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Hoża 74, 00-682 Warszawa, Poland

E-mail: szakrz@fuw.edu.pl

Abstract. We show that a Poisson Lie group (G, π) is coboundary if and only if the natural
action of G×G on M = G is a Poisson action for an appropriate Poisson structure on M (the
structure turns out to be the well known π+). We analyze the same condition in the context
of Hopf algebras. A quantum analogue of the π+ structure on SU(N) is described in terms of
generators and relations as an example.

1. Preliminaries. For the theory of Poisson Lie groups we refer to [1, 2, 3, 4, 5]. We

follow the notation used in our previous papers [6, 7].

A Poisson Lie group is a Lie group G equipped with a Poisson structure π such

that the multiplication map is Poisson. The latter property is equivalent to the following

property (called multiplicativity of π):

(1) π(gh) = π(g)h+ gπ(h) for g, h ∈ G.

Here π(g)h denotes the right translation of π(g) by h etc. This notation will be used

throughout the paper.

A Poisson Lie group is said to be coboundary if

(2) π(g) = rg − gr

for a certain element r ∈ g∧g. Here g denotes the Lie algebra of G. Any bivector field of

the form (2) is multiplicative. It is Poisson if and only if

[r, r] ∈ (g ∧ g ∧ g)inv

(the Schouten bracket [r, r] is g-invariant). In this case the element r is said to be a

classical r-matrix (on g).
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For any Poisson Lie group (G, π), the antipode map g 7→ Sg := g−1 is anti-Poisson:

(3) S∗π = −π.

2. Gauge transformations of a lattice connection on one link. Consider the

following action

(4) (G×G)×G 3 ((g0, g1), g) 7→ g1gg
−1
0 ∈ G

of G × G on G. This type of action is familiar in gauge field theory on the lattice. We

think here about an ‘elementary’ lattice composed of only one link with two ends: 0 and

1. Elements g0 and g1 are the values of the gauge transformation at the lattice sites 0

and 1, respectively. The connection on the link is represented by the element g.

One can ask if it is possible to consider the gauge group to be a Poisson Lie group

(or, a quantum group). In this case it is natural to require the action (4) to be a Poisson

action (i.e. the map (4) to be a Poisson map).

Definition 1. A Poisson Lie group (G, π) is said to be gauge-admissible if there

exists a Poisson structure ρ on G such that the map (4) is a Poisson map as a map from

(G, π)× (G, π)× (G, ρ) to (G, ρ).

Note that we treat the gauge group differently than the space of connections (even if

the latter is parameterized by the group manifold).

Proposition 1. A Poisson Lie group is gauge admissible if and only if it is cobound-

ary.

P r o o f. Let (G, π) be a Poisson Lie group. It is gauge admissible if and only if the

map

(5) G×G×G 3 (x, y, z) 7→ xyz−1 ∈ G

is Poisson as a map from (G, π)× (G, ρ)× (G, π) to (G, ρ) or, equivalently (using (3)), if

the map Ψ:G×G×G→ G defined by

Ψ(x, y, z) = xyz

is Poisson as a map from (G, π)×(G, ρ)×(G,−π) to (G, ρ). By a similar reasoning which

leads to (1), this is equivalent to

(6) ρ(xyz) = π(x)yz + xρ(y)z − xyπ(z) for x, y, z ∈ G.

We have two following particular cases of this equality. If we set z = e (the group unit),

we get

(7) ρ(xy) = π(x)y + xρ(y),

and if we set x = e, we get

(8) ρ(yz) = ρ(y)z − yπ(z).

It is easy to see that (7) and (8) together are equivalent to (6). Since ρ = π is a particular

solution of (7), the general solution of (7) is given by

(9) ρ(g) = π(g) + gA ,
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where A ∈ g ∧ g. Since ρ = −π is a particular solution of (8), the general solution of (8)

is given by

(10) ρ(g) = −π(g) +Bg ,

where B ∈ g ∧ g. For the compatibility of (9) and (10) we must have

π(g) =
Bg − gA

2
.

Since π(e) = 0, we have B = A, and finally

π(g) =
Ag − gA

2
, ρ(g) =

Ag + gA

2
.

