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Centre de Mathématiques (U.R.A. 169 du C.N.R.S.), École Polytechnique
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Abstract. A proof of the Chekanov theorem is discussed from a geometric point of view.

Similar results in the context of projectivized cotangent bundles are proved. Some applications

are given.
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1. Definitions and statements of the results.

1.1. To state the problems considered here, some definitions are needed. In this paper,

N always denotes a smooth compact manifold without boundary, and M stands for

either the Euclidean space R
n, a product N × R

k or a closed smooth manifold. The

space of one-jets of functions on M is the manifold J1(M, R) = T ∗M ×R, endowed with

its standard contact form α = du − pdq, where (q, p, u) are the canonical coordinates

of T ∗M × R. The one-graph j1f of a function f on M is a Legendrian submanifold

in J1(M, R). In general, the image W ⊂ M × R of the restriction to a Legendrian

submanifold λ ⊂ J1(M, R) of the projection π : J1(M, R) → J0(M, R) = M × R is

called the wave front of λ. If W is a smooth hypersurface in M × R, then λ = j1f for

some function f . The image of the restriction to λ of the projection J1(M, R) → T ∗M is

an immersed Lagrangian submanifold L. A generic wave front W is a stratified singular

hypersurface of M ×R. At each point of W , a non-vertical tangent plane is well defined.

A generic wave front completely determines the Legendrian manifold which is above. In
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the sequel, we will often identify these two objects. A quasi-function on M is a wave front

in M × R whose Legendrian lift is the time one of a compactly supported Legendrian

isotopy of J1(M, R) starting from j10, the one-jet extension of the zero function. Recall

that a Legendrian isotopy is a one parameter family of embedded Legendrian manifolds,

and that any Legendrian isotopy can be extended to a contact isotopy, that is a flow

J1(M, R) × [0, 1] → J1(M, R) preserving the contact structure. Note that this isotopy

extension lemma (see e.g. [Ch]) is valid in any contact manifold having a globally defined

contact form. A critical point of a wave front W ⊂ M ×R is the image by the projection

T ∗M → M of an intersection point L∩OM of the corresponding Lagrangian immersion L

with the zero section OM of T ∗M . This means that above this point W has an horizontal

tangent hyperplane.

Let E → M be a vector bundle on M . A function F : E → R is said to be a generating

family if j1F is transverse to the set C of all jets of functions constant along the fibres.

If E = M × V is a product with coordinates (q, v), this means that 0 ∈ V ∗ is a regular

value of ∂f
∂v

: M × V → V ∗.

Proposition 1 (see [A-V-G], pp. 257–259). Let F be a generating family. The natural

projection C → J1(M, R), restricted to j1F ∩ C, is a Legendrian immersion. The image

of this immersion will be referred in the sequel as the Legendrian manifold induced by F .

For example, if F is a generating family on the product E = M × V , then the set λ

λ = {(q, p, u) such that ∃v
dF

dv
(q, v) = 0, p =

∂F

∂q
(q, v), u = F (q, v)}

is an immersed Legendrian submanifold. When M is compact, a generating family F :

E → R is said to be quadratic at infinity (g.f.q.i. in the sequel) if there exists a function

Q : E → R which is a non-degenerate quadratic form in each fibre and such that (q, v) →

F (q, v) − Q(q, v) has compact support. From a g.f.q.i. F : E → R, one can construct a

new generating family defined on a trivial bundle M × V , which coincides with a fixed

quadratic form Q(v) on the parameter vector space V outside a compact set and which

induces the same Legendrian submanifold. In the calculations below, E is always assumed

to be trivial. When M is not compact, a g.f.q.i. is by definition a generating family defined

on a product M ×V which coincides with a fixed quadratic form Q(v) outside a compact

set. G.f.q.i. are an important tool in symplectic topology (see e.g. [V, Si, Th]).

