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Let R = ⊕i∈ZRi be a Z-graded ring with a ring R0 = D, every Ri = Dvi, vi ∈ Ri,

is a left free D-module of rank 1, v0 = 1, exists a ring automorphism σ of D such that

αviβvj = ασi(β)c(i, j)vi+j

for all α, β ∈ D and i, j ∈ Z and some map (a “2-cocycle”) c : Z×Z→ Z(D), the centre

of D. Throughout the paper a “module” means a left module.

Nontrivial examples of R are generalized Weyl algebras. Let D be a ring, σ ∈Aut (D),

a a central element of D. The generalized Weyl algebra (GWA) A = D(σ, a) (of degree

1) is the ring generated by D and by two indeterminates X = v1 and Y = v−1 subject

to the relations [Bav 1]:

Xα = σ(α)X and Y α = σ−1(α)Y, ∀α ∈ D, Y X = a and XY = σ(a).

If D is commutative resp. D = K[H] (the polynomial ring with coefficients in a field

K), the ring A is also considered in [Jor 1, 2] resp. [Hod 1]. It is easy to verify that the

subring of R generated by D, vn, v−n is the GWA D(σn, c(−n, n)).

In [BVO] the simple R-modules were classified (up to irreducible elements of some

Euclidean ring ) when D is a Dedekind ring and c(i, j) 6= 0 for all i, j ∈ Z ( and do the

same for an N-graded ring R). As a consequence there were described all simple modules

of some classical algebras. Name some of them: the first Weyl algebra A1 and its quantum

deformation A1(q), the universal enveloping algebra Usl(2) of the Lie algebra sl(2) and

its quantum analog Uqsl(2), the quantum plane Λ, the Smith’s algebra [Sm], the Wit-

ten’s first and Woronowicz’s deformations [Za], [Bav 5]; the quantum group Oq2(so(k, 3))
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[Sm 1]; the quantum Heisenberg algebra [Ma], [KS], [Ros], [Bav 5]; and many others.

Remark that all these algebras are GWA’s [Bav 5, 6].

The aim of this short paper is to apply the results of [BVO] and to classify the

simple modules of the quantum Weyl algebra A1(q), q 6= 0, 1, and the quantum plane

Λ. Moreover, we construct a great deal of (new) simple non-weight modules over the

Virasoro Lie algebra. In more detail, some natural factor-algebra V of the universal

enveloping algebra of the Virasoro algebra is an instance of the ring R as above and we

classify the simple V -modules. The proofs are omitted since they can be found in [BVO].

The first step in the classification of simple modules of infinite dimensional algebras

was made by Block [Bl 1–3]. In [Bl 3] the simple modules over the first Weyl algebra A1

and the universal enveloping algebra Usl(2) were classified (up to irreducible elements of

some Euclidean ring ). Moreover, it was done for a differential operator ring D[X; ∂] with

Dedekind D and under some restriction on prime ideals of D and on the derivation ∂ of

D (condition (3.1.1) in [Bl 3]). The simple K[[X]][∂]−modules are classified in [EL]. The

results of previes studies of the simple A1-modules ([Bam], [Di 1,2]) and of sl(2)-modules

([AP 1,2], [Le]) are fragmentary.

The author [Bav 2–4] classified the simple modules of a generalized Weyl algebra

D(σ, a) with Dedekind D and an automorphism σ such that all maximal ideal of D are

linear, i.e. p 6= σn(p) for all n 6= 0 ∈ Z (a non-linear maximal ideal is called cyclic ). If

a ground field K has characteristic 0, the Weyl algebra A1 and all infinite dimensional

prime factors of Usl(2) and of Uqsl(2) are GWA’s of this kind. The quantum Weyl

algebra A1(q) =< X, ∂ | ∂X − qX∂ = 1 > , (q 6= 0, 1 ∈ K) and the quantum plane

Λ = K < X,Y |XY = λY X >, λ ∈ K, are GWA’s A1(q) ' K[H](σ,H) , σ(H) = H − 1,

and Λ ' K[H](σ,H) , σ(H) = λH, with D = K[H], the polynomial ring (Dedekind)

where exist cyclic maximal ideals (more precisely, (H−(1−q)−1) and (H) are the unique

cyclic or even σ-invariant maximal ideals of K[H] respectively). It was unclear what to

do in general situation (when cyclic maximal ideals exist).

