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Abstract. We prove the existence of the path-integral measure of two-dimensional Yang-
Mills theory, as a probabilistic Radon measure on the “generalized orbit space” of gauge con-
nections modulo gauge transformations, suitably completed following the approach of Ashtekar
and Lewandowski.

It has been known for some time that two-dimensional Yang-Mills theory is completely
solvable, in the sense that expectation values of a natural class of observables (the Wilson
loop functions) with respect to the formal path integral “measure” can be explicitly
calculated, i.e. reduced to finite-dimensional integrals. This holds both for the theory on
the two-plane, and on topologically nontrivial surfaces. However, a very natural question
that seems not to have been addressed in generality is whether the formal path integral
measure actually corresponds to some well-defined measure, in the sense of measure
theory, and if so, what is the carrier space of such a measure. Actually, for the case of the
two-plane a positive answer was provided in [4]; however, the case of compact Riemann
surfaces presents significant new features that must be dealt with in a different way. As
to the second point, it is generally known that it is not correct to assume that the carrier
space of the path integral measure for a quantum field theory is the same as the space
of classical smooth field configurations; instead, one must take some completion of this
space, incorporating distribution-valued fields in some sense. A concrete realization of
this idea for theories of connections (i.e. gauge theories and gravity) was proposed by
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Ashtekar and Lewandowski [1], and this is the framework we shall use in the present
paper.

The main result of this note is the proof that the path integral measure of two-
dimensional Yang-Mills theory corresponds to a unique, probabilistic Radon measure on
the “generalized orbit space”. By Radon measure we mean a measure such that for any
open set U , its measure µ(U) is equal to the sup of µ(K) over all compact subsets K ⊂ U .
In addition, we prove that the set of probabilistic Radon measures on the generalized orbit
space is itself compact in a suitable topology. This may have some implications for the
construction of two-dimensional Yang-Mills theory coupled to matter fields [4].

Let A denote the space of smooth connections on a principal bundle (P, π, Σ, G) with
total space P , structure group G (a compact Lie group), the base manifold being a
compact two-dimensional manifold Σ, and π : P → Σ denoting the bundle projection.
The gauge group G is the group of fiber-preserving automorphisms of the bundle, and
acts on A in a natural way.

Consider the Wilson loop functions

WR,γ(A) = TrR

(
Pe

∮
γ

A
)
,(1)

where A ∈ A, TrR denotes the trace in a representation R of the group G, and Pe

∮
γ A

is the holonomy of the connection A around a closed loop γ in Σ. Being invariant under
the action of G on A, the Wilson loop functions descend naturally to the quotient space
A/G. Moreover, it turns out that the set of Wilson loop functions for all loops γ and all
representations R separates points of A/G [3]. We consider now the algebra generated by
all Wilson loop functions. Since the group G is assumed compact, traces of representations
are bounded, and it follows that the Wilson loop functions are bounded on A/G. This
allows us to equip the algebra of polynomials in the Wilson loop functions with a norm
given the by supremum over A/G. Completing this algebra with respect to such a norm
we obtain a commutative C∗-algebra, that we denote by C(A/G).

According to the Gelfand-Naimark theorem [2], any commutative C∗-algebra (with
unit) may be regarded as the algebra of all continuous functions on some compact, Haus-
dorff topological space. This space may be identified with the set of linear, multiplica-
tive, complex-valued functionals on the given algebra, called the spectrum of the algebra.
Applying this theorem to the present case, we can define the space of “generalized”
gauge-equivalence classes of connections A/G to be the spectrum of the algebra C(A/G).
The original space A/G is naturally embedded in A/G as a dense subset. It should be
stressed here that the compact space A/G is, by construction, the largest space onto
which the Wilson loop functions extend in a natural way.

Of course, none of the above relies in any way on Σ being a two-dimensional manifold.
However, when Σ is a compact two-dimensional manifold (equipped with a measure), the
corresponding Yang-Mills theory admits a particularly simple formulation. Namely, the
Migdal-Rusakov formulas [5] provide an explicit description of the functional µ on A/G
given by the functional integral of two-dimensional Yang-Mills theory. Below we will show
that this functional determines a true Radon measure on the space A/G.

Let us consider a (finite) triangulation I of the two-dimensional manifold Σ. We as-
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sume that the edges of the triangulations are smooth curves in Σ. To any such triangula-
tion there corresponds a subalgebra of C(A/G), namely the completion of the subalgebra
generated by all Wilson loop functions corresponding to loops built from the edges of the
triangulation. This algebra may clearly be identified with the algebra of all continuous
functions on the space of “lattice connections” modulo “lattice gauge transformations”,
C(AI/GI): a lattice connection is a map from the set of (oriented) edges of the triangu-
lation into the group G, and a lattice gauge transformation is an action of the cartesian
product of G over the vertices of the triangulation on the lattice connection by

Uij 7→ giUijg
−1
j ,

where Uij ∈ G is the value of the lattice connection corresponding to the edge with end-
points (i, j), and gi ∈ G describes the lattice gauge transformation at vertex i. Obviously,
the space of lattice connections modulo lattice gauge transformations is, for any finite
triangulation, finite dimensional.

