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Abstract. We clarify some aspects of quantum group gauge theory and its recent general-

isations (by T. Brzeziński and the author) to braided group gauge theory and coalgebra gauge

theory. We outline the diagrammatic version of the braided case. The bosonisation of any braided

group provides us a trivial principal bundle in three ways.

1. Introduction. Quantum group gauge theory over quantum spaces has been intro-

duced some years ago by T. Brzeziński and the author in [1], which contained not only the

formalism (which is fairly straightforward) but the non-trivial example of the q-monopole

to justify it. In spite of this success and a couple of follow-on papers [2][3][4] extending

the formalism of [1], the q-monopole remains the main topologically non-trivial example

of the formalism (over a quantum base). It even appears that for the q-analogue of other

non-trivial bundles in physics one may need to develop some generalisation beyond the

quantum group case.

In fact, just such a generalised gauge theory has been recently introduced in [5]. The

theory has for its ‘structure group’ merely a coalgebra. The total space of the principal

bundle and the base space are both algebras, possibly non-commutative. None of these

structures need be quantum groups of any kind and hence it is remarkable that a full

gauge theory (with bundles, connections, gauge transformations etc) is still possible. See

Brzeziński’s own contribution to these proceedings for an announcement. The theory is

1991 Mathematics Subject Classification: Primary 58B30; Secondary 81R50, 17B37, 16W30.

Key words and phrases: noncommutative geometry, quantum group, braided group, gauge

theory, fiber bundle, connection, bosonisation.
1 Royal Society University Research Fellow and Fellow of Pembroke College, Cambridge.
2 During 1995+1996.
The paper is in final form and no version of it will be published elsewhere.

[335]



336 S. MAJID

general enough to include the ‘embeddable homogeneous spaces’ of [6]. Moreover, another

special case of the theory is braided group gauge theory with structure group a braided

group, introduced by these means in [5].

In this note we collect some modest results and remarks on the quantum group gauge

theory of [1] and these generalisations. In the case of [1] we clarify in Section 2 a few points

of formalism in the light of subsequent works. In Section 3 we announce a fully braid-

diagrammatic version of the braided group gauge theory[7]. In Section 4 we point out that

the inhomogeneous quantum groups H⊲<B obtained by bosonisation of braided groups

(such as q-Poincaré groups[8]) can be viewed in all three ways, as quantum principal

bundles, as braided principal bundles, and as embeddable homogeneous spaces.

Acknowledgements. I would like to thank T. Brzeziński for our continuing discussions

under EPSRC research grant GR/K02244, from which this work is an outgrowth. I also

want to thank the organisers R. Budzyński, W. Pusz and S. Zakrzewski for a superb con-

ference and minisemester at the Banach Center in Warszawa during November-December,

1995.

2. Quantum group gauge theory. Our comments here are confined to the ap-

proach initiated in [1]. In particular, we would not feel competent to comment on the

interesting variant of this approach which was described at this conference by Mico Dur-

devic. Much of his formalism is the same as [1] but there are interesting differences too.

We recall first the formalism of [1]. We take for the fiber of a principal bundle a

quantum group H . The total space of the bundle is an H-comodule-algebra P , i.e. there

is an algebra map P → P ⊗H , denoted ◮(u) = u(̄1) ⊗u ¯(2), forming a coaction. We use

notations as in the author’s text [9] and we denote by M = {u ∈ P |◮(u) = u⊗ 1}

the fixed point subalgebra of P , which is the base of the bundle. We assume that P is

flat as an M -module. The composite χ̃ : P ⊗P → P ⊗H sending u⊗ v → uv ¯(1) ⊗ v ¯(2)

(denoted ˜ in [1]) plays the role of the left-invariant vector fields generated by the group

action. We require it to be surjective, corresponding to freeness of the action. Finally,

we require injectivity of the induced map χ : P ⊗M P → P ⊗H , i.e. we require χ to

be an isomorphism (the Galois condition). In [1] we imposed the injectivity of χ in the

form ker χ̃ = P (Ω1M)P (a ‘differential Galois condition’ ) which seemed more natural

at the time but turned out to be equivalent. In fact, there still remain some problems

with the correct gauge-invariant formulation of ‘smoothness’ of the trivialisation for non-

universal differential calculus and one might want to come back to something more like

the differential form of the injectivity at a future point. Concerning differential calculi,

we use the notation in [1]. We concentrate for simplicity on the universal calculus but

one can fill in the nonuniversal case along the lines in [1].

The maps χ and χ̃ play a central role in [1]. From the axioms of a comodule algebra

one sees at once their covariance properties. Namely, as intertwiners

χ̃ : P ⊗P◮ → P ⊗HR, χ̃ : P◮ ⊗P → P◮ ⊗HL, ⇒ χ̃ : P◮ ⊗P◮ → P◮ ⊗HAd (1)

and similarly for χ. Here P◮ denotes P taken with its given coaction ◮, HR denotes H

with the regular right coaction ∆, HL with the right-coaction version h 7→ h(2) ⊗Sh(1) of
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the left regular representation andHAd the right adjoint coaction. The first two properties

are elementary calculations used in the proof of the third Ad-invariance property. This,

in turn, is central to the construction in [1] of a connection Π from a connection form ω.