Now we describe in more detail principal results of [BVO]. For a ring A we denote by

Â the set of isomorphism classes of simple A-modules. Let R be as above with Dedekind

D and c(i, j) 6= 0 for all i, j ∈ Z. Denote by k the field of fractions of D, i.e. k = S−1D,

S := D \ {0}. Then the localization B = S−1R of the ring R is the skew Laurent

polynomial ring B = k[X,X−1;σ] with coefficients in the field k wich contains R (R→ B,

r → r/1). It is an Euclidean ring and, hence, a principal left and right ideal domain. By

a classical theory the modules of B can be described in terms of factorization of elements

of B. We recall [Jac] that a B-module M is simple if and only if M ' B/Bb for some

irreducible b ∈ B (i.e. b = ac implies a or c is a unit ), and B-modules B/Ba and B/Bb

are isomorphic if and only if a and b are similar, i.e. there exists c ∈ B such that 1 is a

greatest common right divisor of b and c and ac is a least common left multiple of b and

c. If M is a simple R-module, then the localization S−1M = B⊗AM of M at S is either

0 or a (nonzero) simple B-module. In accordance with these two possibilities we say that

M is D-torsion or D-torsionfree and we have the partition

R̂ = R̂(D − torsion) ∪ R̂(D − torsionfree)

(here and throughout the paper we use the following notation: if P is an isomorphism- in-
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variant property of simple R-modules, then R̂(P ) = {[M ] ∈ R̂ |M has the property P }).
An R-module M is weight, if M is a semisimple D-module. It is easy to show that

R̂(D − torsion) = R̂(D − weight).

In the case of Usl(2,C) these weight modules are precisely the weight modules in the

usual sence. So, we split our problem into two parts: the first, to describe R̂(D−weight)

and the second, R̂(D − torsionfree). The first is much more simpler (although there are

a lot of types of simple weight modules) and much more “technical”. This is the reason

why we say nothing here about these modules. The first part is more “geometrical”, the

second - more “arithmetical”.

An R-module M is called R-socle if the socle Soc R(M) (= sum of the simple R-

submodules of M) is nonzero. Denote by B̂(R − socle) the set of isoclasses of simple

B-modules which are R-socle. An element b ∈ B is R-socle if B/Bb is so. Lemma 5.1,

[BVO], gives a describtion of simple D-torsionfree R-modules in terms of simple R-socle

B-modules and gives a form of any simple D-torsionfree R-module.

• (Lemma 5.1, [BVO]) The canonical map

S−1 : R̂(D − torsionfree)→ B̂(R-socle), [M ]→ [S−1M ],

is bijective with inverse Soc :[N ] → [SocR(N)]. Each simple D-torsionfree R-

module has the form Mm := R/R ∩ Bm for some left maximal ideal m of B and

M(m=Bb) 'M(n=Bc) are isomorphic if and only if B/m ' B/n as B-modules, i.e.

the corresponding irreducible elements b and c are similar.

If R is a GWA D(σ; a 6= 0) and all maximal ideals of D are linear, then B̂(R−socle) =

B̂ = k[X,X−1;σ]̂ , [Bav 2–4]. In general, it is not the case, moreover, in “most” cases

simple B-modules are not R-socle (Section 6, [BVO]). The following result illustrates

these words:

• (Theorem 5.14, [BVO]) R̂(D − torsionfree) 6= ∅ if and only if there are no more

than finitely many cyclic maximal ideals of D.

It means that so less D has cyclic maximal ideals so much the ring R has the simple

modules.

