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Introduction. The notion of deformation quantization was introduced by F.Bayen,

M.Flato et al. in [1]. The basic idea is to formally deform the pointwise commutative

multiplication in the space of smooth functions C∞(M) on a symplectic manifold M to a

noncommutative associative multiplication, whose first order commutator is proportional

to the Poisson bracket.

It is of interest to compute this quantization for naturally occuring cases. In this

paper, we discuss deformations of contact algebras and give a definition of deformations

of algebras slightly different from the deformation quantization of Poisson algebras. Since

the standard 3-sphere is a basic example of a contact manifold, we study the properties

of the noncommutative 3-sphere obtained by this reduction.

We remark that the parameter of the deformation of a contact algebra is not in the

center, while the deformation quantization of Poisson algebras is given by algebras of

formal power series of functions on a manifold; in particular, the deformation parameter

is a central element.

Details and related results will appear in [6] and [7].

1. Reduction of the Wick product. Let us first recall some well-known facts about

the Wick product on C2. Consider an associative algebra W over C generated by {h̄, ζ1,
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ζ̄1,ζ2, ζ̄2} with the commutation relations:

(1) [ζi, ζ̄j ] = −2h̄δij , [ζi, ζj ] = [ζ̄i, ζ̄j ] = 0, h̄ ∈ center.

The algebra W is called the Wick algebra. W has a canonical involutive anti-automor-

phism a→ ā. We denote its product by ∗.
The Fock space representation is the representation of W with the vacuum |0〉 on

the vector space V (∞) = W/L, where L is a left ideal generated by ζ̄i for i = 1, 2, i.e.

ζ̄i|0〉 = 0. Here, we extend the algebra W by adjoining
√

2h̄,
√

2h̄
−1

. These adjoined

elements remain in the center. We see that V (∞) =
∑
⊕V (m), where

(2) V (m) = span 1√
2h̄

m { 1√
m!
ζm1 , · · · , 1√

k!l!
ζk1 ∗ ζl2, · · · , 1√

m!
ζm2 } (m = k + l).

in the extended algebra. The left action of w ∈W on V (∞) gives a representation of W .

This action can be expressed as a matrix of infinite rank and it gives the representation

of the Wick algebra. For w∈W , ŵ denotes the matrix representation of w on V (∞). We

also have ˆ̄ζi = tζ̂i. Notice that almost all elements in W are represented as unbounded

operators in general.

In what follows, w will be substituted for the matrix representation ŵ, whenever it

creates no confusion. We will still denote by a∗b the product of the matrix a and b. Note

that there are elements which are not well defined as elements of W but have rigorous

meanings as matrices of infinite rank. We now consider a matrix given by

(3) r = ∗
√
ζ̄1 ∗ ζ1 + ζ2 ∗ ζ̄2 ,

where ∗√ denotes the square root of the matrix. It is easily seen that r is given as a

diagonal matrix. We see that r̄ = r and r is invertible. We call r the radial element. We

now set

(4) µ = −2h̄r−2, Ξi = r−1 ∗ ζi, Ξ∗i = ζ̄i ∗ r−1 (i = 1, 2).

Lemma 1. The following relations hold :

(5) [µ−1,Ξi] = −Ξi, [µ−1, Ξ∗i ] = Ξ∗i , [Ξ1,Ξ2] = 0.

(6) Ξi ∗ Ξ∗j − (1− µ)Ξ∗j ∗ Ξi = µδij for i, j = 1, 2.

(7) Ξ∗1 ∗ Ξ1 + Ξ∗2 ∗ Ξ2 = 1.

Definition 1. We denote by A the algebra generated by {µ,Ξ1,Ξ2,Ξ
∗
1,Ξ
∗
2} with

relations (5-7).

2. Noncommutative 3-sphere. We extend the algebra A in Definition 1 to a more

suitable setting in a smooth category. Namely, we give another approach to obtain a

complete topological algebra containing A densely via the reduction of the deformation

quantization of C2 − {0}. Let ζ1 and ζ2 be complex coordinates on C2 and C[ζ, ζ̄, h̄]

the space of all polynomials on C2 with coefficients in the polynomials of h̄. The Wick

algebra W is linearly isomorphic to C[ζ, ζ̄, h̄] and its associative product ∗ is given by

the Moyal product formula:

(8) a ∗ b = a exp h̄{←−∂ζ ·
−→
∂ζ̄ −

←−
∂ζ̄ ·
−→
∂ζ}b,
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where

a
(←−
∂ζ ·
−→
∂ζ̄ −

←−
∂ζ̄ ·
−→
∂ζ

)
b =

∑
i
(∂ζia∂ζ̄ib− ∂ζ̄ia∂ζib).

