for some 0 ≤ k < n

}
.

Let Lk be the collection of admissible J ⊆ Jn with size |J | = k, for 0 ≤ k ≤ N , and

set Xk = ∪J∈Lk
XJ .

Theorem 2. The C*-algebra C(SU(n+ 1)q) has the composition sequence

C(SU(n+ 1)q) = I0 ⊇ I1 ⊇ ... ⊇ IN ⊇ IN+1 := 0,

with

Ik/Ik+1 '
⊕
J∈Lk

C(Tn)⊗K(`2(Zk≥))

where Ik are ideals of C(SU(n+ 1)q) such that

C(SU(n+ 1)q)|XN−k
' C(SU(n+ 1)q)/Ik.

(Here we use K(`2(Z0
≥)) = C.)

R e m a r k. Each C(Tn) ⊗ K(`2(Zk≥)) corresponds to a Tn-family of 2k-dimensional

symplectic leaves.

Theorem 3. For C(SU(n)q,m) := C(SU(n+ 1)q)|XJ
with J = {1, 2, ..., N −m+ 1},

there are short exact sequences

0→ A⊗K → C(SU(n)q,n)→ C(SU(n)q,n+1)→ 0

0→ A⊗K → C(SU(n)q,n−1)→ C(SU(n)q,n)→ 0

...

0→ A⊗K → C(SU(n)q,1)→ C(SU(n)q,2)→ 0

with

A = C(T)
⊗

C(SU(n)q) ' C(SU(n+ 1)q,n+1)

and C(SU(n)q,1) = C(SU(n+ 1)q). Furthermore, there is an element

1⊗ T ∈ C(SU(n)q,m) ⊆ C(SU(n)q,n+1)⊗ B(`2(Zn−m+1
≥ ))

such that T is a Fredholm operator with index 1.

These short exact sequences correspond to the classical fibration of SU(n + 1) over

CP (n) by fibres U(n).

Corollary 4. The C*-algebra C(SU(n+ 1)q) has the composition sequence

C(SU(n+ 1)q) = I0 ⊇ I1 ⊇ ... ⊇ In ⊇ In+1 := 0,

with

Ik/Ik+1 ' C(U(n)q)⊗K(`2(Zk≥))

for k > 0 and I0/I1 ' C(U(n)q) ∼= C ( T )⊗ C(SU(n)q).
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Corollary 5. The C*-algebra C(SU(n+ 1)q) has the composition sequence

C(SU(n+ 1)q) = I0 ⊇ I1 ⊇ ... ⊇ I(n+1)! := 0,

with

Ik/Ik+1 ' C(Tn)⊗K
for k > 0 and I0/I1 ' C(Tn).

5. Quantum spheres. Similar structure theorems have also been obtained for quan-

tum spheres by using this groupoid approach [Sh5].

Recall that Nagy [N] considered quantum homogeneous spaces Mq = Hq\Kq defined

by

C(Mq) = {f ∈ C(Kq) : (Φ⊗ id)(∆f) = 1⊗ f}
where H is a closed subgroup of K and Φ : C(Kq) → C(Hq) is the quantization of the

embedding homomorphism from H into K. With (K,H) = (SU(n+ 1), SU(n)), we get

(odd-dimensional) quantum spheres S2n+1
q = SU(n)q\SU(n+ 1)q.

Proposition 6.

C(S2n+1
q ) = C∗({un+1,m| 1 ≤ m ≤ n+ 1})

and τn+1 ⊗ πn ⊗ πn−1 ⊗ ... ⊗ π1 gives an embedding of C(S2n+1
q ) in C∗(Fn), where

Fn = Z× (Zn × Zn|Zn

≥
) and τn+1(un+1,m) = (δn+1,m)δ1 ∈ C∗(Z).

Proposition 7. There is a short exact sequence

0→ C(T)⊗K → C(S2k+1
q )→ C(S2k−1

q )→ 0

for k ≥ 1 with C(S1
q ) ' C(T) such that C(S2k+1

q ) contains an element 1 ⊗ T ∈ C(T) ⊗
B(`2(Zk≥)) where T is a Fredholm operator with index 1.

Corollary 8. The C*-algebra C(S2n+1
q ) has the composition sequence

C(S2n+1
q ) = I0 ⊇ I1 ⊇ ... ⊇ In ⊇ In+1 := 0,

with

Ik/Ik+1 ' C(T)⊗K(`2(Zk))

for k > 0 and I0/I1 ' C(T).

6. Haar functional. In [Wo2], Woronowicz proved the existence of the important

invariant Haar functional on compact matrix quantum groups. Using the groupoid ap-

proach, we can give an explicit description of the Haar functional hn on C(SU(n)q)

[Sh5].