The cyclic group G, generated by σ, acts in an obvious way on the set Specm(D) of

maximal ideals of D. An orbit O(p) = {σi(p), i ∈ Z} of a maximal ideal p is linear resp.

cyclic if p is so. Let α, β ∈ S, we write α < β if there are no maximal ideals p and q

of D which belong to the same linear orbit and such that α ∈ p, β ∈ q and p = σi(q)

for some i ≥ 0. An element b = v−mβ−m + · · · + β0 ∈ R, all βi ∈ D, β−m 6= 0, β0 6= 0,

m > 0, is called l-normal if β0 < β−m, and β0 < a := c(−1, 1).

Let O(p) be a cyclic orbit which contains n elements. Set θ(O) for un−1i=0 σ
i(p), the

product of all ideals from O. Theorem 5.13, [BVO], gives a necessary and sufficient

condition for a module R/R ∩Bb to be R-socle, where b is irreducible in B:

• (Theorem 5.13, [BVO]) R/R ∩Bb is R-socle if and only if (CO) holds :

(CO) R = Rθ(O) +R ∩Bb for all cyclic orbit O.

Moreover, if b is l-normal, then the R-module R/R ∩Bb is simple.
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Remark that (CO) is to be verified only for finitely many orbits (see Theorem 5.14

above). To sum up Lemma 5.1 and Theorem 5.13 we have.

Theorem A ([BVO]). Let R be as above with Dedekind D and c(i, j) 6= 0 for all

i, j ∈ Z, and b be l-normal irreducible in B and (CO) holds. Then R/R ∩ Bb is a D-

torsionfree simple R-module (= SocR(B/Bb)). Up to isomorphism every D-torsionfree

simple R-module arises in this way , and from a b which is unique up to similarity.

• (Proposition 5.16, [BVO]) If O(p) = {p}, i.e. p = σ(p), c(−1, 1) 6∈ p, b 6∈ Rp, then

(CO) holds for the orbit O if and only if exists exactly one βith such that βi 6∈ p .

In Section 1 we apply these results to classify the simple modules over the quantum

Weyl algebra A1(q), q 6= 0, 1, over an algebraically closed field K. If char K = 0, then

for A1(q) there exists a unique cyclic maximal ideal, it is σ-invariant and satisfies the

assumption of Proposition 5.16. On the contrary, in the case of the Weyl algebra A1 there

are no cyclic ideals at all. We see that existence of only one cyclic ideal in the case of

A1(q) reduces substantially the set of simple modules in comparison with A1.

1. The simple modules of the quantum Weyl algebra. Let K be a field alge-

braically closed for simplicity.

The quantum Weyl algebra A1(q) =< X, ∂|∂X − qX∂ = 1 > over K (q 6= 0, 1 ∈ K)

is the GWA :

A1(q) ' K[H](σ, a = H), X ↔ X, ∂ ↔ Y, ∂X ↔ H,

with σ : σ(H) = q−1(H − 1).

Identify Specm K[H] with K by the map (H − λ) → λ. Then σ “acts” on K as

σ(λ) = qλ+ 1. Therefore, any orbit has the form O(λ) = {σi(λ) = qiλ+ (qi− 1)/(q− 1),

i ∈ Z}, the element δ := (1− q)−1 is σ-invariant, i.e. O(δ) = {δ}.
q is an n’th root of 1 (qn = 1). In this case σn = 1, hence all orbits are cyclic, by

Theorem 5.14 (from Introduction) each simple A1(q)-module is K[H]-torsion ≡ weight.

All orbits but O(δ) are of length n, O(0) is the unique degenerate orbit.

Corollary 1.1. If q is an n’th root of 1. Then each simple A1(q)-module is finite

dimensional and weight and the set

Â1(q) = Â1(q)(±0) ∪ Â1(q)(−,−) ∪ Â1(q)(+,+) ∪ Â1(q)(−,+)(a disjoint union)

is described by (1.1)–(1.4) below.

