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1. Introduction. The main result of this paper is concerning to the C0-dense para-
metric h-principle [1] of symplectic immersions. Let (N,σ) be a smooth symplectic
manifold and M a manifold with a closed C∞ 2-form ω on it. A smooth map f :
(M,ω) −→ (N,σ) is called symplectic if f pulls back σ onto ω. Let Symp(M,N) de-
note the space of symplectic immersions of M into N with C∞ compact-open topology
and Symp0 (TM,TN) denote the space of bundle monomorphisms F : TM −→ TN with
C0 compact-open topology where F satisfies F ∗σ = ω and the underlying (continuous)
map of F pulls back the cohomology class of σ, denoted by [σ], onto the cohomology class
[ω]. Then the differential d maps Symp(M,N) into Symp0 (TM,TN). The main theorem
may now be stated as follows.

Theorem 1.1. If dimM < dimN then d : Symp(M,N) −→ Symp0 (TM,TN) is
a weak homotopy equivalence. In particular, symplectic immersions satisfy the C0-dense
parametric h-principle in the space of continuous maps f : M −→ N which pull back the
cohomology class of σ onto that of ω.

It is interesting to note that when dimN = 2dimM , taking ω equal to zero we obtain
the following result of Lees [2].

Corollary 1.2. The Lagrangian immersions satisfy C0-dense parametric h-principle.

Theorem 1.3. Let F : T (OpA) −→ TN be a bundle monomorphism such that F ∗σ =
ω, where A is a compact set in M , and let the underlying map f be a symplectic immersion
on a neighbourhood of a compact set B ⊂ A. If the relative cohomology class [f∗σ − ω]
vanishes in H2(A,B) then F can be homotoped to a symplectic immersion such that the
homotopy remains constant in a neighbourhood of B.
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It should be remarked that Gromov studied in [1, §3.4.2] a more general prob-
lem, namely the classification of σ-regular isometric immersions for an arbitrary closed
2-form σ. The general theorem arises from the h-principle of some auxiliary sheaf which
comes as the solution sheaf of an infinitesimally invertible differential operator, and Gro-
mov proved this by using sophisticated machinery, for example, the Nash-Moser Implicit
Function Theorem. However, the situation becomes much simplified when we restrict
ourselves to isometric immersions in a symplectic manifold.

Our proof of Theorem 1.1 is based on a comment of Gromov [1, p. 327]. The proof in-
volves sheaf theoretic technique and Moser’s Stability Theorem for symplectic forms. Gro-
mov used this technique to prove the ‘Open Extension Theorem’, which gives h-principle
for a large class of partial differential relations, namely, relations admitting of open ex-
tensions which are invariant under fibre-preserving diffeomorphisms. The main idea there
was to find a class of diffeotopies that would ‘sharply move a submanifold locally at hy-
persurfaces’ [1, §2.2.3] and at the same time would keep the extension relation invariant
under its action. In the Open Extension Theorem fibre-preserving diffeotopies serve this
purpose. In this specific problem the role is played by exact diffeotopies [1, §3.4.2]. How-
ever, the relation corresponding to symplectic immersions is non-open and the sheaf of
symplectic isometric immersions is not even microflexible [see Section 2]. Hence Theorem
1.1 does not follow immediately from the Open Extension Theorem. The difficulty has
been bypassed here by passing to an auxiliary sheaf which is microflexible and which has
the same homotopy type as the sheaf of those symplectic isometric immersions whose
graphs lie in a certain predefined subspace. On the other hand, since the relation is not
open, an infinitesimal solution is not necessarily a local solution. Nevertheless, Moser’s
Stability Theorem [4] tells us that an infinitesimal solution is isotopic to a local solution
of the differential relation.

For any undefined term we refer to [1].

2. Brief review of the sheaf theoretic results. We now briefly describe the sheaf
theoretic techniques to prove parametric h-principle. Let Φ denote the sheaf of solutions of
some r-th order partial differential relation R ⊂ Jr(M,N) defined for Cr maps M −→ N ,
and Ψ the sheaf of sections of the r-jet bundle Jr(M,N) −→ M with images in R. The
natural topologies on Φ(U) and Ψ(U) are respectively the Cr and C0 compact open
topologies.