Proposition 2 ([Ch-Z]). Let M be a closed compact manifold and denote by sb(M)

the sum of the Betti numbers of M . A g.f.q.i. F : M × V → R has more than sb(M)

critical points provided that they are all non-degenerate.

Theorem 3 (Chekanov Theorem, [C]). Denote by λ0 and λ1 the extremities of a

Legendrian isotopy of J1(M, R). If λ0 is induced by a g.f.q.i., so is λ1. In particular any

quasi-function is induced by some g.f.q.i.

By construction, the critical points of a generating family are in one to one correspon-

dence with the critical points of the Legendrian it induces. Denote by cs(M) the stable

minimal number of critical points of a function on M , i.e. the minimal number of critical
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points of a g.f.q.i. on a vector bundle over M . It is known [Ch-Z] that cs(M) ≥ ls(M),

where ls(M) is the Lyusternik-Schnirelmann category of M .

Corollary 4. Let M be a compact closed manifold. Any quasi-function on M has

more than cs(M) critical points , and at least sb(M) if all of them are non-degenerate.

Fig. 1 shows an example of a quasi-function on S1 having two critical points, and

another wave front having no critical point, which, therefore, is not Legendrian equivalent

to the zero section.

Fig. 1. Critical points of a quasi-function on the circle.

Chekanov’s original proof of Theorem 3 takes several steps. It starts from the follow-

ing fact: There exists an embedding J1(M, R) →֒ J1(RN , R) since M can be embedded

in R
N . A compactly supported Legendrian isotopy of J1(M, R) can be extended to a

compactly supported Legendrian isotopy of J1(RN , R), and conversely, a generic g.f.q.i.

on R
N induces a g.f.q.i. on M (see [Ch, B] for full details). Hence it is enough to prove

the corresponding theorem in R
N . The second step is to lift the problem to the symplec-

tization of J1(RN , R). This symplectization is symplectomorphic to a cotangent bundle

T ∗(RN × (0,∞)). Chekanov has shown how to adapt the proof of the symplectic version

[Si] of Theorem 3 to this situation, where it cannot be applied directly. J. C. Sikorav

indicated to me a shorter proof based on the same symplectization idea.

In 1993, M. Chaperon produced a direct proof of Theorem 3. By Chekanov’s trick, it

is enough to consider the case M = R
n.

Proposition 5 ([Ch]). If a contact transformation h is C1-close enough to the iden-

tity, and equal to the identity outside a compact set , the image h(λ) of a Legendrian

manifold λ of J1(Rn, R) is induced by a g.f.q.i. provided that λ is induced by a g.f.q.i.

Since any compactly supported Legendrian isotopy can be extended to a compactly

supported contact flow, which itself can be considered as the composition of finitely many

“close to the identity” contact transformations (as shown in [Ch]), Proposition 5 implies

Theorem 3.

The work presented here started from a question of V. Arnold asking for the ge-

ometrical meaning of the non-trivial-to-guess formulae on which Chaperon’s proof of

Proposition 5 is based. The proof of Proposition 5 presented below (Section 2) might be

considered as an answer to this question since it consists in a (elementary) geometrical

construction starting from the fact that, under the hypothesis of Proposition 5, the image
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by h of the one-graph of an affine function on R
n is the one-graph of a function, which

is a crucial ingredient of Chaperon’s formulae.

1.2. To describe the other goals of this paper, some further definitions are needed.

A contact element of M is a point q of M , together with a hyperplane of TqM . The set

of all contact elements (resp. cooriented contact elements) of M can be identified with

its projectivized (resp. spherized) cotangent bundle PT ∗M (resp. ST ∗M). Each of these

sets carries a natural contact structure (see [A-V-G], p. 266). A Finsler metric on M

being given, the Liouville form pdq of T ∗M induces a contact form on the set of unitary

covectors, which is contactomorphic to ST ∗M . The image of an immersed Legendrian

submanifold in PT ∗M (resp. ST ∗M) by the projection PT ∗M → M (resp. ST ∗M → M)

is also called a wave front. The fibrewise compactification of J1(N, R) → J0(N, R) is