Â1(q)(±0) contains the unique class which corresponds to the module

L(±0) = A1(q)/A1(q)(X,H, Y n). (1.1)

For t = (−,−), (+,+), the map

K∗ := K\{0} → Â1(q)(t), λ→ [L(t, λ)],

is bijective, where

L((−,−), λ) = A1(q)/A1(q)(Xn, H, Y n − λ) and

L((+,+), λ) = A1(q)/A1(q)(Y n, H,Xn − λ). (1.2)
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The map

K∗ ×K∗ ∪K∗ → Â1(q)(−,+), (λ, µ)→ [L((−,+), λ, µ)], µ→ [L((−,+), µ)],

is bijective, where

L((−,+), λ, µ) = A1(q)/A1(q)(H − λ,Xn − µ,

Y n − µ−1λ(qλ+ 1) · · · (qn−1λ+ (qn − 1)/(q − 1))) (1.3)

and

L((−,+), µ) = A1(q)/A1(q)(H − δ,X − µ, Y − δµ−1). (1.4)

q is not a root of 1. Â1(q)(weight). In this case there is the unique cyclic orbit O(δ),

δ = (1− q)−1, which is nondegenerate.

Corollary 1.2. If q is not a root of 1, then

Â1(q)(weight) = Â1(q)(weight, linear) t Â1(q)(−,+)

(a disjoint union) is described by (1.5) and (1.6).

Two scalars λ and µ from K\δ are equivalent iff λ, µ belong to O 6= O(0) or to

Γ1 := {σi(0), i ≤ 0} or to Γ2 := {σi(0), i > 0}.
The following map is bijective:

(K\δ)/ ∼→ Â1(q)(weight, linear),O(λ 6= 0)→ [L(O(λ)) = A1(q)/A1(q)(H − λ)]

Γ1 → [L(Γ1) = A1(q)/A1(q)(H,X)], Γ2 → [L(Γ2) = A1(q)/A1(q)(H − 1, Y )]. (1.5)

The map

K∗ → Â1(q)(−,+), µ→ [L((−,+), λ) = A1(q)/A1(q)(H − δ,X − µ, Y − µ−1δ)], (1.6)

is bijective. It is clear that each module in (1.6) is 1-dimensional.

Â1(q)(D-torsionfree), D = K[H]. The localization B of A1(q) at S = K[H]\{0} is

the skew Laurent polynomial ring:

B = K(H)[X,X−1;σ], σ(H) = q−1(H − 1),

with coefficients in the field K(H) of rational functions.

An element f = v−mβ−m + · · · + β0 ∈ A1(q) of length m > 0, all βi ∈ K[H], is

l-normal if and only if the following condition holds:

(l-norm): every scalar σi(0) = (qi − 1)/(q − 1), i ≥ 0, is not a root of β0 (i.e. β0 <

a = H) and if λ and µ = σj(λ) = qjλ+ (qj − 1)/(q − 1) are roots of polynomials β0 and

β−m respectively, then j > 0 (i.e. β0 < β−m ).

Corollary 1.3. Let q be not a root of 1 and M be a simple K[H]-torsionfree A1(q)-

module; then M ' A1(q)/A1(q)∩Bf for an irreducible element f = v−mβ−m+ · · ·+β0 of

B (all βi ∈ K[H], β0 6= 0, β−m 6= 0, m > 0) such that (l-norm) holds and all polynomials

βi but exactly one have the root (1− q)−1. Two of these A1(q)-modules being isomorphic

if and only if the corresponding f are similar in B.

R e m a r k. Any scalar is a root of 0.
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2. Simple modules of the Virasoro algebra. Let K be an algebraically closed

field of characteristic zero.

The first Weyl algebra A1 = K < X, ∂ | ∂X −X∂ = 1 > is isomorphic to the GWA:

A1 ' K[H](σ, a = H), σ(H) = H − 1, X ↔ X, ∂ ↔ Y, ∂X ↔ H.