The formula (8) extends naturally to the associative product on C∞(C2)[[h̄]]. The

associative algebra (C∞(C2)[[h̄]], ∗) is called the deformation quantization of C∞(C2).

Here, C∞(C2)[[h̄]] is the set of formal power series with values in C∞(C2) with the

formal parameter h̄. We endow C∞(C2) and C∞(C2)[[h̄]] the C∞ topology and the

direct product topology, respectively. Then the Wick algebra W is a dense subalgebra of

(C∞(C2)[[h̄]], ∗).
It is easy to see that

(9) r2 = ζ̄1 ∗ ζ1 + ζ2 ∗ ζ̄2 = ζ̄1 · ζ1 + ζ2 · ζ̄2.

As each h̄k-term in the Moyal product formula (8) is expressed as a bidifferential

operator, the star-product ∗ has locality. Hence, for any open subset U of C2, we can

define the star-product ∗ of the deformation quantization C∞(U)[[h̄]] by the same formula

(8). Note that any maximal 2-sided ideals (classical points) of C∞(U)[[h̄]] correspond to

points of U . In the following, we will work mainly on C2
∗= C2 − {0}. We consider a

function r as the square root of r2 with respect to the ordinary commutative product ·
on the space C2

∗, which is regarded as the radial element defined in §1.

A one parameter group of automorphisms

(10) R(et) : C∞(C2
∗)[[h̄]]→ C∞(C2

∗)[[h̄]]

is defined as follows:

R(et)ζi = etζi, R(et)ζ̄i = etζ̄i, R(et)h̄ = e2th̄.

Set a closed subalgebra A∞ of C∞(C2
∗)[[h̄]] by

(11) A∞ = {f ∈ C∞(C2
∗)[[h̄]];R(et)f = f}.

Under the relative topology from C∞(C2
∗)[[h̄]], A∞ is a complete topological associative

algebra. We put

µ = −2h̄r−2, Ξi = r−1 ∗ ζi, Ξ∗i = ζ̄i ∗ r−1 (i = 1, 2).

Since the above elements have the same relations as in Lemma 1, the algebra A is densely

embedded in A∞. For the algebra A∞, we have the following:

Theorem A. Set B = A∞ ∩ C∞(C2
∗)

(A.1) [µ,A∞] ⊂ µ∗A∞∗µ
(A.2) [A∞,A∞] ⊂ µ∗A∞, where [a, b] = a∗b− b∗a is the commutator bracket.

(A.3) A∞ = B ⊕ µ∗A∞ (topological direct sum).

(A.4) The mappings µ∗ : A∞ → µ∗A∞, ∗µ : A∞ → A∞∗µ defined by a → µ ∗ a,

a→ a ∗ µ respectively are linear isomorphisms.

(A.5) a→ ā is an involutive anti-automorphism such that µ̄ = µ.
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By property (A.3), we see for any positive integer N , A∞ decomposes as follows:

(12) A∞ = B ⊕ µ∗B ⊕ · · · ⊕ µN−1∗B ⊕ µN ∗A∞.

A∞ satisfies

(A.6)
⋂
k

µk∗A∞ = {0}.

3. Noncommutative contact algebras. We call a complete topological associative

algebra Ã a regulated algebra, (or more explicitly µ-regulated algebra) if there exists an

element µ and a closed subspace B̃ satisfying (A.1)−(A.5). µ is called the regulator of

Ã. Note that (12) holds for any µ-regulated algebra. A µ-regulated algebra Ã is called

formal if it satisfies (A.6). By (12), a formal µ-regulated algebra Ã may be denoted by

Ã = B̃[[µ]].

On any formal µ-regulated algebra Ã, the axioms (A.1) and (A.4) permit us to in-

troduce the formal symbol µ−1 such that µ−1 ∗ µ = µ ∗ µ−1 = 1. It gives a derivation

[µ−1, a] of Ã defined by

(13) [µ−1, a] = −µ−1 ∗ [µ, a] ∗ µ−1

It is easy to see that

(14) [µ−1∗Ã, Ã] ⊂ Ã, [µ−1∗Ã, µ−1∗Ã] ⊂ µ−1∗Ã.

Let (m0,m1) be the maximal integers such that

[µ−1, Ã] ⊂ µm0 ∗Ã, [Ã, Ã] ⊂ µm1 ∗Ã.