PT ∗(N×R) → N×R and the wave fronts defined in the J1(N, R) setting are a particular

case of this definition. A smooth submanifold N in M is a wave front, since the set of all

contact elements tangent to N forms a Legendrian embedding of N in PT ∗M . A generic

wave front in M is a stratified singular hypersurface, with a tangent hyperplane defined

at every point. Hence, if the codimension of N is greater than 1, N is not a generic wave

front. The set of all covectors which vanish on the tangent space of a wave front W is

called the conormal bundle ν∗W of W . Observe that in general ν∗W is immersed but not

embedded in T ∗M . A wave front in M = N ×R which is the projection of the time one of

a Legendrian isotopy of PT ∗(N ×R) starting from the Legendrian lift of N ×{0} can be

considered as a generalized quasi-function on N , multivalued and with its derivative going

to infinity at some points. Generalized quasi-functions appear as geometric solutions of

some first order non-linear PDE.

Let p : E → M be a vector bundle. Let H be a smooth hypersurface in E. Denote by

C ⊂ PT ∗E the set of all contact elements of E which contain the tangent space of the fibre.

If the Legendrian lift of H is transverse to C, then H is called a generating hypersurface (it

generates a Legendrian submanifold of PT ∗M , as shown by Proposition 6). For example

if (q, v) are coordinates on the product E = M × V , and H : E → R a smooth function,

the set H = H−1(c) is a generating hypersurface if it is non-empty and if the map

(q, v) → (H(q, v), ∂H
∂v

(q, v)) is transverse to (c, 0) ∈ R × V ∗. The graph (in N × V × R)

of a generating family is a generating hypersurface for the induced front in N × R. Any

regular level of a g.f.q.i. is a generating hypersurface.

Proposition 6 (see [A-V-G], pp. 273–277). Let H be a generating hypersurface. There

exists a unique Legendrian immersion l ⊂ PT ∗M such that the set of critical values of

the restriction of p to H is the wave front of l.

For example, if the map M × V → R × V ∗ : (q, v) 7→ (H(q, v), ∂H
∂v

(q, v)) is transverse

to (c, 0), then the set

{(q, p) ∈ PT ∗M such that ∃v H(q, v) = c,
∂H

∂v
(q, v) = 0, ∃ρ ∈ R p = ρ ·

∂H

∂q
(q, v)}

is the image of a Legendrian immersion.

The starting point of this paper is the observation that if a wave front W ⊂ M is given

by a generating hypersurface H in M × V , it is the envelope of a family of hypersurfaces
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in M , parametrized by v ∈ V . Near W , each of these hypersurfaces is smooth. From now

on, M is an open manifold.

Definition. A generating hypersurface H ⊂ E = M × V is called a good generating

hypersurface if H = H−1(0) is a regular level of some function H : M × V → R with no

critical points, and which is of the form H(q, v) = f(q) + F (q, v), where F is a g.f.q.i.

The following theorem is proved in Section 3.

Theorem 7. Let l0 and l1 be the extremities of a Legendrian isotopy of ST ∗M . If l0
has a good generating hypersurface, then so has l1.

Corollary 8. A generalized quasi-function has a good generating hypersurface.

We are now interested in the generalization of Corollary 4 in the setting of projec-

tivized cotangent bundles.

Definition. Let W be a wave front in M , and let f be a function M → R. A critical

point of f on W is the image by the projection T ∗M → M of an intersection point

between the graph of the differential of f and the conormal bundle of W .

In the generic situation, a critical point of f|W corresponds to a tangency between a

regular level of f and the generic strata of W .

Definition. A quasi-hypersurface in M is a wave front W ⊂ M such that there exists

a smooth immersed closed submanifold N of M and a Legendrian isotopy lt of PT ∗(M)

starting from the Legendrian lift of N so that W is the wave front of l1.