Definition 2.1. The solution sheaf Φ and the relationR are said to satisfy parametric
h-principle if the r-jet map r : Φ −→ Ψ is a weak homotopy equivalence.

Before proceeding further we state some general definitions and results on topological
sheaves.

Definition 2.2. Let F be a topological sheaf over M and A be a compact set in M .
The symbol F(A) will denote the space of maps which are defined over some neighbour-
hood of A in M ; in fact it is the direct limit of the spaces F(U) where U runs over all the
open sets containing A. A map f : P −→ F(A) on a polyhedron P is called continuous
if there exists an open set U ⊃ A such that each fp is defined over U and the resulting
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map P −→ F(U) is continuous with respect to the given topology on F(U).

Definition 2.3. A sheaf F is called flexible if the restriction maps F(A) −→ F(B)
are Serre fibrations for every pair of compact sets (A,B), A ⊃ B. The restriction map
F(A) −→ F(B) is called a microfibration if given a continuous map f ′0 : P −→ F(A)
on a polyhedron P and a homotopy ft, 0 ≤ t ≤ 1, of f ′0|B there exists an ε > 0 and a
homotopy f ′t of f ′0 such that f ′t |OpB = ft for 0 ≤ t ≤ ε. If for any pair of compact sets
the restriction morphism is a microfibration then the sheaf F is called microflexible.

Theorem 2.4 (Sheaf Homomorphism Theorem [1, p. 77]). Let F and G be two topo-
logical sheaves defined on a manifold M and let f : F −→ G be a morphism. If both sheaves
are flexible and if f is a local weak homotopy equivalence then f is a weak homotopy
equivalence.

So to prove parametric h-principle for a relation R it suffices to show that the sheaves
Φ and Ψ (as defined above) are flexible and the r-jet map r : Φ −→ Ψ is a local weak
homotopy equivalence. For any partial differential relationR the sheaf Ψ is always flexible
[1, p. 40]. But to prove flexibility of Φ we need to impose certain extensibility conditions
on R.

Let M be embedded in a higher dimensional manifold M ′ and let R′ be a relation on
M ′. We denote the corresponding sheaf of solutions by Φ′.

Definition 2.5. Φ′ is said to be an extension of Φ if the inclusion of M in M ′

induces a restriction homomorphism α : Φ′|M −→ Φ; moreover, α(x) is a surjection for
each x ∈M .

This means that if we restrict a solution of R′ to M we obtain a solution of R and
moreover every local solution of R can be lifted to a local solution of R′.

Now, for a pair of compact subsets (A,B) in M we define the space Γ(A,B) of
compatible pairs of solutions inside Φ′(B) × Φ(A). This set consists of all pairs (f ′, f)
such that α(f ′) = f |OpB.

Definition 2.6. The extension Φ′ will be called a microextension if the obvious map
γ : Φ′(A) −→ Γ(A,B) is a microfibration.

Now we explain the concept of diffeotopy sharply moving M in M ′. It is worth recalling
that the idea contained in this definition is a key point in the Smale-Hirsch Immersion
Theorem.

Definition 2.7. We fix a metric d on M . An open set in M will be called small if
it is contained in a ball of small radius. A class of diffeotopy D on M ′ is said to sharply
move M in M ′ if given any hypersurface S lying in a small open set of M and given any
two positive numbers r and ε we can obtain a diffeotopy {δt} in D which satisfies the
following conditions:

(a) δ0 is the identity map,
(b) each δt is identity outside an ε-neighbourhood of S,
(c) d(δ1(S),M) > r.
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Gromov gives the following sufficient condition for flexibility of Φ in his Main Lemma
[1, p. 82] and Microextension Theorem [1, p. 85].

Theorem 2.8. If Φ admits of a microextension Φ′ which is microflexible and if there
exists a class of acting diffeotopy on Φ′ which sharply moves M in M ′ then Φ is a flexible
sheaf.