As is known from the Gelfand-Naimark theorem [2], any injective C∗-algebra homo-
morphism of commutative C∗-algebras defines a surjective continuous mapping between
the corresponding topological spaces (the spectra of these algebras), operating in the
opposite direction. Thus in the present case, the canonical embedding of C(AI/GI) as a
subalgebra in C(A/G) defines a surjective continuous mapping pI from the space A/G
onto AI/GI , the space of lattice connections modulo lattice gauge transformations de-
scribed above.

Triangulations of the surface Σ form a directed set: we shall say that a triangulation
J is finer than I if any closed loop that can be constructed from the edges of I can also be
constructed from the edges of J . In terms of the corresponding subalgebras of C(A/G),
this means that C(AI/GI) is a subalgebra of C(AJ/GJ). The corresponding continuous
surjection of topological spaces, pJ,I : AJ/GJ → AI/GI , satisfies

pI = pJpJ,I .(2)

Thus the topological space A/G carries the natural structure of a projective system.
Consider a function f ∈ C(A/G) that is a product of Wilson loop functions,

f = WR1,γ1 · · ·WRn,γn .

The Migdal-Rusakov formula for µ(f) may be described as follows. Take any triangulation
I such that all the loops γi may be built from the edges of I, and compute

µ(f) = Z−1

∫
χR1(Uγ1) · · ·χRn(Uγn) (ΠF K(U∂F , SF ))

(
Π(ij)dU(ij)

)
,(3)

where χR(Uγ) is the character of G in representation R evaluated on the holonomy around
the loop γ, F numbers the faces of the triangulation, K(U∂F , SF ) is the heat kernel on
G evaluated on the holonomy around the boundary of face F with “time” equal to the
area of F , and the last factor is the product of Haar measures with respect to the parallel
transports along the edges of the triangulation. Z is a normalization factor fixed by the
requirement that the integral of the constant function equal to 1 be unity.

The above formula may be interpreted as defining, for any triangulation I, a measure
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µI on AI/GI :

µI = Z−1 (ΠF K(U∂F , SF ))
(
Π(ij)dU(ij)

)
.(4)

As a consequence of the well known fact that the result obtained by applying the Migdal-
Rusakov formula is independent of the choice of triangulation (among those that fulfill
the assumed condition that the curves entering in the Wilson loops making up f can be
built from the edges of the triangulation), the family of measures µI obeys the condition

pIJ ∗ µJ = µI(5)

for all pairs of triangulations I, J such that J is finer than I in the sense defined above.
The measures µI thus form a projective system of measures, we may therefore apply
Prokhorov’s theorem: the Prokhorov condition is automatically obeyed, as the space
A/G is compact. Our main result follows:

There exists a unique, Borel and probabilistic Radon measure on A/G such that for
any continuous function f , the integral of f with respect to this measure is equal to µ(f).

One immediate consequence of this result is that for any positive (or non-negative)
function f on A/G, the integral of f with respect to this measure (which we will also
denote by µ(f)) is necessarily positive (respectively, non-negative).

Now we proceed to show that, in a certain natural topology on C∗(A/G) (the space
of continuous linear functionals on C(A/G)), the set of probabilistic Radon measures
is itself compact. The “physical” implications of this fact concern the coupling of two-
dimensional gauge fields to matter: assuming that the effect of matter fields may be
summarized in a (regulator-dependent) modification of the pure Yang-Mills measure (by
e.g. a factor of a discretized fermionic determinant) yielding a sequence of probabilistic
Radon measures on A/G, compactness of the space of measures guarantees the existence
of convergent sub-sequences — i.e., continuum limits of the coupled Yang-Mills-matter
system. Of course, nothing may be said on this level of generality about the uniqueness
or physically correct behaviour of these limits.

Consider the mapping from C(A/G) to C∗(A/G), that assigns to each point the Dirac
delta functional with support at that point. With respect to the ∗-weak topology on
C∗(A/G)(1) this mapping is continuous, since for any convergent sequence of points in
A/G the values of a function f ∈ C(A/G) at the points of the sequence converge to its
value at the limit point. AsA/G is a compact space, so is its image in C∗(A/G). This image
forms the set of extremal points of the set of probabilistic measures on A/G. According to
the Crane-Millman theorem, the set of probabilistic measures, being a convex set, is the
convexification of its subset of extremal points. Since the convexification of a compact
set is itself compact, it follows that the set of probabilistic measures on A/G is compact.

The authors wish to thank Prof. S. Rolewicz and Dr. J. Lewandowski for helpful
discussions.

(1) Defined as the weakest topology such that functions f ∈ C(A/G), viewed dually as function-
als on C∗(A/G), are continuous.
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