The following theorem shows that quasi-hypersurfaces behave like submanifolds with

respect to Morse theory. The reader is invited to compare with a result by Lalonde and

Sikorav [L-S, Theorem 3 (1)] on conormal bundles in symplectic topology.

Theorem 9. A function on M without critical points , when restricted to a quasi-

hypersurface W ⊂ M has more than cs(N) critical points , and generically at least sb(N).

The same estimates hold for the lower bound of the number of intersections between the

conormal bundle ν∗W of W and the Lagrangian projection of a Legendrian manifold λ

of J1(M, R) provided that λ has no critical points and that it is induced by a generating

family of the form f(q) + F (q, v), where F is a g.f.q.i.

Fig. 2. Critical points of a generalized quasi-function on the circle.
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Corollary 10. A generalized quasi-function on a compact manifold N has more than

cs(N) critical points (points with horizontal tangent hyperplane), and at least sb(N) in

the generic case.

Section 4 is devoted to the proof of Theorem 9 and related results. In Section 5, another

construction is proposed, based on the hodograph transform. It yields some interesting

consequences on the extrinsic geometry of wave fronts, typified by the following theorem:

Theorem 11. Let W be a wave front such that there exists a Legendrian isotopy lt of

ST ∗
R

n starting from a Legendrian lift of the standard Sn−1 in R
n, such that W is the

wave front of l1. Then W has at least n pseudo-diameters , that is lines which are normal

to W at two different points , in such a way that the two orientations of the line defined

by the coorientation of W at the points of perpendicularity differ.

In the case when W is embedded, Theorem 11 is a consequence of the results of

F. Takens and J. White [T-W].

2. Chekanov theorem in the space of one-jets.

2.1. Two lemmas. Let λ ⊂ J1(Rn, R) induced by a g.f.q.i. F (q, v), and W ⊂ R
n × R

the corresponding wave front. Recall that by definition there exists a non-degenerate

quadratic form Q(v), such that F − Q has compact support. As mentioned above, W is

the envelope of the family of smooth graphs of the functions q → F (q, v). Recall that

the graph of a function is not the envelope of the tangent hyperplanes, except when the

function is convex. However, we have the following lemma:

Lemma 12 (Stabilization). We can suppose that W is the envelope of a family of

hyperplanes i.e. there exists a generating function which is affine with respect to q.

P r o o f. The function F1 : R
n × V × R

n × R
n → R defined by F1(q, v, x, y) =

F (y, v) + x · (q − y) induces the same Legendrian submanifold λ, and is affine in q.

R e ma r k. F1 is not quadratic at infinity. However it coincides with Q1(q, v, x, y) =

Q(v) + x · (q − y) if y is large enough. We can deform F1 into a function F2 such

that it induces the same λ, it is affine with respect to q when q is in a compact sub-

set of R
n outside which W is identical to the graph of the 0 function, and it co-

incides with Q1 outside a compact set: Let ρ : [0,∞) → R be a smooth function

such that ρ(x) = 1 if x ∈ [0, 1] and ρ(x) = 0 if x ∈ [2,∞), and let φa(q, v, x, y) =

ρ(‖q‖
a

)ρ(‖v‖
a

)ρ(‖x‖
a

)ρ(‖y‖
a

). There exists an appropriate choice of the constant a, such

that the function φa(q, v, x, y)F1(q, v, x, y) + (1 − φa(q, v, x, y))Q1(q, v, x, y) is a possible

choice for F2.

Lemma 13 (Envelope preservation). Consider a generating family (q, v) → F (q, v)

and the family of smooth wave fronts (graphs) of R
n × R obtained from the family of

functions q → F (q, v). Suppose that for each v ∈ V , the front of the image by h of

j1F (·, v) is smooth and given by the graph of q → G(q, v). Then G is a generating family,

and the Legendrian manifold induced by G is the image by h of the one induced by F .