Let V ir be the Virasoro Lie algebra, i.e. the infinite dimensional vector space with

basis ei, i ∈ Z, c, where the Lie algebra structure is defined by

[ei, ej ] = (j − i)ei+j + (j3 − j)δi,−jc/12

and c is the central element of V ir. Denote by V the image of the algebra homomorphism

from the universal enveloping algebra U(V ir) to the localization A1,(X) of the first Weyl

algebra A1 at the multiplicatively closed subset {Xi, i ≥ 0} and defined as

U(V ir)→ V ⊂ A1,(X), ei → Xi+1∂, c→ 0.

V is a homogeneous subalgebra of the Z-graded algebra (the skew Laurent polynomial

ring):

A1,(X) = K[H](σ,H)(X) = K[H][X,X−1;σ], σ(H) = H − 1,

Thus V is the example of the ring R with D = K[H], the polynomial ring, and the

automorphism σ: H → H−1. In fact, setting vi = Xi+1∂, i 6= 0 ∈ Z, v0 = 1, H = X∂+1,

we see that

V = ⊕i∈ZDvi

is Z-graded with

vivj = (H − i− 1)vi+j , if i+ j 6= 0,

(vivj = Xi+1∂Xj+1∂ = Xiσ(H)Xj+1∂ = σi+1(H)Xi+j+1∂ = σi+1(H)vi+j), and

v−ivi = (H + i− 1)(H − 1), if i 6= 0 ∈ Z.

Moreover, V is affine and generated over K by H, v±1 and v±2.

We shall describe V̂ .

The automorphism σ “acts” on the set of maximal ideals K ≡ Specm D (λ→ (H−λ),

where D = K[H]) as σ : λ→ λ+ 1. Thus an orbit equals to λ+ Z for some λ ∈ K.

Define on K an equivalence relation ∼ as follows: λ ∼ µ if both λ and µ belong to

Γ1 = {1} or to Γ2 = Z\{1} or to an orbit γ + Z 6= Z.

Corollary 2.1. The map

K/ ∼→ V̂ (weight), Γ→ [L(Γ)],

is bijective with inverse [L]→Supp L, where

1. Γ1 = {1}, L(Γ1) = V/(D(H − 1) +
∑

i 6=0∈Z Dvi) ' K;

2. Γ2 = Z\{1}, L(Γ2) = V/D(H, v1);

3. Γ = λ+ Z (λ 6∈ Z), L(Γ) = V/V (H − λ).

The localization B = S−1V of V at S = D\{0} is the skew Laurent polynomial ring

B = K(H)[X,X−1;σ], σ(H) = H − 1,

with coefficients in the field K(H) of rational functions.
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Corollary 2.2. Let M be a simple K[H]-torsionfree V -module, then M ' V/V ∩Bf
for an irreducible element f = v−mβ−m + · · ·+β0 of B (all βi ∈ K[H], β0 6= 0, β−m 6= 0,

m > 0) such that all roots of β0 and all the differences λ− µ of the roots λ of β0 and µ

of β−m are not non-negative integers. Two of these V -modules being isomorphic if and

only if the corresponding f are similar in B.

For a polynomial α ∈ K[H] set [α] := ∪{λ+ Z} where λ runs through all roots of α.

Lemma 2.3. Let p = αv1 + β or p = αv−1 + β where α 6= 0, β 6= 0 ∈ K[H] be such

that β has no roots from Z and [α] ∩ [β] = ∅. Then V/V p is a simple K[H]-torsionfree

V -module.

The case of char K = p > 0 is left to the reader. Since σp = 1, by Theorem 5.14 every

simple V -module is weight and finite dimensional and the set V̂ can be easily described.

3. The simple modules of the quantum plane. The quantum plane

Λ = K < X,Y |XY = qY X >, q 6= 0 ∈ K,
is isomorphic to the generalized Weyl algebra:

Λ ' K[H](σ, a = H), X ↔ X,Y ↔ Y, Y X ↔ H,σ(H) = qH.