3. Defining an extension. Let (M,ω) and (N,σ) be as in Section 1. Then the
symplectic immersions (M,ω) −→ (N,σ) correspond to the partial differential relation
R ⊂ J (1)(M,N) consisting of all 1-jets 1xf , x ∈ M , of local immersions f such that
f∗σ = ω at x. Let Ψ denote the sheaf of bundle maps F : TM −→ TN which pull back
the form σ onto ω. This may be identified with the sheaf of sections of R. To obtain
an extension of R, we will first embed (M,ω) isometrically into a symplectic manifold
(M ′, ω′). We start with an F : TM −→ TN in the sheaf Ψ(M). Let f : M −→ N be
the underlying continuous map. We consider the bundle f∗TN/TM over M . Observe
that the total space of the bundle, say X, has the same dimension as N . Now we can
construct a symplectic form ω′ on it. We first extend the bundle map F to a bundle
morphism F ′ : TX|M −→ TN such that F ′ maps fibres of TX|M isomorphically onto
the fibres of TN . The form F ′

∗
σ restricts to ω on M and hence can be extended to a

closed form ω′ on some neighbourhood M ′ of M in X. M ′ may be taken to be a tubular
neighbourhood of M in X so that the inclusion i : M −→M ′ is a homotopy equivalence.
Since F ′∗σ is non-degenerate so is ω′ [5]. So (M,ω) is isometrically embedded in the
symplectic manifold (M ′, ω′).

We denote the sheaf of symplectic isometric immersions of (M,ω) in (N,σ) by S and
that of (M ′, ω′) in (N,σ) by S ′. Let R′ denote the space of 1-jets of germs of symplectic
immersions of (M ′, ω′) in (N,σ) and Ψ′ the sheaf of section of R′.

Proposition 3.1. S ′ is an extension of S.

P r o o f. It is easy to see that the isometric embedding of (M,ω) in (M ′, ω′) induces
a morphism α : S ′|M −→ S. To prove that α(x) : S ′(x) −→ S(x) is onto we start with a
local symplectic immersion f at a point x ∈ M . Let f̄ be any extension of f to a local
immersion in M ′. Then, since dimension of M ′ is the same as the dimension of N , the
form ω̄ = f̄∗σ is a symplectic form. Now the two linear symplectic forms ω̄x and ω′x
defined on TxM ′ coincide on the subspace TxM . Hence there exists a linear isomorphism
l of TxM ′ which pulls back ω̄x onto ω′x and keeps TxM pointwise fixed. We consider the
germ of a local map f ′ whose 1-jet at x equals to 1xf̄ ◦l so that 1xf

′ ∈ R′. By construction
the jet 1xf

′ projects onto 1xf ∈ R. Moreover we may assume without loss of generality
that f ′ extends f . So we have the following:

• f ′
∗
σ = ω′ at x.

• f ′ equals f on U ∩M , where U is the domain of f . Hence, pullbacks of both the
forms f ′∗σ and ω′ to M are the same.

Therefore, by the Relative Poincaré Lemma, we obtain a 1-form ϕ on a neighbourhood,
say Ũ , of x in U such that dϕ = f ′

∗
σ − ω′ and ϕ|Ũ ∩M = 0. Now, by applying Moser’s

Theorem [4] we get a diffeomorphism δ on a neighbourhood, say U ′, of x in Ũ , such that
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δ∗(f ′∗σ) = ω′, δ|U ′ ∩M is identity, and dδx = id. Then f ′ ◦ δ is the required extension
of f .

Proposition 3.2. The 1-jet map j1 : S −→ Ψ is a local weak homotopy equivalence.