P r o o f. Denote by (Q(q, p, u), P (q, p, u), U(q, p, u)) the components of the map h.

Since it is a contact transformation, there exists µ(q, p, u) > 0 such that dU − PdQ =



ON A THEOREM OF CHEKANOV 45

µ · (du − pdq). The function G is defined by

G(Q(q, p, u), v) = U(q, p, u), p =
∂F

∂q
(q, v), u = F (q, v)

Lemma 13 follows from the fact that the relation ∂G
∂v

(Q, v) = µ · ∂F
∂v

(q, v) holds when

Q = Q(q, ∂F
∂q

(q, v), F (q, v)).

2.2. Proof of Proposition 5. We will show that it is possible to apply Lemma 13 on

the stabilization given by Lemma 12.

Recall that h is the identity outside a compact set and is uniformly C1-close to the

identity. We use a crucial fact of Chaperon’s construction. Denote by (Q, P, U)(q, p, u) the

components of h. If the differential of h is close enough to the identity, then det ∂(Q,U)
∂(q,u)

does not vanish at any point (q, p, u), and hence, when p is fixed, the map (q, u) 7→

(Q, U)(q, p, u) is a diffeomorphism of J0(Rn, R). On the one-graph of an affine function

f on R
n, the coordinate p is fixed, and then h(j1f) has a smooth front, hence it is the

one-graph of a function g which coincides with f outside a compact set. This shows that

the hypothesis of Lemma 13 are fulfilled by h and by the generating family F1(q, v, x, y) =

F (y, v) + x · (q − y) given by Lemma 12. Since h has compact support, the function G

obtained by Lemma 13 coincides with F1 if ‖q‖ or ‖x‖ are large enough. As remarked

before, F1 is “not too far” from Q1, and so is G because of the hypothesis on h. One

can deform G such that it coincides with Q1 outside a compact set: There exists a choice

of the constant a such that the function G1(q, v, x, y) = φa(q, v, x, y)G(q, v, x, y) + (1 −

φa(q, v, x, y))Q1(q, v, x, y) induces the same Legendrian submanifold than G, that is h(λ).

This is similar to what is done in the papers [B (Lemma 4)], [Ch (Lemma 3)], [Th] to

make the functions standard at infinity, so we do not reproduce the estimates which

lead to the choice of the constant a here. The function G2(q, v, x, Y ) = G1(q, v, x, q − Y )

is a g.f.q.i. which induces h(λ) and coincides with the non-degenerate quadratic form

Q(v) + xY outside a compact set.

3. The ST ∗M case.

3.1. Proof of Theorem 7. The proof of Proposition 5 presented above is based on an

envelope construction (stabilization and envelope preservation), a geometrical fact that

can be adapted in the more general context of ST ∗M . Through the identification of

hypersurfaces with the regular levels of functions, this would be very similar to the cal-

culation of Section 2. But is not necessary to carry out this program, because Theorem 7

is a consequence of Theorem 3, via the following construction:

Let W0 and W1 be the fronts associated to the extremities of a Legendrian isotopy of

ST ∗M . Let q be coordinates on M and (q, p) the associated coordinates on T ∗M in which

we see ST ∗M as the hypersurface ‖p‖ = 1. The contact form on ST ∗M is pdq, restricted

to the unitary covectors. By the isotopy extension lemma, W1 is the image of W0 by a

contact flow (q, p, t) → (Y, X). There exists a positive function µ : ST ∗
R

n × [0, 1] → R

such that XdY = µ(q, p, t)pdq. Here, p and X denote unitary covectors, but this contact
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flow extends to a Hamiltonian flow of T ∗M \ OM :

(q, p, t) →
(

Y (q,
p

‖p‖
, t),

‖p‖

µ(q, p
‖p‖ , t)

· X(q,
p

‖p‖
, t)

)

.