This shows that (G, π) is gauge-admissible if and only if it is coboundary (with r = A/2;

note that if r is a classical r-matrix then π+(g) := rg + gr = ρ(g) is automatically a

Poisson bivector field).

It is clear that for a given coboundary Poisson structure π, all possible ρ are obtained

from one by adding an invariant element of g ∧ g. In particular, if g is semisimple, then

ρ is unique.

3. Hopf algebra case. Let (H,m,∆) be a Hopf algebra. Here m:H ⊗H → H and

∆:H → H ⊗ H denote the multiplication and the comultiplication in H. Let I and c

denote the unit and counit of the Hopf algebra.

We set

Ψ := m(m⊗ id ) = m(id ⊗m)

and ask when there exists a (new) coalgebra structure ∆̃ (with the same counit c) on H

such that Ψ is a morphism from (H,∆)⊗ (H, ∆̃)⊗ (H,∆op) to (H, ∆̃). Here ∆op is the

comultiplication opposite to ∆: ∆op = P ◦∆, where P is the permutation in the tensor

product.

The condition for Ψ to be such a morphism reads:

(11) ∆̃Ψ = (Ψ⊗Ψ)(id ⊗ id ⊗ P ⊗ id ⊗ id )(id ⊗ P ⊗ P ⊗ id )(∆⊗ ∆̃⊗∆op),

and is equivalent to the following two conditions:

(12) ∆̃m = (m⊗m)(id ⊗ P ⊗ id )(∆⊗ ∆̃),

(13) ∆̃m = (m⊗m)(id ⊗ P ⊗ id )(∆̃⊗∆op)

(they follow from (11) by applying it to id ⊗ id ⊗ I and I ⊗ id ⊗ id , respectively). It is

easy to solve these conditions for ∆̃. Applying (12) to id ⊗ I, we get

(14) ∆̃(a) = ∆(a)R a ∈ H ,

where the multiplication is that of H ⊗H and

R := ∆̃(I).

It is easy to see that (14) solves (12) for any R.

Similarly, applying (13) to I ⊗ id , we get

∆̃(a) = R∆op(a) a ∈ H.
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This is a solution of (13) for any R. It follows that the general solution of (11) is (14),

where the R-matrix R satisfies the compatibility condition

(15) ∆(a)R = R∆op(a) a ∈ H.
It is easy to see that ∆̃ is coassociative if and only if

(16) [(∆⊗ id )R ](R⊗ I) = [(id ⊗∆)R ](I ⊗R).

Indeed,

(∆̃⊗ id )∆̃(a) = [(∆⊗ id )(∆(a)R)](R⊗ id ) = [(∆⊗ id )∆(a)][(∆⊗ id )R](R⊗ id ),

(id ⊗ ∆̃)∆̃(a) = [(id ⊗∆)(∆(a)R)](id ⊗R) = [(id ⊗∆)∆(a)][(id ⊗∆)R](id ⊗R).

Concluding: the question at the beginning of this section has an affirmative answer if and

only if there exists an element R ∈ H ⊗H such that (15), (16) hold and

(c⊗ id )R = I = (id ⊗ c)R.
A Hopf algebra satisfying those conditions might be called gauge-admissible or cobound-

ary .

Notice that the definition of a coboundary Hopf algebra originally introduced by

Drinfeld [2] requires also the ‘unitarity’ of R, i.e. R12R21 =I⊗I. However, this condition

does not seem to be really a restriction. If it is not satisfied, one can use the Drinfeld’s

prescription:

(17) R := (R12R21)−
1
2R

(assuming the existence of the square root with suitable properties; for example, one

can assume the situation of a QUE-algebra) to pass to another element which is already

‘unitary’ and satisfies (15), (16).

The Hopf algebra considered in this section should be interpreted as a dual of the

Hopf algebra of functions on a quantum group (quantized universal enveloping algebra).

In the next section we give an example of a ‘gauge-admissible’ matrix quantum group.

4. Example in terms of generators and relations. Let

(18) R(u©> u) = (u©> u)R

be a part of relations defining a matrix quantum group (A, u). Here u = (uij)i,j=1,...,n

is the defining representation of the quantum group, R is the fundamental intertwiner

(R-matrix of FRT-type) and we use the Woronowicz’s notation for the ‘matrix’ tensor

product. Let us note that we have

(19) R̃(u−1©> u−1) = (u−1©> u−1)R̃ ,

where R̃ := PRP . Let us denote by B the algebra generated by the entries of the n× n
matrix w and relations

(20) R(w©> w) = (w©> w)R̃.