The converse direction is also essentially in [1], but no explicit formula for ω in terms

of Π. We provide this now as (as far as I know) a modest new result. We recall that a

connection form is an intertwiner HAd → Ω1P such that χ̃◦ω(h) = 1⊗h− 1⊗ 1ǫ(h) and

ω(1) = 0. Note that H = {1} ⊕ ker ǫ so fixing the value of ω on 1 (as preferred in [1]) is

equivalent to only specifying it on ker ǫ

Proposition 2.1. Let P,◮ be a quantum principal bundle. There is a 1-1 correspon-

dence between connection forms ω : HAd → Ω1P and covariant projections Π : Ω1P →

Ω1P which are left P -module maps and have kerΠ = P (Ω1M)P . Explicitly,

Π = (· ⊗ id) ◦ (id⊗ω) ◦ χ̃ (2)

as in [1], and

ω(h) = Π ◦ χ−1(1⊗h), ∀h ∈ ker ǫ. (3)

P r o o f. Only the converse direction from Π to ω needs to be clarified here. Indeed,

we can obviously rewrite (1) at the level of χ (without any calculation) as

χ−1 : P ⊗HR → P ⊗
M
P◮, χ−1 : P◮ ⊗HL → P◮ ⊗

M
P ⇒ χ−1 : P◮ ⊗HAd → P◮ ⊗

M
P◮.

(4)

Then given Π, we define ω via (3). The formula makes sense because P (dM)P ⊂

P (Ω1M)P ⊆ kerΠ, where dm = 1⊗m−m⊗ 1 for m ∈ M , i.e. Π descends to P ⊗M P .

We also need for the formula to make sense that · ◦χ−1(1⊗h) = (id⊗ ǫ)χ◦χ−1(1⊗h) =

ǫ(h) = 0 when h ∈ ker ǫ, since Π is defined on Ω1P = ker ·. The intertwining condition

for ω follows from (4) and χ̃ ◦ ω(h) = χ̃ ◦ χ−1(1⊗h) = 1⊗h, where χ̃ ◦ Π = χ̃ follows

from ker χ̃ = P (Ω1M)P ⊇ kerΠ and Π2 = Π. So we have a connection. Starting with

a connection, we can consider the corresponding projection Πω from (2) and apply the

above formula (3) – we clearly get back ω. In the other direction, let ω be defined from

Π. Then Πω(u⊗ v) = uv ¯(1)Π ◦ χ−1(1⊗ v ¯(2)) = Π
(
uv ¯(1)χ−(1)(1⊗ v ¯(2))⊗χ−(2)(1⊗ v ¯(2))

)
=

Π
(
u⊗ v ¯(1)χ−(1)(1⊗ v ¯(2))χ−(2)(1⊗ v ¯(2))

)
= Π(u⊗ v), where v ¯(1)χ−(1)(1⊗ v ¯(2)) ∈M so that

we can move it over in P ⊗M P . This last fact requires two steps. The first is to compute

the coaction on the first factor of v ¯(1)χ−(1)(1⊗ v ¯(2))⊗M χ−(2)(1⊗ v ¯(2)) and see that it is

trivial. This is immediate from the middle property in (4) and is identical to the proof

in [1, p. 604] that u(̄1)Φ−1(u ¯(2)
(1)) ∈M when Φ−1 : HL → P◮. Indeed, χ

−1 plays the role

for a general bundle that Φ−1 plays for a trivial bundle. The only difference, which is the

new feature of the present proof, is that from the trivial coaction on the first factor of an

element
∑
ui⊗M vi we cannot in general conclude that ui ∈ M . For this we need that

( )⊗M P is a left exact functor, i.e. that P is flat as an M -module. This is the case in

most examples, however.

Another point which should be clarified from [1] is that the gauge transformations

introduced there, which are convolution-invertible unit-preserving maps γ : H → M , are

only relevant for trivial bundles, i.e. they are really part of the local theory. This is the

main setting in which one wants gauge transformations (to patch trivial bundles) and
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was emphasised for this reason. On the other hand, just as gauge fields A : H → Ω1M

on trivial bundles lead to globally-defined connection forms ω : HAd → Ω1P◮ by the

formula

ωA,P,Φ = Φ−1 ∗ dΦ + Φ−1 ∗A ∗ Φ (5)

(where ∗ denotes the convolution product, Φ the trivialisation and Φ−1 its convolution-

inverse) it is obvious that local gauge transformations γ : H → M lead to global gauge

transformations Γ : HAd → P◮ by

Γγ,P,Φ = Φ−1 ∗ γ ∗ Φ (6)

Indeed, the calculations are identical to (a simpler version of) those for ω in [1] and we do

not need to repeat them. The global ω,Γ can then be formulated for general bundles. This

is the strategy developed in [1] and mirrors the strategy in classical geometry whereby

pseudotensorial forms on P are the correct generalisation in classical geometry of local

fields on the base. The correspondence for general pseudotensorial forms is also treated

in [1] in the quantum case, in addition to the above adjoint representation which has to

be treated specially via Φ−1 ∗ ( )∗Φ, as explained in [1]. A variant of [1, Prop. A.7] checks

that γ = Φ ∗ Γ ∗ Φ−1 has its values in M .