Set U(q, p, u, t) = u and lift this flow to a contact flow Φ : U × [0, 1] → U , where

U = J1(M, R) \ {p = 0}. Recall that, by hypothesis, W0 is the zero-set of a wave front in

J0(M, R) whose Legendrian lift λ0 ⊂ J1(M, R) does not meet {p = 0}. Hence λ0 ⊂ U . The

flow Φ is not compactly supported, but it induces on λt = Φ(λ0, t) a compactly supported

Legendrian isotopy. By hypothesis, there exists a function f such that λ0−j1f is induced

by a g.f.q.i. By Theorem 3, so is λ1 − j1f . The Legendrian submanifold λ1 cannot meet

{p = 0} since it is the image by a flow of U of λ0. By construction, Φ preserves the

coordinate u, hence the image of W0 by the original contact flow of ST ∗
R

n is the zero-set

of λ1.

3.2. Generalized functions. The main application of this construction is the situation

when M = N × R, and where W is obtained from N × {0} by a Legendrian isotopy of

PT ∗(N × R). In this case we call W a generalized quasi-function. Since N × {0} is the

zero set of the projection on the second factor of N × R, we get Corollary 8.

4. Critical points of a function on a wave front.

4.1. Proof of Theorem 9. Let W be the quasi-hypersurface under consideration. By

definition, there exists a Legendrian isotopy of PT ∗M starting from the Legendrian lift

of W and finishing to the Legendrian lift of an immersed closed submanifold N ⊂ M

(i.e. the projectivized conormal bundle of N). Lift this isotopy to ST ∗M , and extend

it to a contact flow. This contact flow can be chosen so that it projects to a contact

flow of PT ∗M . (This means that the isotopy extension lemma is valid in PT ∗M .) Recall

that U = J1(M, R) \ {p = 0}, and denote by Φ : U × [0, 1] → U the flow obtained by

a procedure similar to the one of Section 2. Let f : M → R be the function with no

critical points under consideration. The one graph j1f is a Legendrian submanifold λ

of U . As in Section 2, λ1 = Φ(λ, 1) is induced by a generating family which is the sum

of f and a g.f.q.i. The restriction of this generating family to N is quadratic at infinity.

As observed in [L-S, Theorem 3], Proposition 2 implies that the Lagrangian projection

of λ1 intersects the conormal bundle of N in more than cs(N) points, and generically

in more than sb(N) points. By construction, the flow Φ, which is homogeneous in the

fibre (and not only positively homogeneous), sends ν∗W to ν∗N . The intersections of the

Lagrangian projection of λ1 restricted to N are in one to one correspondence with the

critical points of λ restricted to W , which proves the first assertion of Theorem 9. In the

proof above, one can replace λ = j1f by a Legendrian submanifold of J1(M, R) with no

critical points and which is induced by a generating family of the form f(q) + F (q, v)

where F is a g.f.q.i. Theorem 9 applied in the case when M = N × R and f is the

projection to the second factor gives Corollary 10.

4.2. As shown by Fig. 3, there is no similar result in the ST ∗M context. Fig. 3 shows

five steps of a path in the space of wave fronts between the “eight curve” and the “lips”

front, which is the projection of a Legendrian isotopy of ST ∗
R

2. The projection to the
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horizontal axis has no critical points on the “lips” front. The third step is the time when

it fails to be the projection of a Legendrian isotopy of PT ∗
R

2. Observe also that the

“lips” front is a regular level of a quasi-function.

Fig. 3. A path between the “eight” curve and the “lips” front.

5. Geometry of wave fronts via the hodograph transform. In this section we

are concerned with wave fronts in R
n only. The following transformation, introduced by

Arnold in [A, p. 48], contains as a particular case the identification of convex bodies of

R
n with their support functions. In a sense to be precised, some wave fronts of R

n might

have support g.f.q.i.