P r o o f. The main ingredient of the proof is Moser’s Theorem on the stability of sym-
plectic forms in a cohomology class. Consider the map ρ = e◦1 : Φ(x) −→ Ψ(x) −→ Rx,
where the space Rx consists of 1-jets of symplectic immersions at x, and e is the eval-
uation map at x. We shall prove that ρ induces an injective map between homotopy
groups. It will then imply that the induced map 1∗ on homotopy groups is also injec-
tive. Injectiveness of ρ∗ may be proved proceeding as in du Plessis [3] and using the
following observation. Let ϕp : M −→ N , p ∈ P , be a continuous family of smooth
maps parametrized by a polyhedron P such that ϕ∗pσ = ω at x. By the above lemma we
can extend ϕp to a neighbourhood of x in M ′ as ϕ′p such that ϕ′∗pσ = ω′ at x. We set
ω′p = ϕ′

∗
pσ. Then ω′p = ω′ at x for each p ∈ P . Now by Moser’s Theorem we get a family

of diffeomorphisms δp (homotopic to the identity), defined on a neighbourhood of x such
that δ∗pω

′
p = ω′, δp(x) = x and dδp|TxM ′ = id. Define ϕ̄p = ϕ′p ◦ δp|M on Opx. Then ϕ̄p’s

are isometric immersions on Opx and 1xϕp = 1xϕ̄p. Moreover, if some ϕp is isometric on
a neighbourhood of x, we may get ϕ̄p = ϕp on Opx in M .

We now prove that j1∗ is surjective. Let Γ denote the sheaf of smooth maps from M

to N . This is a sheaf over M . Consider the parametric sheaf ΓM over M ×M which
is defined as follows: For open subsets U, V ⊂ M we set ΓM (U × V ) equal to Γ(U)V ,
which is the space of continuous maps V −→ Γ(U). Now take the restriction of ΓM to the
diagonal. We shall denote this sheaf by Γ∗, and call it the associated sheaf of Γ. Observe
that Γ∗(x) is the direct limit of the spaces Γ(U)U where U runs over open neighbourhoods
of x in M . Thus a local section in Γ∗ can be conceived as a continuous family of germs
ϕx ∈ Γ(U), x ∈ U . It can be proved that the canonical inclusion of Γ in Γ∗, given by
ϕ 7→ {u 7→ ϕ}, is a weak homotopy equivalence (see [1, p. 76]). (The above construction
is equally true for an arbitrary sheaf.) Returning to the proof of surjectiveness of 1∗, we
split j1 in the following way:

Φ(x) Φ∗(x) Γ∗0(x)

Ψ(x)

- -

Q
Q

Q
Q

Q
QQs

�
�

�
�

�
��+?

ι j

j1 J

where Φ∗ is the associated sheaf of Φ and Γ∗0(x) is the subspace of Γ∗(x) consisting
of all those families of germs {ϕu : u ∈ Opx} for which ϕu is a local immersion and
ϕ∗uσ = ω at u, in other words 1uϕu ∈ R. Thus it is easy to see that any section in Ψ(x)
gives rise to a section in Γ∗0(x). Hence J is onto. (The same technique can be applied
to show that J∗ is onto at each homotopy level.) Now we shall show that the map j

induces surjective homomorphism in the homotopy, which will complete our proof. To
prove this, it is enough to consider the zeroeth homotopy level. To this end, take a family
{ϕu : u ∈ U} as above where U is an open neighbourhood of x. We may suppose without
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loss of generality that each ϕu is defined on the same open subset U . Now, using Moser’s
Theorem we can deform the family {ϕu} to a family {ϕ̄u} of symplectic immersions in
Φ(Ũ) such that 1uϕ̄u = 1uϕu for all u ∈ Ũ , where Ũ is an open neighbourhood of x in U .
Moreover, for each u, the homotopy between 1ϕ̄u and 1ϕu is constant at u. The family
{ϕ̄u} defines a section in Φ∗(x). So we have proved that every path component of Γ∗0(x)
intersects Φ∗(x). Thus j∗ is onto at the zeroeth homotopy level.

However, the extension sheaf S ′ is not microflexible, as it can be seen from the fol-
lowing example.

Example 3.3. Consider the standard embedding of the closed unit disc in R2. If
we deform it near the boundary by pushing it inside then it (the homotopy) cannot be
extended symplectically on the whole of the disc.