If [µ−1, Ã]={0}, we put m0 =∞. We call (m0,m1) the weight of Ã. A formal µ-regulated

algebra (Ã, ∗) of weight (∞, 1) will be called a quantized Poisson algebra. In particular,

the deformation quantization C∞(C2)[[h̄]] of C∞(C2) is a formal h̄-regulated algebra of

weight (∞, 1), and A∞ in Theorem A is a formal µ-regulated algebra of weight (0, 1)

respectively.

For any formal µ-regulated algebra Ã= B̃[[µ]] of the weight (0, 1), its associative

product ∗ is determined by giving a ∗ b for a, b ∈ B̃: Set

(15) a ∗ b =
∑

k≥0
µk ∗ πk(a, b), πk(a, b) ∈ B̃.

We put

(16) [µ−1, a] = ξ0(a) + · · ·+ µk ∗ ξk(a) + · · · .

(2.11) is used for computing the following:

(17) a ∗ µ = µ ∗ a+ µ2 ∗ ξ0(a) + µ3 ∗ (ξ1(a) + ξ2
0(a)) + · · ·

A commutative associative product · on Ã/µÃ induces one on B̃ by the identification

B̃ with Ã/µÃ.

It is easy to see that π1 in (15) is a biderivation of (B̃, ·) and ξ0 in (16) is a derivation

of (B̃, ·). We remark here that one can change the filtration by a linear isomorphism

a→ a+ µ ∗ L(a) of B̃[[µ]] defined by any continuous linear operator L : B̃ → B̃.
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Definition 1. A formal (µ-)regulated algebra Ã will be called a (µ-)regulated smooth

algebra if there exists a filtration Ã = B̃[[µ]] satisfying the following:

(i) B̃ in (A.3) is isomorphic to a subalgebra of the commutative algebra C∞(M) of

all C∞ functions on a finite dimensional manifold M , and B̃ ⊃ C∞0 (M) the space of all

support compact functions.

(ii) With B̃ considered as a subalgebra of C∞(M), ξk in (16) is a linear operator of

B̃ into B̃ expressed as a differential operator on M for any k ≥ 0.

(iii) For any k ≥ 0, πk in (15) is a bilinear operator of B̃ × B̃ into B̃ expressed as a

bidifferential operator on M .

In any smooth algebra, ξ0 in (16) is a C∞ vector field on M , called the characteristic

vector field, and π1 in (17) is a C∞ bivector field on M .

Definition 2. Let π−1 be the skew symmetric part of π1. A smooth algebra of weight

(0, 1) is called a noncommutative contact algebra if the rank of π−1 in (15) is maximal at

each point of M .

The notion of the classical contact algebras can be obtained by considering the first

term (µ0-term) and the second term (µ1-term) of the product (15) and (16) in noncommu-

tative contact algebras. The space of C∞ functions on a contact manifold naturally forms

a contact algebra. Moreover, any contact algebra extends to a noncommutative contact

algebra, that is any contact algebra is quantizable. Various properties on noncommutative

contact algebras are shown in [6] and [7].

The following is easy to see :

Proposition 3. The noncommutative contact algebra A∞= B[[µ]] given in Theorem

A is a µ-regulated smooth algebra with B = C∞(S3).

Although, as seen in §1, µ,Ξ1,Ξ2,Ξ
∗
1,Ξ
∗
2 are represented as matrices, we regard them

as elements of C∞(S3)[[µ]] without matrix representations.

4. Remarks. The noncommutative 3-sphere we present here has additional structure

corresponding to the Hopf fibration of the 3-sphere over the Riemann sphere. Instead

of the canonical circle action on the standard 3-sphere, ad(µ−1) plays the role of ‘non-

commutatizing’ the Hopf fibration for the noncommutative 3-sphere. As a result, we can

construct the noncommutative Riemannian sphere. More generally, on Kähler manifolds,

we can define noncommutative Kähler manifolds. Although this is essentially the same

notion as in Karabegov [4], we work strictly in the noncommutative algebra setting.

The noncommutative algebra A∞ also furnishes a representation of the noncommu-
tative Riemann sphere. This agrees with the work on geometric quantization for Kähler
manifolds by Berezin [2] and Cahen-Gutt-Rawnsley [3]. In addition to the representation
of the noncommutative Riemannian sphere, elements in the algebraA∞ are representable;
in particular, µ−1 is representable. More generally, these considerations also provide a
representation for Kähler manifolds M of integral class whenever the associated line
bundle of the S1-bundle over M has a nontrivial holomorphic section. This should be
compared with the recent work by Guillemin [5].
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