Proposition (Hodograph transform [A]). ST ∗
R

n is contactomorphic to J1(Sn−1, R).

P r o o f. In all the sequel, we denote by the same θ a point in Sn−1 and the unitary

vector of R
n obtained via the standard embedding Sn−1 →֒ R

n. Denote by (Q, θ) the

coordinates of ST ∗
R

n = R
n × Sn−1. A point in J1(Sn−1, R) = T ∗Sn−1 × R is denoted

by (θ, p, u). View p as a tangent vector to the unitary sphere Sn−1 centered at the origin.

Denote by 〈 · , · 〉 the Euclidean scalar product of R
n and by Qθ the projection of Q

to the tangent plane of Sn−1 at the point θ. The hodograph transform is the mapping

(Q, θ) → (θ, p = Qθ, u = 〈Q, θ〉). One can check that this is a contactomorphism.

The fibre of ST ∗
R

n over the origin is sent to the one-jet extension of the zero function

on the sphere, and the constant functions on the sphere correspond to spheres centered

at the origin in R
n. For the sake of brevity, a wave front W ⊂ R

n whose Legendrian

lift l ⊂ ST ∗
R

n is Legendrian isotopic to a Legendrian lift of the sphere will be called a

pseudo-sphere. By Theorem 3, to each pseudo-sphere in R
n, there corresponds a support

g.f.q.i. defined on Sn−1. Observe that if a g.f.q.i. F : Sn−1 ×V → R induces a wave front

W in R
n via the hodograph transform, the generating family F + d corresponds to the

front Wd equidistant at distance d from W in the direction of its coorientation.

Pick a pseudo-sphere induced by a g.f.q.i. F and consider the function G : Sn−1 ×

V × V → R defined by G(θ, v, w) = F (θ, v) + F (θa, w), where θa denotes the point of

Sn−1 which is antipodal to θ. The generating function G can be deformed into a g.f.q.i.

G1 with the same critical points, and G1 induces a g.f.q.i. g on E = (Sn−1×V ×V )
(θ,v,w)∼(θa,w,v) which

is a vector bundle over RPn−1. Since the Lyusternik-Schnirelmann category of RPn−1 is

n, g has at least n critical points. Such a critical point corresponds to unordered couple

(θ, θa) such that there exists (v, w) ∈ V × V with the following property: ∂F
∂v

(θ, v) =
∂F
∂v

(θa, w) = 0 and ∂F
∂θ

(θ, v) + ∂F
∂θ

(θa, w) = 0. This means that the direction of θ is

parallel to a pseudo-diameter, which proves Theorem 11.

To finish with, let us emphasize the link between the support g.f.q.i. of a pseudo-

sphere and the envelope construction of Section 2, now in the case of a compact front

in R
n. Let W be a pseudo-sphere and F : Sn−1 × V → R a support g.f.q.i. of W . One
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can check that the hypersurface in E = R
n × Sn−1 × V defined by the regular equation

〈q, θ〉 − F (θ, v) = 0 is a generating hypersurface, quadratic at infinity with respect to

the non-compact parameters. W is hence the envelope of a family of hyperplanes. We

call a wave front W locally convex if there exist neighbourhoods of every point of its

generic strata where W is a piece of convex hypersurface. A locally convex pseudo-sphere

is the envelope of its tangent hyperplanes, or, equivalently, the support g.f.q.i. of a locally

convex pseudo-sphere can be chosen to be a function.

The study of the extrinsic geometry of wave fronts is the subject of a paper in prepa-

ration with J. C. Alvarez, where Theorem 11 and related results will be extended to

quasi-hypersurfaces. It will also be shown that one has the same lower bound for the

number of geodesics which are twice normal to the quasi-hypersurface when R
n is en-

dowed with an appropriate Finsler metric.

I am deeply grateful to V. Arnold who initiated this work, and to F. Laudenbach,

for his interest and help. I wish to express my warmest thanks to the organizers of the

workshop.
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