This phenomenon may be explained as follows: If f0 is a symplectic immersion over
OpA and ft a homotopy of f0 such that ft|OpB is a symplectic immersion, then the
relative cohomology class of f∗t σ−ω in H2(A,B) determines the obstruction to extending
ft|OpB to OpA as a symplectic immersions. If the cohomology class [f∗t σ − ω] = 0 ∈
H2(A,B) then there exists a smooth of 1-forms αt such that αt vanishes on OpB and
f∗t σ − ω = dαt. Then Moser’s Stability Theorem applies and we can lift ft|OpB over A
as symplectic immersion.

Since S ′ is not microflexible we cannot apply the sheaf theoretic techniques (described
in Section 2) on it. However, we shall see in the following section that there exists a
topological sheaf on M ′ naturally associated to a subspace of the space of symplectic
immersions which do satisfy microflexibility and has the same homotopy type as S ′.

4. Construction of the Auxiliary Sheaf. Since both the differential 2-forms σ
and ω′ are symplectic, the product form p∗2σ − p∗1ω

′ on M ′ × N is a symplectic form,
where p1 and p2 are respectively the projection maps of M ′ × N onto the first and the
second factor. We shall denote this product symplectic form by σ − ω′. If f : M −→ N

is a symplectic isometric immersion then its graph map g = (1, f) : M ′ −→M ′ ×N is a
Lagrangian section of (M ′ ×N,σ − ω′), and this correspondence is bijective.

In the rest of this section we assume that the symplectic form σ−ω′ is exact (which is
equivalent to saying that σ and ω are exact). Let τ be a 1-form such that σ−ω′ = dτ . We
construct the sheaf of exact Lagrangian sections as follows: This consists of pairs (g, ϕ),
where g : M ′ −→M ′×N is a section such that the underlying map f = p2◦g : M ′ −→ N

is an immersion, and ϕ is a function on M ′ such that g∗τ = dϕ. We denote the sheaf
of such pairs by E ′ and call it the sheaf of τ -exact Lagrangian sections. Observe that S ′
and E ′ are locally homotopically equivalent since the germ of a Lagrangian section at a
point denotes a germ of an exact Lagrangian section; moreover the space of primitives
ϕ for a τ -exact Lagrangian section g (meaning that ϕ satisfies the relation g∗τ = ϕ) is
isomorphic to R. Consequently, the sheaf of sections corresponding to the relation, of
which E ′ is the solution sheaf, has the same homotopy type as Ψ′. We now prove

Proposition 4.1. The sheaf E ′ of τ -exact Lagrangian sections is microflexible.

P r o o f. Let (A,B) be a pair of compact sets in M ′. Let g′ be a τ -exact Lagrangian
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section over a A (meaning that it is defined on a neighbourhood of A) such that g′∗τ = dϕ′

for a 0-form ϕ′, and (gt, ϕt) a homotopy of (g′, ϕ′)|OpB in E ′.
We first prove the following simple lemma.

Lemma 4.2. Let gt be a homotopy of τ -exact Lagrangian sections. If g0 is τ ′-exact
Lagrangian for a 1-form τ ′ satisfying σ − ω′ = dτ ′, then gt is also τ ′-exact Lagrangian
for each t.

P r o o f. Two such forms τ and τ ′ differ by a closed 1-form c on M ′ ×N . So, we have
the following relation

g∗t τ
′ = g∗t τ + g∗t c

for every t. Then, by hypothesis, g∗0c is an exact form. Since c is closed, g∗t c is also exact.
Consequently g∗t τ

′ is exact for each t.

P r o o f o f P r o p o s i t i o n 4.1 (continued). Now, by the standard theory of La-
grangian submanifolds [4], there exists a neighbourhood W of the Lagrangian subman-
ifold L′ = Im g′ such that (W,dτ) is symplectomorphic to a neighbourhood of the zero
section ZL′ in the cotangent bundle (T ∗L′, dθL′) with the standard symplectic form dθL′

on it. Under this correspondence, the Lagrangian submanifolds in W are mapped onto the
closed forms (near ZL′), whereas the τ ′ = δ∗θL′ -exact Lagrangians correspond to exact
forms on L′. Clearly the sheaf of exact 1-forms is microflexible. Hence we can obtain lifts
g′t of gt (for t small enough) which are τ ′-exact Lagrangian sections. By the Lemma above
they are also τ -exact. Moreover, for small t, the underlying maps will be immersions on
OpA. Now, we can choose a homotopy ϕ′t on OpA such that g′∗t τ = dϕ′t. On OpB, we
have dϕ′t = dϕt. Hence ϕ′t − ϕt = ct, where ct is a closed 0-form, that is a constant. So
we may replace ϕ′t by ϕ′t − ct. The homotopy (g′t, ϕ

