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Abstract. The article reviews attempts to formulate the theory of gauge fields in terms of
a string theory.

1. Introduction. One of the major problems of contemporary physics of fundamen-
tal interactions is the non-perturbative formulation of the theory of strong interactions.
Strong interactions are described by SU(3) gauge theory coupled to fermions. It seems
that the exact solution of such a theory is impossible. In order to simplify it one con-
siders the limit N → ∞ for SU(N) theory and discard fermions at first approximation.
It is strongly believed that in this limit the dynamics of gauge fields can be described
in terms of a string theory [13,14]. The idea was supported in [2,3,8–10] for the theory
formulated in a 2-dimensional space-time. The string picture for such a gauge theory
has been proposed in several papers [5,15,16,21] and will hopefully help to formulate the
physical theory of gauge fields in 4-dimensional spaces.

In Sections 2 and 3 we review string picture of two-dimensional gauge fields (YM2).
Physics of these models reveals a connection with interesting mathematical structures
which will be discussed in the course of this paper. It appears that the limit N → ∞
of YM2 is closely related to the moduli space of branched coverings and Hurwitz space.
In the last section we shall discuss the possible role of the self-intersection number of
a surface immersed in R4 in the formulation of a string theory of 4-dimensional gauge
fields.

In the next section we are going to make a string interpretation of a formula for the
partition function of YM2 [19,22]:

(1) Z =
∑

R∈Rep (SU(N))

(dim R)2−2Ge−
A
2N C2(R),
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where the sum is over all irreducible representations of the gauge group, i.e. SU(N) in
our case, MG is a Riemann surface of the genus G > 1 and A denote the volume of MG.
Before we go to the interpretation we must specify what we mean by a string theory. At
heuristic level a string theory is a theory of maps X from 2-dimensional surfaces (called
world-sheets) Σ to a space-time MG. Here we can restrict our considerations to closed,
oriented world-sheets (Riemann surfaces) of the genus g thus sometimes we write Σg

instead of Σ. The theory is defined through a ‘functional integral’ which give a partition
function of the theory. The 1/N expansion of gauge theories [13,14] suggests that the
partition function should have the following form:

(2) Z ∝
∞∑

g=0

(
1
N

)2g−2 ∑
X:Σg→MG

e−S[X],

As we see (2) is a series in 1/N and the powers of 1/N have a topological form, i.e. they
are the Euler characteristics of Σ. The functional S[X] should be specified in the course
of unveiling connection between gauge theories and a string theory. The whole recent
progress in building this connection lies in the fact that indeed the functional integral of
YM2 had been rewritten in the above form with more or less clear interpretation of the
sum

∑
X:Σg→MG

and definite S[X].

2. String interpretation of the 1/N expansion. In this section we shall discuss
the 1/N expansion of the result (1) and its string picture. The idea of the calculation
is to use Schur-Weyl duality to translate SU(N) representations with n boxes in Young
tableaux into Sn representation theory, and interpret the latter, geometrically, as data
defining a branched covering Σ → MG of degree n.

Definition. A continuous map X : Σ → MG is a branched covering if any point
p ∈ MG has a neighborhood U ⊂ MG, such that the inverse image X−1(U) is a union of
disjoint open sets (enumerated by k) on each of which X is topologically equivalent to
the complex map z 7→ znk(p) for some nk(p) ∈ Z+.

Moreover we define the branched locus S and the branching number B.

Definition. S = {p ∈ MG : nk(p) > 1}.

Definition. B =
∑

p∈S,k[nk(p)− 1].

Some details of the construction will be given below. For the full presentation we refer
the reader to the original literature [5,8–10].

Let us rewrite the sum (1) as

(3)
∑

R∈Rep (SU(N))

=
∑
n≥0

∑
Y ∈Y(N)

n

,

where Y(N)
n denotes a set of Young tableaux of SU(N) with n boxes. We must decide

what are the leading terms in the N → ∞ expansion. Getting the correct asymptotic
expansion requires isolating all representations which have C2(R)

N ∼ O(N0), and making
sure their contributions appear after a finite number of terms. In [8–10] it was argued
that the most general representations which satisfy C2(R)

N ∼ O(N0) are the ‘coupled
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representations’. The latter are defined as those which appear in the tensor product of T

and T̄ ′ under the condition that the number of rows in the Young tableaux of T ′ and T

divided by N tends to zero for N → ∞. Below we shall describe only the so-called one
‘chiral sector’ of the model. It is defined by dropping the constraint on the number of
rows in (3).