Identify Specm K[H] with K by the map (H − λ) → λ. Then σ “acts” on K as

σ(λ) = q−1λ. Therefore, any orbit has the form O(λ) = {σi(λ) = q−iλ, i ∈ Z}. The

element 0 is σ-invariant, i.e. O(0) = {0}.
q is an n’th root of 1 (qn = 1). In this case σn = 1, hence all orbits are cyclic,

by Theorem 5.14 (see Introduction) each simple Λ-module is K[H]-torsion ≡ weight,

moreover, it is finite dimensional.

All orbits but O(0) are of length n, O(0) contains the only one element and is the

unique degenerate orbit.

Corollary 3.1. If q is an n’th root of 1. Then each simple Λ-module is finite di-

mensional and weight and the set

Λ̂ = Λ̂(±0) ∪ Λ̂(−,−) ∪ Λ̂(+,+) ∪ Λ̂(−,+)

(a disjoint union) is described by (3.1)–(3.3).

Λ̂(±0) contains the unique class which corresponds to the module

L(±0) = Λ/Λ(X,H, Y ). (3.1)

For t = (−,−), (+,+), the map

K∗ := K\{0} → Λ̂(t), λ→ [L(t, λ)],

is bijective, where

L((−,−), λ) = Λ/Λ(X,H, Y − λ) and L((+,+), λ) = Λ/Λ(Y,H,X − λ). (3.2)

The map

K∗ ×K∗ → Λ̂(−,+), (λ, µ)→ [L((−,+), λ, µ)],

is bijective, where

L((−,+), λ, µ) = Λ/Λ(H − λ,Xn − µ, Y n − µ−1λnqn(n−1)/2). (3.3)
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q is not a root of 1. Λ̂(weight). There is the unique cyclic orbit O(0), it is the unique

degenerate orbit. Thus

Λ̂(weight) = Λ̂(weight, linear) t Λ̂(±0) t Λ̂((−,−)) t Λ̂((+,+)). (3.4)

The last three types of simple Λ-modules (Λ̂(±0), ...) are described by (3.1) and (3.2).

Specm.linK[H] = K\0 and two scalalrs λ and µ from K\0 are equivalent if and only

if λ = σi(µ) = q−iµ for some i ∈ Z, if and only if they belong to the same orbit.

The map

(K\0)/ ∼→ Λ̂(weight, linear),O(λ)→ [L(O(λ)) = Λ/Λ(H − λ)] (3.5)

is bijective.

Corollary 3.2. If q is not a root of 1, then Λ̂(weight) is described by (3.4) and (3.1),

(3.2), (3.5).

Λ̂(D-torsionfree), D = K[H].

The localization B of Λ at the multiplicatively closed set S = K[H]\{0} is the skew

Laurent polynomial ring:

B = K(H)[X,X−1;σ], σ(H) = qH,

with coefficients in the field K(H) of rational functions.

An element f = v−mβ−m + · · ·+ β0 ∈ Λ of length m > 0, all βi ∈ K[H], is l-normal

if and only if the following condition holds:

(l-norm): If λ and µ = σj(λ) = q−jλ are roots of polynomials β0 and β−m respectively,

then j > 0 (i.e. β0 < β−m ).

Remark that β0 < a = H since (a = H) is a cyclic orbit.

Corollary 3.3. Let q be not a root of 1 and M be a simple K[H]-torsionfree Λ-

module, then M ' Λ/Λ∩Bf for an irreducible element f = v−mβ−m + · · ·+β0 of B (all

βi ∈ K[H], β0 6= 0, β−m 6= 0, m > 0) such that (l-norm) holds and Λ = ΛH + Λ ∩ Bf .

Two of these Λ-modules being isomorphic if and only if the corresponding f are similar

in B.
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d’Algèbre Paul Dubreil (Proceedings, Paris 1977–1978)” (M. P. Malliavin, Ed.), Lecture

Notes in Mathematics no. 740, pp. 69–79, Springer-Verlag, Berlin/New York, 1979.

[Bl 3] R. E. Block, The irreducible representations of the Lie algebra sl(2) and of the Weyl

algebra, Adv. Math. 39 (1981), 69–110.
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