′
t − ct) is the required lift.

We shall now describe a class of diffeotopy which would act on the sheaf E ′ and at
the same time sharply move a submanifold of M ′ of positive codimension. Since ω′ is
symplectic we have an isomorphism Iω′ : X (M ′) −→ Λ1(M ′) from the space of vector
fields X (M ′) onto the space of 1-forms Λ1(M ′). A C∞ diffeotopy δt of M ′ is called exact
if δ0 is identity and if δ′t = dδt

dt is a Hamiltonian vector field for each t. So we can write
δ′t.ω

′(= Iω′(δ′t)) = dαt for some smooth family of exact 1-form dαt on M ′. If αt can
be chosen to be identically zero on the open subset where δt is constant then such a
diffeotopy is called a strictly exact diffeotopy .

Proposition 4.3. The strictly exact diffeotopies of M ′ act on the sheaf E ′.

P r o o f. Let δt be a strictly exact diffeotopy onM ′. We define a diffeotopy δ̄t onM ′×N
by δ̄t(x, y) = (δt(x), y), where x ∈ M ′ and y ∈ N . It follows that δ̄′t.(σ − ω′) is exact for
each t. Let αt be a smooth family of 0-forms on M ′ × N satisfying δ̄′t.(σ − ω′) = dαt.
Then,

d

dt
(δ̄t

∗
τ) = Lδ̄′tτ = d(δ̄′t.τ) + δ̄′t.dτ = d(δ̄′t.τ) + δ̄′t.σ − δ̄′t.ω

′

= d(δ̄′t.τ) + dαt = d(δ̄′t.τ + αt).

If we define ϕt =
∫ t
0
(δ̄′t.τ +αt) dt then δ̄∗t τ = τ + dϕt. Now we are in a position to define
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the action. For (g, ϕ) ∈ E ′ and δt as above, we set

δ∗t (g, ϕ) = (δ∗t g, (δ
−1
t )∗(ϕ+ g∗ϕt) ),

where δ∗t g = δ̄t ◦ g ◦ δt−1.

Proposition 4.4. The exact diffeotopies of the symplectic manifold (M ′, ω′) sharply
move M in M ′.

P r o o f. (Gromov) To move a closed hypersurface S lying in a small open set U of M
we start with a vector ∂0 ∈ Tx0(M

′) transversal to U in M ′. This ∂0 extends to an exact
field ∂ = I−1

ω′ (dH) on which is transversal to U , since U is chosen small. In order to make
the corresponding exact isotopy δt sharply moves S, we take the union Sε = ∪tδt(S) ∈M ′

over t ∈ [0, ε] and then multiply the Hamiltonian H by a properly chosen C∞ function
a on M ′ which vanishes outside an arbitrarily small neighbourhood of OpSε and which
equals one in a smaller neighbourhood of Sε. This makes the diffeotopy corresponding to
the field Iω′(d(aH)) as sharp as we want.

Now applying the Main Lemma of Gromov [1, p. 82] we may conclude from above
that

Proposition 4.5. The sheaf E ′|M is flexible.

It then follows from the Sheaf Homomorphism Theorem that E ′|M satisfies parametric
h-principle.

Let E be the sheaf of pairs (g, ϕ) on M , where g : M −→ M ′ × N is a section such
that its underlying map is an immersions and ϕ is a function on M satisfying the relation
g∗τ = dϕ. To descend h-principle from E ′|M to E we observe that

Proposition 4.6. E ′ is a microextension of E.