In order to accomplish the idea we need to express the second Casimir C2(R) and the
dimension of the representation dim(R) in the symmetric group language. Then,

(4) C2(R(Y )) = nN + 2
χr(Y )(T2,n)

dr(Y )
− n2

N
,

where T2,n denotes the conjugacy class of permutations containing a single cycle of
length 2 and n − 2 cycles of length 1, dr(Y ) is the dimension of the representation r

of the symmetric group associated with the Young tableau Y . Another important for-
mula is the expression for the powers of dimensions of SU(N) representations in terms
of characters of the symmetric group:

(5) dim R(Y ) =
Nn

n!
χr(Y )(Ωn) =

1
n!

∑
σ∈Sn

NKσχr(Y )(σ),

where Ωn =
∑

σ∈Sn

(
1
N

)n−Kσ
σ and Kσ is the number of cycles in the cycle decomposition

of σ. With the help of (4)–(5) and a few identities among characters of Sn we can perform
the N → ∞ expansion and get the following result for the partition function of the one
‘chiral sector’ of the model:

Z+(A, p,N) = 1 +
∞∑

n=1, i,t,h=0

e−nA/2(−1)i (A)i+t+h

i!t!h!
( 1
N

)n(2G−2)+2h+i+2t(n

2
)h(n(n− 1)

2
)t

∑
p1,...,pi∈T2,n

∑
s1,t1,...,sG,tG∈Sn

[
1
n!

δ(p1 · · · piΩ2−2G
n

G∏
j=1

sjtjs
−1
j t−1

j )
]
.(6)

Acting on an element of the group algebra, the delta function evaluates the element
(regarded as a function on the group) at the identity of Sn.

Below we present geometrical interpretation of the A-dependence in (6). There we
have a sum over 4 positive integers, n, i, t, h. We will associate geometrical pictures with
the A-dependence coming from these sums. These pictures are meant to be heuristic and
sometimes may be misleading. First we notice that for t = h = 0 the power of 1/N is the
Riemann-Hurwitz relation:

(7) 2g − 2 = n(2G− 2) + i

for branched coverings. Thus we interpret n as the number of sheets of the cover, i.e.
degree of the branched covering. Then e−nA/2 must come from e−S[X] where S[X] is half of
the area functional. Due to the (A)i+t+h factor we associate (x = i, t, h) with numbers of
marked point of the type specified below. The 1

x! (x = i, t, h) is understood as a symmetry
factor due to the marked points of a given type being indistinguishable. The interpretation
of (i, t, h) goes as follows. The sum over i is counting branched covers with i points being
simple branch points, with weight equal to the inverse of the order of the automorphism
group of the cover. The sum over t is interpreted as a sum over infinitesimally thin
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tubes connecting two sheets. The tubes result in a partial compactification of the space
of branched coverings [5]. The factor n(n−1)

2 is the number of ways of choosing which
pair of sheets is being connected by the tube. Contribution with h > 0 represent maps
for which a handle has been mapped to a point in MG. For t 6= 0, h 6= 0 the equality
2g − 2 = n(2G− 2) + i + 2h + 2t should be treated as the generalized Riemann-Hurwitz
relation.

In this way we have reformulated the partition function of YM2 in terms of a string
theory. The big challenge is to calculate this partition function as a functional integral
over string variables. The purpose has not been achieved although there exist partially
successful proposals [5,15,16,21].

3. Hurwitz spaces and YM2 partition function. In this section we shall show
that the partition function (6) is closely related to the Euler characteristic of the Hurwitz
space [5]. The relation holds only for G > 1 thus here we shall limit our considerations
to this case. The Hurwitz space of branched coverings is described in [6,11].

Definition. Two branched coverings X1 and X2 are said to be equivalent if there
exists a homeomorphism φ : ΣW → ΣW such that X1 ◦ φ = X2.