In an addendum[3] to [1], T. Brzeziński has taken the natural step to define from a

general gauge transform (a convolution-invertible unit-preserving intertwiner) Γ : HAd →

P◮ a so-called ‘fiber automorphism’ Θ : P◮ → P◮ defined by

Θ(u) = u
¯(1)Γ(u ¯(2)). (7)

The formula is similar to the way that ω defines a covariant Π and by a similar compu-

tation one has that Θ is covariant (an intertwiner for the coaction). It is also immediate

from the comodule algebra axioms that Θ is a left M -module map and that Θ(1) = 1

and ΘΓ ◦ ΘΓ′ = ΘΓ′∗Γ (so that Θ is invertible). While these steps are all immediate,

Brzeziński succeeded to explicitly prove the converse (which is harder), namely that from

Θ : P → P obeying these properties one can define[3]

Γ(h) = χ−(1)(1⊗h)Θ(χ−(2)(1⊗h)). (8)

Brzeziński’s proof is one of the motivations behind our proof of Proposition 2.1 above.

The main differences in the proof are that we require flatness of P and we deduce the

covariance properties of χ−1 from those of χ without proving them directly as is done

in [3] under the heading of properties of the ‘translation map’ χ−1(1⊗()). Modulo these

differences, we see that Proposition 2.1 completes the analogy between Π, ω, A and Θ,Γ, γ

by providing the correspondence between Π and ω in the same form as between Θ and

Γ.

For our second modest result we clarify further that Θ is not really a bundle auto-

morphism in a natural way, because it is not an algebra map. Instead, we propose the

following definition which is natural from the point of view of extension theory: Fix M

and consider all principal bundles with base M . Two of them are equivalent if there is

a comodule algebra isomorphism between them which preserves M . In this sense, we

should really view Θ as a bundle gauge transformation Θ : P → PΓ, where PΓ = P as
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an H-comodule but has a new product

u ·Γ v = Θ(Θ−1(u)Θ−1(v)) = u(̄1)Γ−1(u ¯(2)
(1))v

¯(1)Γ−1(v ¯(1)
(1))Γ(u

¯(2)
(2)v

¯(2)
(2)). (9)

This also forms a bundle with the same base M , and Θ : P → PΓ is a bundle equiva-

lence transforming our original bundle to it. This is an interesting new phenomenon in

non-commutative geometry because we see from (9) that ·Γ = · when our algebras are

commutative and Γ are restricted to algebra maps. This is not possible in the general

non-commutative case and so we have this new phenomenon that the bundle itself gauge

transforms!

Proposition 2.2. Let Θ : P → PΓ be a bundle gauge transformation. If ω is a

connection on P with projection Π then ωΓ = (Θ⊗Θ) ◦ ω is a connection on PΓ and

its associated projection ΠΓ obeys (Θ⊗Θ) ◦ Π = ΠΓ ◦ (Θ⊗Θ). Moreover, if Φ is a

trivialisation of P then ΦΓ = Θ ◦ Φ = Φ ∗ Γ is a trivialisation of PΓ such that

(ωA,P,Φ)
Γ = ωA,PΓ,ΦΓ

P r o o f. This is elementary; we apply Θ systematically to all constructions in P .

Then by definition all constructions in PΓ are the same after allowing for this algebra

isomorphism Θ : P∼=PΓ. Because Θ is an H-comodule map and M -module map, we

do not need to change the coaction ◮ or M . For example, ΠΓ(u⊗ v) = u ·Γ v
¯(1) ·Γ

ωΓ(v ¯(2)) = (Θ⊗Θ)
(
Θ−1(u)Θ−1(v) ¯(1)ω(Θ−1(v) ¯(2))

)
= (Θ⊗Θ)Π(Θ−1(u)⊗Θ−1(v)) for

u, v ∈ P . Likewise, when we compute (5) using the ΦΓ and the product in PΓ we obtain

ωΓ. Finally, ΦΓ(h) = Φ(h) ¯(1)Γ(Φ(h) ¯(2)) = Φ(h(1))Γ(h(2)) as stated, due to the covariance

of Φ.

When Γ is obtained from γ via (6) we have ΦΓ = Φ ∗ Φ−1 ∗ γ ∗ Φ = γ ∗ Φ = Φγ and

(ωA,P,Φ)
Γ = ωA,PΓ,Φγ = ωAγ ,PΓ,Φ; Aγ = γ−1 ∗A ∗ γ + γ−1 ∗ dγ. (10)

Apart from the additional transformation from P to PΓ (which is not present in the

classical situation) we see that the global gauge transformations induce the local trans-

formation picture in [1]. This ties up the global and local pictures in a way that we have

not seen elsewhere.

Moreover, it was shown in [1] that every trivial principal bundle has a canonical iden-

tification with the vector space M ⊗H . As discussed more explicitly in [10], its product

then becomes that of a cocycle cross product M c>⊳H for some convolution-invertible co-

cycle c : H ⊗H →M and cocycle-action α : H ⊗M →M . This is the canonical form for

a trivial principal bundle. Cocycle cross products are a standard algebraic construction

and we refer to [9, Chapter 6.3] for the required formulae and conventions.

Proposition 2.3. If Mc>⊳H is a cocycle cross product trivial bundle then

(Mc>⊳H)γ
−1

=Mcγ>⊳H where cγ , αγ are the cocycle data transformed by γ.