P r o o f. From Proposition 3.1 and the discussion preceeding Proposition 4.1 it follows
that E ′ is an extension of E . To prove that E ′ is a microextension of E we consider a lifting
problem

P × {0} -

?

E ′(A)

?
P × I - Γ(A,B)

(G′
0, ψ

′
0)

i

(g′, ϕ′), (g, ϕ)

γ

where α◦ (G′0, ψ
′
0) = (g0, ϕ0) and (h′0, ψ

′
0)|OpB = (g′0, ϕ

′
0) and where Γ(A,B) is a subset

of E ′(B) × E(A) consisting of compatible solutions as defined in Section 2. (To avoid
too many symbols we assume P to be a point and denote g(t) by gt and so on.) We
shall denote the underlying maps of G′0, g

′
t and gt by F ′0, f

′
t and ft. Since they are

immersions (which correspond to an open differential relation), we can obtain a lift of
the corresponding microextension problem for immersions. Let us denote the lift by Ft,
where 0 ≤ t ≤ ε for some positive number ε ≤ 1. Now each Ft being immersion between
equidimensional spaces, pulls back σ onto a symplectic form on a neighbourhood of A.
Let us set F ∗t σ = ω′t. We denote the corresponding graph map by Gt. Then we have the
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relation F ∗t σ−ω′ = dG∗t τ . On the other hand we obtain a homotopy ψ′t of ψ′0 such that ψ′t
coincides with ϕt and ϕ′t on the relevant spaces. The 1-form αt defined by αt = G∗t τ−dψ′t
satisfies the following

(a) α0 = 0
(b) αt vanishes on some open neighbourhood of A in M ,
(c) αt vanishes on an open neighbourhood of B in M ′

(d) F ∗t σ − ω′ = dαt.

Consider the vector fields Xt = I−1
ωt

(dαt

dt ). The vector field vanishes on OpM A as well
as on OpM ′ B. Hence it can be integrated on a neighbourhood of A in M ′ to obtain a
family of diffeomorphisms {δt; 0 ≤ t ≤ ε̃} for some ε̃ ≤ ε such that

(e) δ0 is identity on OpM ′ A,
(f) δt|OpM A = id,
(g) δt|OpM ′ B = id,
(h) δ∗t ω

′
t = ω′.

The required partial lift of the original lifting homotopy problem can now be given by
the graph map of F ′t = Ft ◦ δt. In fact, Since F ′t is a symplectic immersion G′∗t τ is closed.
On the other hand, i : M −→ M ′ induces an isomorphism i∗ : H2

deR(M ′) −→ H2
deR(M),

and we know from our initial data that i∗G′∗t τ is exact. Hence, G′∗t τ is also exact. It is
now a trivial matter to fix ψ′t.

The Microextension Theorem of Gromov [1, p. 85] now implies that the sheaf E is
flexible. We have already proved the local h-principle in Proposition 3.2. So again appeal-
ing to the Sheaf Homomorphism Theorem we may conclude that E satisfies parametric
h-principle.

Finally we prove

Proposition 4.7. E(M) has the same homotopy type as the space S(M) of symplectic
isometric immersions.

P r o o f. Consider the following sequence of maps between the function spaces:

E ′|M
(p2)∗−→ S ′|M

1−→ Ψ′|M . The C0-dense parametric h-principle for E ′|M says that the
composition is a weak homotopy equivalence. Hence (p2)∗ induces injective maps between
homotopy groups. On the other hand, given any symplectic immersion f near M in M ′ we
can obtain a τ -exact Lagrangian section g ∈ E ′|M such that p2 ◦ g is arbitrarily C0-close
to f . In particular we may choose g within the neighbourhood of graph f which is sym-
plectomorphic to the neighbourhood of the zero section ZM ′ in T ∗(M ′) (see Proposition
4.1). Hence p2 ◦ g can be homotoped within the space S ′ to f . In fact, g corresponds to a
closed form whereas graph f corresponds to the zero section. We denote the correspond-
ing forms by the same sympbols. The homotopy (1− t)g brings g onto graph f within the
space of Lagrangian sections as multiplication by t takes closed forms to closed forms,
which correspond to Lagrangian sections of M ′×N −→M ′ provided they are sufficiently
C∞ close to the zero form. This observation proves that (p2)∗ induces an isomorphism
between the homotopy groups.