Definition. Let H(n, B, G;S) be the set of equivalence classes of branched coverings
of MG, with degree n, branch locus S, where S is a set of distinct points on a surface
MG and branching number B. The union of H(n, B, G;S) over sets S with L elements is
the Hurwitz space H(n, B, G, L) of equivalence classes of branched coverings of MG with
degree n, branching number B and L branch points.

Moreover we introduce the configuration space of ordered L-tuples of distinct points
on MG, that is

(8) CL(G) = {(z1, . . . , zL) ∈ ML
G : zi ∈ MG, zi 6= zj for i 6= j}.

The permutation group SL acts naturally on CL and we denote the quotient CL(G) =
CL(G)/SL. There is a projection

(9) π : H(n, B, G, L) → CL(G),

which assigns to each branch covering its branch locus. This map can be made a covering
map with the discrete fiber H(n, B, G;S) over S ∈ CL.

(10)
H(n, B, G;S) → H(n, B, G, L)

↓
CL.

The lifting of closed curves in CL will in general permute different elements of the
fibers H(n, B, G,S).

In the following we shall make a connection between the topology of Hurwitz space
and Y M2. We shall study the limit A → 0 of the partition function. It appears that the
limit is suitable for the formulation of the partition function in terms of a string theory
(of a complicated structure) with the help of topological field theory [8–10,28]. We shall
allude on this point in the end of this section.
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Thus we consider:

(11) Z+(0, G,N) = 1 +
∞∑

n=1

Nn(2−2G)
∑

s1,t1,...,sG,tG∈Sn

[
1
n!

δ(Ω2−2G
n

G∏
j=1

sjtjs
−1
j t−1

j )
]
.

Our aim is to rewrite Z+ as a sum over equivalence classes of branched coverings and
interpret the weights in terms of the Euler characters of the Hurwitz space. We present
here few steps leading to this result. Expanding inverse powers of Ωn in (11) we get

Z+(0, G,N) = 1 +
∞∑

n=1

(
1
N

)n(2G−2) ∞∑
L=0

∑
s1,t1,...,sG,tG∈Sn

∑
σ1 6=1...σL 6=1∈Sn(

1
N

)B({σi})[χ(CL(Σ))
n!

δ(
L∏

i=1

σi

G∏
j=1

sjtjs
−1
j t−1

j )
]
, (12)

where χ(CL(Σ)) is the Euler characteristic of CL(Σ) given by

(13) CL(Σ) =
(χG)(χG − 1) · · · (χG − L + 1)

L!

and B({σi}) =
∑L

i=1(n−Kσi). The latter is the branching number of the given branched
covering associate with the data {σi}. The delta function divided by n! is in fact symmetry
factor of the branched covering X, i.e. it is 1/|Aut X| where |Aut X| is the order of the
group of automorphisms of f . Collecting terms of the same B we get:

(14) Z+(0, G,N) = 1 +
∞∑

n=1

∞∑
B=0

(
1
N

)n(2G−2)+B B∑
L=0

χ(CL(Σ))
∑

X∈H(n,B,G;S)

1
|Aut X|

.

Having in mind the fact that the Hurwitz space is not a manifold but a orbifold we find
out that the last two terms of formula (14) form the orbifold Euler characteristic [25] of
the Hurwitz space. Thus we finally arrive at:

(15) Z+(0, G,N) = 1 +
∞∑

n=1

∞∑
B=0

(
1
N

)n(2G−2)+B B∑
L=0

χorb(H(n, B, G;L)).

This is the result claimed in the introduction.
With the help of the above result one can construct its field theory description (‘func-

tional integral’). The great advantage of branched coverings is that they allow the de-
scription of the Euler characteristic of the Hurwitz space in terms of topological field
theory [28]. It is known that the topological field theories calculate the Euler number
of the appropriate moduli space [1,18]. The moduli space, in our case, is the space of
branched coverings. One can show that the latter is the same as the space of equivalent
classes (under the action of Diff+(Σ) × Weyl(Σ)) of holomorphic maps X : Σ → MG