P r o o f. We first compute Θ associated to γ in the case of P = Mc>⊳H . Here

◮(m⊗h) = m⊗h(1) ⊗h(2) is the coaction and Φ(h) = 1⊗h and Φ−1(h) = c−1(Sh(2) ⊗

h(3)) ⊗ Sh(1) is the trivialisation (see [9, Prop. 6.3.6]). In fact, we can avoid the expli-

cit form of Φ−1 by using associativity of the product of P and the special form of the
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coaction. Thus,

Θ(m⊗h) = (m⊗h(1))Γ(h(2)) = (m⊗h(1))Φ
−1(h(2))(γ(h(3))⊗ h(4))

= (m⊗ 1)Φ(h(1))Φ
−1(h(2))(γ(h(3))⊗h(4)) = mγ(h(1))⊗ h(2)

This is of just the form which implements Mcγ>⊳H∼=Mc>⊳H in [9, Prop. 6.3.5].

This ties up our quantum geometrical notion of gauge transformation of a bundle with

the algebraic theory of equivalence of cocycle cross products[11]; see [9, Prop. 6.3.4] for

the required transformations cγ , αγ and a discussion of the corresponding non-Abelian

cohomologyH2(H,M). We see that this non-Abelian cohomology precisely classifies triv-

ial bundles based on M with structure H up to bundle gauge transformation. Note that

in the classical picture all cocycles are trivial due to commutativity of the algebras, so

we do not see this phenomenon.

Next, we return to the construction of connections ω from gauge fields A. For general

matter fields the global picture is to work on the total space, i.e. as intertwiners V →

ΩnP◮ (the pseudotensorial forms). It was shown in [1] that not all of these come from the

base on a trivial bundle and the ones that do, and which are therefore the correct way

of working with matter fields on any bundle, are the strongly tensorial forms Σ : V →

(ΩnM)P . The subspace (ΩnM)P was introduced for this purpose in [1]. Likewise, it was

noted in [1] that not every connection ω : HAd → Ω1P◮ is of the form (5) coming from

a gauge field A but an abstract characterisation of which ω are of this ‘strong’ form was

not discussed. This has recently been provided by P. Hajac in [4], where it is shown that

these are precisely the connections obeying

◮(u ¯(1)ω(u(̄2))) = u⊗ 1⊗ 1− u
¯(1) ⊗ 1⊗u

¯(2) + u
¯(1)ω(u ¯(2))⊗ 1. (11)

where ◮ acts on the product of u(̄1) with the left factor in the output of ω, and the H

part of the output of ◮ is placed to the far right. This is a kind of invariance condition

for the left factor of the output of ω in place of requiring its values in (Ω1M)P . In

fact, the condition (11) can be written more elegantly in terms of Π as the condition

(id−Π)du ∈ (Ω1M)P for all u ∈ P , see [4].

Another point of view is the following. It was explained in [1] that the connections

ωA,P,Φ which come from the base have the property that the covariant derivative DΣ =

(id−Π)dΣ on any strongly tensorial form Σ : V → (ΩnM)P is again strongly tensorial.

This condition also makes sense globally and from a geometrical point of view one should

define a connection as strong iff its covariant derivative sends all strongly tensorial forms

to strongly tensorial forms. In one direction Hajac already observed that if ω is strong

in the sense of (11) then DΣ is strongly tensorial for any strongly tensorial Σ. The proof

is analagous to that in [1] for trivial bundles; the computation for DΣ reduces when

Σ : V → (ΩnM)P to (id−Π)d on the rightmost output of Σ, i.e. to the 0-form case. The

reduced 0-form case is then clear from (11) in terms of Π. It is perhaps worth remarking

that the converse is also true: If D has this property then take Σ = id : P◮ → P◮, viewed

as a strongly tensorial 0-form. Since D(id) = (id − Π)d ◦ id = (id − Π)d we see that

D(id) being strongly tensorial is exactly the Π form of (11). So these two definitions of a

connection strong coincide. The nontrivial result here is surely in [4] but we did not find
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it formulated this way and would like to emphasise it explicitly: a connection is strong

iff its covariant derivative sends strongly tensorial forms to strongly tensorial forms.

Finally, we would like to discuss the notion of associated fiber bundle to a principal

bundle and problems related with it. Our main observation is that in [1, Appendix A] we

assumed that V is an Hop-comodule algebra in order that we could define E = (P ⊗V )H

as an algebra. The algebra contains M and we call E the associated fiber bundle (or, in

relevant examples, vector bundle), overM with fiber V . A cross section of E should be a

map s : E →M which is a left M -module map and is the identity on M (or equivalently,

obeys s(1) = 1). The left M -module structure is obviously needed (since classically we

can multiply sections by functions on the base) but was accidentally omitted in [1]; it is

needed for a correct 1-1 correspondence in [1, Cor A.8] between cross sections s : E →M

and unit-preserving maps σ : V → M in the case of a trivial associated vector bundle.

Since such ‘local sections’ (or ‘matter fields’) σ also correspond as mentioned above to

pseudotensorial 0-forms V → P we see that the latter correspond to cross sections, which

make sense globally. This global correspondence is easily verified[3] by replacing the role

of Φ−1 for trivial bundles by χ−1(1⊗( )) for a general bundle (as with the Π, ω and Γ, γ

correspondences above.)

While one can certainly make variations of these constructions to try to improve the

appearance of some of the formulae, we want to propose here something more radical:

when one looks over the proofs one finds that one does not actually need V or E to be

algebras. We can assume only that V is a right H-comodule equipped with an element

1 ∈ V which is fixed under the coaction. We still have P ⊗V as the tensor product

comodule and define E = (P ⊗V )H . It remains thatM ⊗ 1 ⊂ E and E is a leftM -module.