Theorem 9. The unique invariant functional hn+1 on C(SU(n+ 1)q) is the restric-

tion of the state fξ(n) of C∗(Gn) given by the regular representation on `2(Gn|ZN
≥

) and

ξ(n) = (

n∏
i=1

(1− q−2(n+1−i))−i/2)
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w∈ZN

≥

q−Σ(n+1−[i])wi · δ(0,0,w) ∈ `2(Gn|ZN
≥

),

i.e. hn+1 = fξ(n) ◦ (τn+1 ⊗ πJn), where [i] ≥ 0 is defined by i = [i] + k(k + 1)/2 and

[i] ≤ k + 1.

This result can be used to prove the known facts that [N] hn+1 is a faithful state on

C(SU(n+ 1)q), and that Ki(C(S2n+1
q )) ' Z for both i = 0 and 1 [VSo2].

7. Subquotient groupoids. It is an interesting question whether C(S2n+1
q ) (or

C(SU(n)q)) is really a groupoid C*-algebra of some groupoid instead of a C*-subalgebra

of some groupoid C*-algebra.

It is not difficult to see that the answer is affirmative for the following two simple but

fundamental examples.

(1) C(SU(2)q) ' C∗(G1) where

G1 = {(m, j, k) | if k =∞, then m = 0}

is a subgroupoid of the groupoid Z× (Z× Z|Z≥
), with

u11 =
∑

0<j≤∞

(1− q−2j)1/2δ(0,−1,j)

and u21 =
∑

0≤j<∞ q−jδ(1,0,j).

(2) Podles’ quantum sphere C(S2
µc) ' C∗(G′), c > 0, where

G′ = {(j, j, k1, k2) | k1 =∞ or k2 =∞}

is a subgroupoid of the groupoid Z2 × Z2|Z2

≥
.

It turns out that the answer is also affirmative for odd-dimensional quantum spheres

S2n+1
q and for quantum SU (3)q.

Define a subquotient groupoid Fn of Fn = Z× (Zn × Zn|Zn

≥
) as follows. Let

F̃n := {(m, j, k) ∈ Fn| ki =∞ =⇒

ji = m− j1 − j2 − ...− ji−1 and ji+1 = ... = jn = 0}
be a subgroupoid of Fn. Define Fn := F̃n/ ∼ where ∼ is the equivalence relation generated

by

(m, j, k) ∼ (m, j, k1, ..., ki =∞,∞, ...,∞)

for all (m, j, k) with ki =∞ for an 1 ≤ i ≤ n.

Theorem 10. C(S2n+1
q ) ' C∗(Fn).

From this, we get the following known result [VSo2].

Corollary 11. The C*-algebra C(S2n+1
q ) is independent of q.

The key technical point in proving that C(SU(3)q) is a groupoid C*-algebra is based

on Lance’s [La] (or Woronowicz’s [Wo4]) result that there exists some isometry

v : `2(Z× N× Z× N)→ `2(Z× N× Z× Z)
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such that

v(∆x)v∗ = x⊗ 1

for x ∈ C(SU(2)q) ⊂ B
(
`2(Z× Z≥)

)
. Modifying this result, we can show that

Proposition 12. There is some isometry

w : `2(Z≥ × Z≥)→ `2(Z× Z)

such that

w((π1 ⊗ π1)∆(x))w∗ = (τ ⊗ π1)∆(x)

for x ∈ C(SU(3)q).

As far as the algebra C(SU(3)q) is concerned, the face X{1,3} corresponding to π1⊗π1

is ‘degenerate’ and is ‘dominated’ by the face X{1,2} corresponding to π1 ⊗ π2. This

combined with the above composition sequence for C(SU(3)q) helps to build a quotient

groupoid G2 from a subgroupoid G̃2 of G2 = Z2 × (Z
3 × Z3|Z3

≥
) where

G̃2 := { (m, j, k) ∈ G2 | m1 +m2 +m3 = 0,

k1 =∞ =⇒ j1 = m1 −m2,

k2 =∞ =⇒ j2 = m1 −m3 − j1,
k3 =∞ =⇒ j3 = m2 −m3 + j1 − j2 }.

We use the following notations: r ∧ s := min{r, s}, r ∨ s := max{r, s},

ψ(r, s) := (r − s) ∨ 0− (s− r) ∨ 0,

and η(r) := (r, 0) if r > 0 and η(r) := (0,−r) if r < 0. Define G2 := G̃2/ ∼, the quotient

groupoid given by the equivalence relation ∼ generated by

(m, j1, j2, j3, k1, k2 =∞, k3) ∼
(m, j̃1, j2 + j1 − j̃1, j̃3, k1 ∧ k3, k2 =∞, k1 ∧ k3)

where (
j̃1, j̃3

)
: = ((k1 + l1) ∧ (k3 + l3)− k1 ∧ k3)(1, 1)

+η(ψ(k1 + l1, k3 + l3)− ψ(k1, k3)).

Theorem 13. C(SU(3)q) ∼= C∗(G2).

From this, we get a result of Nagy.

Corollary 14. C(SU(3)q) as a C*-algebra is independent of q.

It is interesting to note that S. Wang [Wa] has proved that for n ≥ 2, C(SU(n)q)

with different q’s are not isomorphic as Hopf C*-algebras.
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