It is easy to see that there exists exactly one homomorphism t (quantum gauge trans-

formation – the analogue of (5)) from B to A⊗B ⊗A such that

t(wi
j) =

∑
kl

uik ⊗ wk
l ⊗ (u−1)lj ,
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or, using Woronowicz’s notation,

(t⊗ id )(w) = u©⊥ w©⊥ u−1

(here w is understood as an element of End (Cn)⊗B). In order to see that u©⊥ w©⊥ u−1
satisfies the same relations as w, we notice that

(u©⊥ w©⊥ u−1)©> (u©⊥ w©⊥ u−1) = (u©> u)©⊥ (w©> w)©⊥ (u−1©> u−1)

and use subsequently (18), (19) and (20).

In order to be more precise, we consider now a specific matrix quantum group, namely

SUq(n), as given in [8]. The *-algebra A of ‘regular functions’ on SUq(n) is the one

generated by the entries of an n× n matrix u and the following relations:

(21) u(n)E = E, E′u(n) = E′, uu∗ = In ⊗ IA = u∗u.

Here u(n) is the n-th tensor power of u, E is the ‘q-deformed’ volume element

Ei1i2...in = (−q)number of inversions in (i1,...,in), E′i1...in = Ei1...in

(for (i1 . . . in) not being a permutation we set Ei1...in = 0) and In is the unit n×n matrix.

Note that in this case

(u−1)(n)Ẽ = tE, Ẽ′(u−1)(n) = Ẽ′,

where

Ẽ = PtotalE, Ẽ′ = E′Ptotal,

Ptotal being the total permutation (1, 2, . . . , n) 7→ (n, . . . , 2, 1).

Let B be the *-algebra generated by the entries of an n× n matrix w and relations

(22) w(n)Ẽ = (−1)
n(n−1)

2 E, E′w(n) = (−1)
n(n−1)

2 Ẽ′, ww∗ = In ⊗ IB = w∗w.

It is easy to check that u©⊥ w©⊥ u−1 satisfies the same relations, hence we have the ‘gauge

transformations’ on the quantum level.

It is essential to know if algebra B has a correct size (Poincaré series), i.e. if the

deformation is flat. We shall show that B is actually isomorphic to A. To this end,

consider the change of variables

u = εwPtotal

in (21), where ε is a complex number such that εn = (−1)
n(n−1)

2 = detPtotal. It is easy

to see that relations (21) are now transformed to relations (22).

5. Remarks

5.1. The algebraB defined in (22) is the quantum counterpart of the Poisson structure

π+(g) = rg + gr on SU(n). The case of a general group is sketched in (20). Note that if

we substitute u = wg0 in (18) where g0 is an element of the classical group such that

(23) (g0 ⊗ g0)R(g−10 ⊗ g
−1
0 ) = PRP ,

then we obtain relations (20). One can check that the well known R-matrix for the An

series satisfies (23) if we choose g0 = εPtotal. The corresponding fact for Poisson groups

means that we find an element g0 ∈ G such that

(24) π = π+g0
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i.e. π(gg0) = π+(g)g0, that is to say

rgg0 − gg0r = rgg0 + grg0,

or,

g0rg
−1
0 = −r,

or,

(25) π+(g0) = 0.

For instance in the case of the standard r-matrix of the An-series,

r =
∑
j<k

ej
k ∧ ekj ,

g0 := εPtotal will do the job, because Pej = ej′ , j
′ := n+ 1− j.

5.2. Formula (14) was used in [9] to discuss twisting Hopf algebras by 2-cocycles. The

Poisson structure π+ is isomorphic to π by a translation (24) if and only if it vanishes at

some point (namely g0, see (25)). This situation (and previously discussed isomorphism

of B with A) corresponds to twisting by a coboundary.

5.3. The author would like to thank Jiang-Hua Lu, Shahn Majid and Marco Tarlini

for enlightening discussions.

The author is also very much indebted to Prof. V. Drinfeld for presenting the proof

of the fact that (17) satisfies (16), if R satisfies (15) and (16).
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