We can still define cross sections as unit-preserving left M -module maps s : E → M .

Even in this setup, the correspondence with pseudotensorial forms Σ : V → P holds.

Explicitly, it is

s(u⊗ v) = uΣ(v), Σ(v) = χ−(1)(1⊗S−1v
¯(2))s

(
χ−(2)(1⊗S−1v

¯(2))⊗ v
¯(1)
)
. (12)

We also have the result in [1] that when P is trivial then any associated E also has

a trivialisation ΦE : V → E giving an isomorphism E∼=M ⊗V . Explicitly, ΦE(v) =

Φ(S−1v ¯(2))⊗ v ¯(1), in fact by the same formula as in [1] even though our input assumptions

are slightly different. Note that we do not make any effort here to eliminate S−1 since all

quasitriangular and dual quasitriangular Hopf algebras have invertible antipodes.

It is not known if this more straightforward formulation (where we do not use Hop)

has any real advantages over the original formulation in [1] or its variants. The point

is that the most natural associated bundle in gauge theory (after V = HR) should be

V = HAd. But this is not a comodule algebra so does not fit into the setting of [1].

We see that this is not a problem and we can proceed in any case, with 1 ∈ HAd as

our distinguished fixed element. So, for example, maps Γ : HAd → P◮ as above indeed

correspond to cross sections of the adjoint bundle E = (P ⊗HAd)
H obeying an additional

condition corresponding to convolution-invertibility.

This point of view also leads one naturally to search for a braided generalisation of

quantum group gauge theory. For, the braided adjoint coaction of all braided groups

obtained by transmutation, such as BGq associated to compact simple Lie groups [12], is
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a braided comodule algebra structure. I.e. one can conjugate braided matrices in a way

that one cannot conjugate quantum matrices. This has been explained in [13] as one of

the key features of braided groups. We outline this in the next section.

We can also use BGq as our fiber even when H = Gq the corresponding matrix

quantum group, and use the above formalism. So E = (P ⊗BGq)
Gq is a natural definition

of the adjoint bundle. We can also take the braided-Lie algebra L = span{uij} which

is stable under the adjoint coaction ◮(u) = t−1ut. So E = (P ⊗L)Gq has a finite-

dimensional braided-Lie algebra fiber. We can also take E = (P ⊗Uq(g))
Gq , or more

generally E = (P ⊗H∗)H with a suitable dual and the right coadjoint coaction. It may

be possible in this way to transform (or perhaps, transmute) our above theory where

gauge transformations act by convolution-inversion as in (10) to one in which they act

by something more like the quantum adjoint coaction.

3. Braided group gauge theory. Here we make some remarks on the braided

group version of the gauge theory. This has been initiated in [5] with the key definitions

for bundles, connections and trivialisations as an example of a still more general coalgebra

gauge theory. However, by using braid-diagrammatic methods for braided groups[14] it is

possible to extend this to include all of the formalism of quantum group gauge theory as

it was explained in the last section. This is done in [7]. As usual in braided mathematics,

one has to choose carefully between under and over crossings and be sure that things

do not get tangled up. It should also be possible to push all results up to the coalgebra

gauge theory level as well, which is work in progress.

For braided groups we use the formalism in [14]. See also Chapters 9.4 and 10 of [9].

Suffice it to recall that for a concrete braided group B the coproduct is a homomorphism

∆ : B → B⊗B, where the latter is the braided tensor product algebra (b⊗ c)(a⊗ d) =

bΨ(c⊗ a)d, where Ψ is the braiding. We also require a counit ǫ, antipode S : B → B

and identity element 1. More generally, we work in a braided tensor category with all

maps written as morphisms and the identity as a morphism η : 1 → B, where 1 is the

trivial object. We will need also suitable direct sums, kernels etc. so we keep in mind the

category of representations over some background quantum group. On the other hand, all

constructions will be universal or diagrammatic, which means that they can be formulated

quite generally. We recall that all morphisms are written pointing generally downwards

and we write Ψ = ,Ψ−1 = and · = , ∆ = . Other morphisms are written as nodes,

and the unit object 1 is denoted by omission. Axioms, existence, effective techniques for

working and applications are due to the author in [15][12][16][13][8][17] etc; see the review

[14].

We define a braided principal bundle to be a right braided comodule algebra[14]

such that the map χ is an isomorphism, i.e. an algebra P and a comodule structure

◮ : P → P⊗B which is an algebra homomorphism to the braided tensor product algebra,

and invertibility of χ induced from this data. Here M = PB is the kernel of ◮− id⊗ η :

P → P ⊗B. Using braid diagrams one easily sees that M is an algebra and that χ̃

descends to P ⊗M P (which is defined in the usual way). We assume that ⊗M P and

P ⊗M are left exact. We also define the universal differential calculus in the same way as
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before; the braiding does not enter there. Finally, using the braiding again, we extend ◮

to tensor products of P by the braided tensor product coaction[14].

We can then define the structures which we had before, now as intertwiners for the

coaction of B (as well as morphisms in the category, i.e. intertwiners for the background

quantum group in the concrete case). Thus

ω : BAd → Ω1P◮, Π : Ω1P◮ → Ω1P◮, Γ : BAd → P◮, Θ : P◮ → P◮ (13)

with the various conditions in the definitions being the same as before with the obvious

modifications to express everything in terms of morphisms (such as χ̃◦ω = η⊗(id−η ◦ ǫ)

and ω ◦ η = 0 in the definition for a connection form). Ad in (13) denotes the braided

adjoint coaction introduced in [13]. We have 1-1 correspondences Π↔ω and Θ↔Γ as in

the preceding section.