defined as

(16) dX ◦ ε = J ◦ dX,

where ε, J are complex structures on Σ and MG, respectively. The whole construction
of the appropriate topological field theory is quite involved and we do not have place to
describe it here. Anyway it yields the well defined string theory in the sense of (2).
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4. Dynamical cancellation of folds. The results of the previous sections are
definitely beautiful but the straightforward application of the topological field theory
machinery yields quite involved (one could say ‘ugly’) theory. Moreover from physical
point of view the description is unsatisfactory because it cannot be easily extended to
4-dimensional space-times (although see [15,16]). In this section we shall start a descrip-
tion of a different proposal [21]. This approach is not so developed as the previous one
but offers an elegant picture of N → ∞ limit of gauge theories. We shall concentrate
here on one basic feature of the result (6), i.e. the property that the functional integral
(understood as in (2)) suppresses folded configurations. In other words the functional
integral is localized on a non-generic set of maps (16). In the beginning we recollect basic
facts about generic surface to surface maps and their singularities [7,26].

Let X : Σ → MG denote a smooth map of a surfaces Σ in a 2-dimensional manifold MG

endowed with the metric Gµν and S1(X) = {p ∈ Σ : rank(dX(p)) = 1} its set of singular
points. In a local coordinate patch the condition means that the matrix of the induced
metric gab = Gµν∂aXµ∂bX

ν has one vanishing eigenvalue. For generic maps S1 is a one-
dimensional submanifold of Σ. In particular, if Σ is a closed surface (compact, connected,
without boundary) then S1 is a finite family of disjoint curves (loops) embedded in Σ.
Next we define S1,1 = {p ∈ S1 : rank(d(X|S1(p)) = 0}, i.e. S1,1 is a set of (generically
disjoint) points at which eigenvector corresponding to zero eigenvalue is tangent to S1.
In a local coordinate system (simple) folds and cusps have the following form: folds,
(X1, X2) = (s2, t); cusps, (X1, X2) = (st− s3, t).

We know that generic maps do not contribute to the partition function (6). It means
that any string representation of YM2 should have a built in mechanism of cancellation
of these maps. One can localize the functional integral on a specific set of maps which do
not contain folds. This is the idea of topological field theory and works [5,15,16]. Below we
propose somewhat different model based of what might be called a dynamical cancellation
of folds. We shall introduce a string model and show that for flat target space-times the
model suppress generic, i.e. folded contributions. What about non-generic surface-to-
surface maps? For flat space-times there are no non-singular maps and because the space
of maps with folds and cusps is dense in the space of all smooth maps [7,26] one can safely
claim that these maps also do not contribute. Things get more complicated if the target
space can be an arbitrary Riemann surface. Then there are maps without singularities
and these cannot be simply discarded [20].

Let us introduce two additional (vertical) world-sheet fields: (Y 1, Y 2) ∈ Mv (Mv

is a ‘vertical’ surface). The functional integral is over (X1, X2, Y 1, Y 2) ∈ MG × Mv

configurations. The latter can be viewed as lifts of (X1, X2) configurations and it is
known that generically they are immersions. The proposed string action is

(17) S[X, Y ] = µ

∫
MG

d2σ
√

det(gab) + iθI[X, Y ],

where the first term is the area functional, I is the self-intersection number of the surface
immersed in the 4-dimensional space [12,17,24,27]. The vertical coordinates enter the
action only through I. The action (17) is invariant under all such homotopies of the
vertical fields δvY for which the map (X, δvY ) is regularly homotopic to (X, Y ) .
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In the following we are going to classify topological sectors of the model. We say that
two immersions are in the same topological sector if they can be connected by a δvY . In
the following X will denote a map X : Σ → MG with folds and (X, Y ) its lift into the
extended 4-dimensional space-time: (X, Y ) : Σ → MG × Mv, where Mv is an arbitrary
orientable surface without boundary. We define the line bundle K by dX(K) = 0, where
dX is taken at points belonging to S1 and the tangent map acts on the fiber over that
point. Lifts of the fold must have non-degenerate 2-dimensional tangent space, hence
must respect dY (K) 6= 0. In this way the couple (Y, dY ) defines a map (monomorphism)
from K to the tangent bundle of Mv (TMv). The set of connected components of such
maps, define different topological sectors of lifts. The condition dY (K) 6= 0 implies that
this is the same as the set of connected components of maps from K to one-dimensional
sphere bundle over Mv (SMv). For one fold it is given by π1(SMv). We conclude that
π1(SMv) classify lifts of one fold. Generalization for the case of a map with many folds
is obvious, because lifts of folds are independent on each other. We may notice that the
classification is analogous of that done by Smale for immersions of curves in Riemann
surfaces [23].