Proceeding as in Proposition 4.6 we may observe that both the restriction maps
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S ′(M) −→ S(M) and E ′(M) −→ E(M) are fibration. Moreover, for any g ∈ E , the fibres
in E ′(M) and S ′(M) over g and p2 ◦g respectively are homotopically equivalent. We have
proved above that E ′(M) and S ′(M) are of the same weak homotopy type. Hence using
homotopy exact sequence of fibrations we conclude that E(M) and S(M) are also of the
same weak homotopy type.

This leads us to the following intermediate theorem.

Theorem 4.8. If the differential forms σ and ω are exact then the space of symplectic
immersions of M into N satisfies parametric h-principle.

5. Proof of the main theorem. Let us now go back to our case where σ − ω is
not necessarily exact on M ×N . However, if f : M −→ N is a continuous map such that
f∗[σ] = [ω] then f can be extended to a map f ′ : M ′ −→ N such that f ′∗[σ] = [ω′]. Then
in a neighbourhood, say W , of graph f there exists a 1-form τ such that σ − ω′ = dτ .
We shall denote the sheaf of symplectic immersions M ×N whose graphs lie in W by the
symbol SW . Then from the discussion of the previous section it follows that SW satisfies
parametric h-principle. We now come to the proof of Theorem 1.1.

P r o o f o f T h e o r e m 1.1. It remains only to prove the injectivity of the maps
d∗ : πi(S(M)) −→ πi(Symp0 (TM,TN)) for each integer i. Let f0 and f1 be two
symplectic immersions on M such that their differentials df0 and df1 are homotopic in
Symp0 (TM,TN); that is, there exists a homotopy Ft : TM −→ TN such that F ∗t σ = ω

for each t and the underlying maps ft : M −→ N satisfies f∗t [σ] = [ω]. For each t we
can choose a neighbourhood Wt of graph ft on which σ − ω is exact. Then the sheaves
St (= SWt

) satisfy the parametric h-principle. We can cover the set
⋃
t ft(M) by finitely

many such Wt’s such that any two consecutive ones (ordered by the real number) in-
tersect in a set which contains completely the graph of some ft. Without any loss of
generality we may assume that the neighbourhoods {W1, W2} have this property. Let,
for some t0, the graph of ft0 lie in W1 ∩W2. Then by h-principle for the sheaf SW1∩W2

we obtain a symplectic immersion f C0-close to ft0 such that the differentials df and Ft0
are homotopic within Symp0 (TM,TN) and the underlying maps of the homotopy have
their graphs in W1 ∩W2. Then applying parametric h-principle for S1 we conclude that
f and f0 are homotopic within the space S1. On the other hand f is homotopic to f1
within the space S2. Joining these two homotopies we obtain a homotopy between f0 and
f1 in the space of symplectic immersions. This proves that the differential d induces an
isomorphism between the homotopy groups at the zero level.

Working with a family of such maps parametrized by spheres Si, we can similarly
prove the isomorphism between the higher homotopy groups of the relevant spaces which
gives the desired h-principle.

We now prove the relative or extension version of h-principle for symplectic immer-
sions.

P r o o f o f T h e o r e m 1.3. Since [f∗σ − ω] vanishes in H2(A,B), there is a 1-form
ϕ vanishing on OpB such that f∗σ − ω = dϕ. Hence, for a proper choice of W and τ ,
σ−ω = dτ on W and g = (1, f)|OpB is in EW,τ (B). Now consider the following diagram
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where the horizontal arrows are weak homotopy equivalences and the vertical ones are
fibrations.

EW (A) -

?

ΨW (A)

?

EW (B) - ΨW (B)

Hence the fibres over g|B and df |TB are also weak homotopy equivalent. The theorem
follows as F lies in the fibre over df |TB .
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