Let V be any B-comodule. We define pseudotensorial forms, strongly tensorial forms

and the covariant derivative D = (id − Π) ◦ d on them in the same way as before. The

only difference is that Σ : V → ΩnP◮ is an intertwiner to the braided tensor product

coaction on ΩnP and we use a braided version of the strongness condition, namely

ω η η 
ω
η 

P   B   P

P

η 

P   B   P

P

= 

P   B   P P   B   P

P

- +

P

(14)

Then D descends to strongly tensorial forms whenever the connection is strong.

Finally, suppose that V is equipped with a morphism η : id → V such that ◮ ◦ η =

η⊗ η. We say that E = (P ⊗V )B is an associated braided fiber bundle with fiber V ,

where P⊗V has the braided tensor product coaction. We have a leftM -module structure

on E as before, and define a cross section as a M -module morphism s : E → M such

that s ◦ η = η. We have the correspondence s↔Σ as before.

This describes the global theory. Next, we define a trivialisation as before: an inter-

twiner morphism Φ : BR → P◮ which is convolution invertible and obeys Φ ◦ η = η.

From such Φ on a braided comodule algebra P one can make P into a trivial bundle. The

isomorphisms θ :M ⊗B∼=P and θE : M ⊗V∼=E as objects in the category go through as

in the quantum group case.

Finally, we define local gauge fields, local gauge transformations and local sections or

matter fields as morphisms

A : B → Ω1M, γ : B →M, σ : V → ΩnM (15)

as before. When P is trivial the 1-1 correspondences between strong ω↔A, Γ↔γ and

Σ↔σ go through by just the same formulae as in the preceding section, expressed dia-

grammatically.

The principal parts of the above correspondences are summarised in Figure 1. For the

converses and other structures (and proofs) see [7]. The resulting picture at the level of

these local fields works in just the same way as in the quantum group case in [1]. Thus,
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ΦΦ-1
ε

η η Φ-1 A Φω= - +
ωΠ =

. 

Γ =Θ Φ-1 γ Φ= Γ
Σs = σ Φ Σ =

....

Figure 1: Reduction from geometric level to local fields
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= σ γ
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...

ση
σ σ σ

η (-1)
n+1 A(-1)

n+1
σ =

...
-

... ...
+ 

...

dσ

+ ...η

γ-1 γFF
γ

=

Figure 2: Local form of braided gauge theory

the covariant derivatives becomes ∇σ = dσ − (−1)nσ ∗A and we have

∇2σ = −σ ∗ F, F = dA+A ∗A, (16)

and the Bianchi identity dF +A ∗ F − F ∗A = 0 holds. The local gauge transformation

induces gauge transformations Aγ and σγ , and ∇γ , F γ (computed with Aγ) are locally

gauge covariant in the expected way. The diagrams behind the local theory are in Figure 2.

Some of the nodes refer to the coproduct and some to the coaction on V , as clear from

context. We remark that the local gauge theory does not require a braiding. It works for

a monoidal category with suitable direct sums. It does not use the product of B either,

i.e. needs only a coalgebra in the monoidal category.

We have obviously glossed over a lot here, but the basic message is that the entire

theory generalises to the braided case provided the natural braided tensor product coac-

tions and other structures are used. What is new in the braided case? Here are two key

points. (i) The most trivial bundle is:
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P =M⊗B, ◮ = id⊗∆, Φ = η⊗ id, Φ−1 = η⊗S, (17)

but now we use the braided tensor product algebra, which can be complicated (the

two factors do not commute). So we get complicated models very easily. This is amply

demonstrated in [5]. Moreover, E =M⊗V in this case, again the braided tensor product

algebra (when V is a braided comodule algebra). So we obtain interesting associated

bundles too. (ii) For braided groups obtained by full transmutation (such as BGq) there

is a natural braided commutativity condition [15]

V   B

V  B

=

V   B

V  B

β β

(18)

which holds with respect to all comodules V (with coactions β) obtained by transmu-

tation. When B and a braided comodule algebra V are of this type then E = (P⊗V )B

becomes an algebra. Thus we restore the geometrical picture of E as the ‘coordinate ring’

on the total space without any unnatural use of Bop etc. In particular, for such braided

groups we always have a natural adjoint bundle E = (P⊗BAd)
B .

The completely dual version of the braided theory is easy enough: just turn all di-

agrams here and in [7] up side down! In this case our total space and base space are

handled as coalgebras, which should be thought of as linear combinations of points, and

B becomes viewed as an enveloping algebra. A bit more involved is the semidualisation

where we dualise only B. Using the dualisation lemmas in [14] one obtains a theory where

P is a right (Bˇ)cop braided comodule algebra in the category with reversed braiding. Re-

flecting in a mirror and relabelling, we obtain the following formulation: P a left braided

B-module algebra with fixed subalgebra M , χ̃ : B⊗P ⊗P → P (the box in Figure 3)

descends to χ : B⊗P ⊗M P → P and this is assumed non-degenerate in a certain sense.