As an application we take first MG = Mv = R2. Then lifts of the i-th fold are
classified by π1(R2 × S1) = Z. The integer fi ∈ π1(R2 × S1) is invariant under δvY

and is directly related to the self-intersection number I of the lifted configuration. We
can see it if we notice that both numbers are additive under connected sum. Let us
associate a pair (f, I) of numbers to a lift. If we glue it with the (f ′, I ′) lift, we obtain the
(f + f ′, I + I ′) lift. Connected sum of f1 copies of the (−1,−I1) lift with the (f1, 1) lift
yields the (0, 1− f1I1) lift. If K is trivial f = 0 corresponds to I = 0 [4]. Thus 1 = f1I1,
so I1 = f1 = ±1 (the sign is undetermined). For non-trivial K the intersection number
may be shifted by an unessential (see below) integer. The same reasoning can be repeated
for more complicated folds with several disconnected components and cusps. One assigns
the numbers fi ∈ π1(S1) to i-th connected component of the set of folds. The numbers
{fi} are invariant under the v-regular homotopy. The self-intersection number is then
I[f ] =

∑
folds±fi. It is quite clear that topological sectors of the model are in one-to-one

correspondence with sets {fi} [21].
Now we apply these results to the string theory on MG = R2. We want to show that

the originally folded configurations (X1, X2) will cancel out from the partition function.
Here one should discuss the construction of the functional integral measure of the theory.
The heuristic construction of such a measure was given in [20] and we omit it here. The
claim is that the functional integral is

(18)
∫
DX1DX2 e−S[X]F [X]

∑
{fi}

eiθI[f ],

where the functional F [X] is yet undefined (and unimportant for cancellation of folds).
The sum over fi’s can be performed independently for each i because I[f ] =

∑
folds±fi.

For one fold we get

(19)
∑
f∈Z

e±iθf = 2πδ(θ).
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Thus all folded configurations vanish from the path integral for non-zero θ. All maps
defining the partition function of the string theory necessarily have folds for the target
space R2. Thus according to the above discussion it must vanish. This also holds for any
average of any finite set of local operators. Thus the final conclusion of this part of the
paper is that the model (17) is trivial for the R2 space-time.

The model discussed here contains one addition parameter compared to YM2 with
semi-simple Lie group: it is the θ angle. In the following we shall claim that this θ is
inherited from YM4. One can view (17) as a certain compactification of a 4-dimensional
string. Thus Mv should be a compact manifold without boundary. If a characteristic size
of this space is small we expect that quantum fluctuations in the compactified directions
are strongly suppressed. The case considered previously Mv = R2 is a variation of com-
pactification on a torus. The standard compactification of YM4 on a 2-dimensional torus
leads to additional 2-dimensional degrees of freedom: the adjoint matter. It is because the
4-dimensional gauge fields Aa

µ(x1, . . . , x4) (µ = 1, . . . , 4, a is the adjoint representation
index) decompose into (Aa

α(x1, x2), Aa
3(x1, x2), Aa

4(x1, x2)) (a = 1, 2). From the point of
view of the uncompactified 2-dimensional space-time Aa

3 , Aa
4 are the matter fields. The

appearance of the continuous θ parameter in (17) is natural in this case. It may corre-
spond to the analogous angle in the QCD Lagrangian, because after compactification we
have:

(20)
∫

d4xtr(FF̃ ) → 4
∫

d2xεαβtr(FαβA3A4).

In order to get rid of these matter fields (and thus certain ambiguities in the construction)
we shall take Mv = S2.

Topology of the vertical space significantly changes the classification of lifts. Instead
of Z inequivalent regular homotopy sectors we obtain only two. The general argument
presented previously says that lifts of one fold are classified by π1(S(S2)) = Z2. The
trivial element of this group corresponds to I = 0, the non-trivial element to I = 1. Now
the cancellation of folds holds only for θ = π, as for the particle case. In this way we fixed
the value of the only free parameter in the model. It is in accordance with YM2 which
for semi-simple Lie groups do not have any angle-like parameter.
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