We denote the action of P on B by ⊲ and extend it to Ω1P . Connection forms, projections,

global gauge transformations and bundle transformations are elements (more precisely,

morphisms from 1) or morphisms

ω ∈ Ω1P⊲ ⊗BAd, Π : Ω1P⊲ → Ω1P⊲, Γ ∈ P⊲ ⊗BAd, Θ : P⊲ → P⊲ (19)

which are also invariant or covariant under the action of B. Here Ad is the left braided

adjoint action from [17] and we use the braided tensor product action on tensor product

objects. The additional condition for ω is χ̃ ◦ ω = η⊗ id − η⊗ η ◦ ǫ and ǫ ◦ ω = 0,

where the compositions are made in the way that make sense. The other parts of the

definitions are likewise similar. Then we have 1-1 correspondences as before. Let V be a

right B-module by ⊳. It is also useful to let ⊲ be the corresponding left module structure

on V defined via the braiding and braided-antipode as explained in[14]. Then define

pseudotensorial forms as invariant elements Σ ∈ V ⊗P⊲. We define associated vector

bundles and sections much as before. A trivialisation is a suitably invertible such element

Φ ∈ P⊲ ⊗BL obeying (id⊗ ǫ)Φ = η, where BL is the left regular representation (it is

actually the dualisation of Φ−1 in the comodule theory). On trivial bundles we obtain
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ΓΘ =Φ
-1
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Φ
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...

γ-1
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γ
γ-1

η η η-A
γ-1

γ
A
γ= + 

ω
Π =

Figure 3: Braided gauge theory of ‘enveloping algebra’ type

connections, gauge transformations and sections from

A ∈ Ω1M ⊗B, γ ∈M ⊗B, σ ∈ ΩnM ⊗V. (20)

The key elements of the theory are in Figure 3. Note that convolution-invertibility in

M ⊗B etc. becomes inverse in the ‘piggy back’ product avoiding a braiding. This is the

commuting tensor product M ⊗Bop if one uses the usual opposite product. One can

also reformulate everything in terms of the braided tensor product M⊗B by a different

dualisation involving the braiding (the natural categorical dual does not). In this case it

is more natural to use the left action ⊲ in the diagrams involving V in the local picture.

4. Bosonisations as quantum/braided/homogeneous bundles. There are

plenty of braided algebras and groups, and hence plenty of braided principal bundles.

Here we want to focus on a class of braided tensor product principal bundles which are

closely connected with quantum groups. They include the braided line example in [5] but

also the extended q-Poincaré algebra studied extensively in [18].

Let H be a dual-quasitriangular Hopf algebra with dual-quasitriangular structure

R : H ⊗H → k. We work in the braided category of H-comodules. Let B be a braided

group in this category. Bosonisation theory tells us that there is an ordinary Hopf algebra

H ·⊲<B given by the semidirect coproduct by the coaction of H on B as an object, and

semidirect product by an action induced by R ([16] in the dual form). Also from this

theory, it is clear that the bosonisation has the structure of a certain braided tensor

product. Hence

Proposition 4.1. Every bosonisation in the braided category of right H-comodules

can be viewed as a braided tensor product principal bundle H ·⊲<B = HR⊗B with structure

braided group B and the right coregular coaction ◮ = id⊗∆.
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P r o o f. Let HR denote H regarded as an H-comodule via the coproduct (the right

coregular representation). Then the algebra structure of the bosonisation H ·⊲<B can

also be written as the braided tensor product HR⊗B. (In the dual form in [16] the

coproduct actually arises as braided tensor product with the adjoint action on H and

is then converted to bosonic form by an inverse transmutation). We are therefore in the

setting of (17).

We see that every morphism A : B → Ω1H with A(1) = 0 provides a connection by

ω(b) = 1⊗Sb(1) ⊗ 1⊗ b(2) − 1⊗ 1⊗ 1⊗ 1ǫ(b) + Ψ(Sb(1) ⊗A(b(2))i)⊗A(b(2))
i⊗ b(2) (21)

where A(b) = A(b)i ⊗A(b)i ∈ Ω1H ⊂ H ⊗H and Ψ(b⊗h) = h(1) ⊗ b(̄1)R(b ¯(2) ⊗ h(2))

is the braiding between B and HR. This connection provides, in turn, a splitting of

Ω1 of H ·⊲<B, as well as a covariant derivative on associated braided fiber bundles. We

now underline the braided coproduct and antipode to distinguish them from usual Hopf

algebra structures.

On the other hand, we can also view any bosonisation, being a semidirect product

algebra, as a quantum principal bundle, as explained (with emphasis on the quantum

double) in [1]. From this point of view the gauge quantum group is H ⊂ H ·⊲<B and B is

the base. In this case every map A : H → Ω1B with A(1) = 0 provides a connection by

ω(h) = Sh(1) ⊗ 1⊗h(2) ⊗ 1− 1⊗ 1⊗ 1⊗ 1ǫ(h) + Sh(1) ⊗A(h(2))i ⊗h(3) ⊗A(h(2))
i (22)

where A(h) = A(h)i ⊗A(h)i ∈ Ω1B. We see that bosonisations are bundles in two ways:

H ·⊲<B

ր տ

H B

(23)

and that gauge fields in one case are a certain class of maps B → H ⊗H and in the other

case a certain class of maps H → B⊗B.

To give a concrete example of interest in physics, let H = ˜SOq(n) = 〈t, ς〉 the dilaton-

extended rotation group of any type associated to an R-matrix R ∈ Mn⊗Mn. Let

B = R
n
q = 〈pi〉 the braided plane associated to a compatible matrix R′ ∈ Mn⊗Mn [8].

Let P = ˜SOq(n)>⊳·R
n
q be generated by these as in [8], to form the extended q-Poincaré

function algebra as introduced there. Then we can view this as a braided R
n
q -bundle

over ˜SOq(n). A braided group gauge field is a function on R
n
q with values in Ω1 ˜SOq(n),

i.e. provided by evaluation against an element of Rn
q ⊗Ω1 ˜SOq(n) since R

n
q is self-dual

via the quantum metric. Although we have given the details here only for the universal

calculus, [5] tells us also how to make quotients of the above constructions (details for the

diagrammatic-braided case will be given elsewhere) and thereby work with non-universal

calculi as well. For realistic calculi close to the classical ones, we can think of the vector

space of Ω1( ˜SOq(n)) as something like SOq(n) tensor a vector space of generators of

Uq(son).

Moreover, we can also view this same q-algebra in a more conventional way as a trivial

quantum group principal bundle over R
n
q with structure quantum group ˜SOq(n). Here

the trivialisation is the Hopf algebra inclusion ˜SOq(n) ⊂ ˜SOq(n)·⊲<R
n
q . A quantum group
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gauge field in this case is a function on ˜SOq(n) with values in Ω1
R

n
q , i.e. an element of

˜Uq(son)⊗Ω1
R

n
q . In the non-universal case Ω1(Rn

q ) as a vector space can be identified

with R
n
q tensor a vector space of generators of the fermionic quantum plane R

|n
q .

Hence we have an example of a double fibration

˜SOq(n)·⊲<R
n
q

ր տ
˜SOq(n) R

n
q

(24)

and a gauge field in the two cases actually involves rather similar data. This suggests an

interesting idea for further research.

Finally, we add a third point of view, as an embeddable homogeneous space bundle

in the setting of the more general coalgebra gauge theory or theory of ψ-bundles in

[5]. The data for an emebeddable homogeneous space bundle is a Hopf algebra H, a

coalgebra C and a coalgebra surjection π : H → C such that kerπ is a right ideal

subject to a minimality requirement. One may then construct an entwining structure

ψ : C ⊗H → H⊗C by ψ(c⊗h) = h(1) ⊗Π(gh(1)) for g ∈ π−1(c). The entwining structure

induces a coaction ◮(h) = ψ(π(1)⊗ h) and under a suitable minimality requirement we

have the corresponding χ (defined as before) invertible. See [1] for details.

Proposition 4.2. Every bosonisation in the braided category of right H-comodules

can be viewed as an emebeddable homogeneous space bundle over the coalgebra B with

π : H ·⊲<B → B defined by π(h⊗ b) = ǫ(h)b.

P r o o f. We set H = H ·⊲<B, the bosonisation, and C = B. Because the coproduct is

a semidirect one by the right coaction of H on B, it is easy to see that π(h⊗ b) = ǫ(h)b

is a coalgebra map. Because the product is a semidirect one by an induced right action

of H , ⊳ say, we have π((g⊗ c)(h⊗ b)) = π(gh(1) ⊗(c⊳h(2))b) = ǫ(g)(c⊳h)b = (π(g⊗ c)⊳h)b

so that kerπ is a right ideal. Then ψ has the form

ψ(c⊗(h⊗ b)) = h(1) ⊗ b(1)
¯(1) ⊗ π((1⊗ c)(h(2)b(1)

¯(2) ⊗ b(2)))

= h(1) ⊗ b(1)
¯(1) ⊗(c⊳(h(2)b(1)

¯(2)))b(2) = h(1) ⊗ b(1)
¯(1) ⊗ c

¯(1)b(2)R(c ¯(2) ⊗h(2)b(1)
¯(2))

where we choose representative 1⊗ c ∈ π−1(c) and put in the explicit form of ⊳ from boso-

nisation theory. The induced coaction is ψ(1⊗(h⊗ b)) = h⊗ b(1) ⊗ b(2). With more work,

one may prove the invertibility of the induced χ. However, this action and ψ coincide with

the ψ-bundle corresponding to the braided principal bundle in Proposition 4.1, for which

the χ condition is known, so we do not need to prove this. To see that the ψ-bundles are the

same we need the formulae in [5] which construct a ψ-bundle from a braided principal bun-

dle, namely ψ(c⊗ u) = Ψ(c⊗u ¯(1))u ¯(2) for c ∈ B and u ∈ P . In our case, the B-coaction is

id⊗∆ so ψ(c⊗(h⊗ b)) = Ψ(c⊗(h⊗ b(1)))b(2) = (h⊗ b(1))
¯(1) ⊗ c ¯(1)b(2)R(c ¯(2) ⊗(h⊗ b(1))

¯(2))

where (h⊗ b) ¯(1) ⊗(h⊗ b) ¯(2) = h(1) ⊗ b ¯(1) ⊗h(2)b
(̄2) is the coaction of H on HR ⊗B as an

object in our braided category of comodules (which has braiding Ψ induced via the coac-

tions and R). Putting this in, we obtain the same ψ as for the embeddable homogeneous

space bundle.
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[5] T. Brzeziń sk i and S. Majid, Coalgebra gauge theory. Preprint, Damtp/95-74, 1995.
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