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1. Introduction. This paper is a survey of some recent work concerning the gener-
alisations of the moment map construction appropriate for various different quaternionic
geometries. The non-singular versions of these constructions are a little under ten years
old, but in many examples one considers, the interesting cases are often singular. It is
therefore useful to have some sort of general theory covering the singular case.

In symplectic geometry, Sjamaar & Lerman [SL] have provided such a theory, showing
how one obtains a stratification of arbitrary symplectic quotients by symplectic manifolds.
In the quaternionic cases, such strong results are not yet known. Indeed, for one type
of quaternionic geometry such a result is false, as will be described below. However, the
ideas of Sjamaar & Lerman do enable one to divide up the quaternionic quotients into
well-behaved pieces.

We will start by describing the quaternionic geometries involved and the non-singular
versions of the moment map construction. The emphasis will be on the similarities with
symplectic geometry. The rest of the paper will then discuss the singular cases and give
illustrative examples.

It is a pleasure to thank the organisers of the workshop on symplectic singularities
for their kind hospitality in Warsaw.

2. Quaternionic Geometries. There are two distinct but closely related quater-
nionic geometries we wish to consider.

The first is the case of a hyperKähler manifold. This is a Riemannian manifold (M, g)
which is Kähler in three different ways. More precisely, we have three almost complex
structures I, J and K such that
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(i) IJ = K = −JI,
and

(ii) if one defines ωI(X, Y ) = g(X, IY ), etc., then dωI = dωJ = dωK = 0.

Condition (i) says that I, J and K behave like the multiplicative unit quaternions and
implies that TxM is an H-module. In particular, the dimension of M is necessarily a
multiple of four.

Hitchin [H3] showed that conditions (i) and (ii) imply that I, J and K are integrable
and hence Kähler. Thus the holonomy group of a hyperKähler manifold M4n is a subgroup
of Sp(n). Noting that Sp(n) is a subgroup of SU(2n), implies Berger’s result [Ber] that
hyperKähler manifolds are Ricci-flat.

Observe that the metric g may be regarded as a by-product of the three symplectic
forms ωI , ωJ and ωK , since, regarding them as maps TM → T ∗M , we have K = ω−1

J ◦ωI

and this together with ωK determines g. Also, note that for any point (a, b, c) ∈ S2 ⊂ R3,
the almost complex structure aI + bJ + cK is integrable and Kähler with respect to g.

Examples of hyperKähler manifolds include flat-space R4n, with the structure ob-
tained by identifying it with Hn, and the torus T4n.

The main non-trivial, compact example is that of a K3-surface: this is a complex
surface with π1 = 0 and c1 = 0; for example, (x4 + y4 + z4 + w4 = 0) ⊂ CP (3).
The existence of a hyperKähler metric on these surfaces is a consequence [Bea] of Yau’s
proof [Yau] of the Calabi conjecture. Higher-dimensional, compact examples may be
built out of these building blocks [Bea]. Although these metrics are not known explicitly,
some of them may be obtained via a deformation argument [Pa] known as the Kummer
construction, which Joyce [J1–3] has recently extended to obtain the first examples of
compact manifolds with holonomy Spin(7) (dimension 8) and G2 (dimension 7).

Suppose a Lie group G acts on a hyperKähler manifold M , preserving the complex
structures I, J and K and the metric g. Using the three symplectic structures ωI , ωJ ,
ωK we may attempt to define symplectic moment maps µI , µJ , µK :M → g∗ by

d〈µI , X〉 = iXωI , etc.

If these exist, they may be combined into one hyperKähler moment map

µ:M → g∗ ⊗ Im H,

µ = µI i + µJj + µKk.

This definition is reasonable as we have:

Theorem [HKLR]. If G acts freely and properly on a hyperKähler manifold M ,
preserving the hyperKähler structure and with moment map µ, then µ−1(0)/G is a hy-
perKähler manifold of dimension dim M − 4 dim G.

Example. Let U(1) act on Hn = R4n by left-multiplication by eiθ. Then a hy-
perKähler moment map for this action is given by

a + jb 7→ i(‖a‖2 − ‖b‖2 − 1) + 2kātb,

for a, b ∈ Cn. Note that although U(1) does not act freely on the whole of Hn, it does act
freely on the zero set µ−1(0) and so the above theorem may be applied. The hyperKähler
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metric constructed this way is complete, because the metric on Hn is complete, µ−1(0) is
closed and U(1) is compact. Topologically, the hyperKähler quotient is T ∗ CP (n − 1),
where the map to CP (n − 1) is given by (a, b) 7→ [a], and in fact the metric obtained is
one first described by Calabi [Ca1–2] via Kähler potentials.

Let us consider the four-dimensional case T ∗ CP (1). Near infinity this metric is asymp-
totically close to the standard metric on C2/{±1}. Hitchin [H1] showed how the twistor
construction could be used to obtain the metric on T ∗ CP (1) when this space is regarded
as the minimal resolution of the singular space C2/{±1}.

More generally one can look for hyperKähler metrics which are ale, i.e. asymptot-
ically locally Euclidean. Kronheimer [K2–3] showed that if the hyperKähler manifold
is ale with the topology of the minimal resolution of C2/Γ, for Γ any finite subgroup
of SU(2), then it may be obtained as a finite-dimensional hyperKähler quotient of flat
space. Dancer [Da] extended Kronheimer’s construction to obtain families of asymptoti-
cally locally flat hyperKähler metrics when Γ is dihedral.

Example. Another example may be loosely described as follows. Let A be the space
of irreducible connections on a fixed principal bundle over R4, with compact structure
group G, and let G be the gauge group. Then A may be identified with Ω1(R4, g), as an
infinite-dimensional affine space, and this inherits a hyperKähler structure from R4 = H.
Given A ∈ A, the curvature is FA = dA + A ∧ A and we may define a hyperKähler
moment map for the action of G on A, by

µ(A) = F−
A ,

where F−
A = 1

2 (FA − ∗FA) is the anti-self-dual part of FA regarded as an element
of Ω2(R4, g). The resulting hyperKähler quotient µ−1(0)/G is the moduli space of self-dual
instantons over R4.

Note that various technical conditions need to be added to make this example precise.
Also because the construction is infinite-dimensional, rather than finite-dimensional, one
has to work a little more to apply the theorem of [HKLR]. However, many particular cases
of such moduli spaces may be obtained via the finite-dimensional hyperKähler quotient
construction; a few of these will be seen later. The assumption of irreducibility of the
connections is present merely to ensure that the quotient is non-singular.

The second type of quaternionic geometry to be considered is that of quaternionic
Kähler manifolds: as will be explained below, these should be regarded as the non-zero
scalar curvature analogue of hyperKähler manifolds.

Let (M, g) be a Riemannian manifold equipped with a subbundle G of EndTM such
that G has rank 3 and locally has bases {I, J, K} such that I2 = J2 = K2 = −1 and
IJ = K = −JI. Then we may construct a globally defined 4-form Ω by the local formula

Ω = ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK .

If the dimension of M is at least 8, we say that M is quaternionic Kähler if ∇Ω = 0,
where ∇ is the Levi-Civita connection of g.

Calculating ∇Ω is not always straightforward, so the following result is useful and
indicates some relationship with symplectic geometry.
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Proposition [Sw]. If dim M > 12 then M is quaternionic Kähler if and only if
dΩ = 0.

Recall that such a result is not true in almost Hermitian geometry.
The stabiliser of Ω under the action of GL(4n, R) is the group Sp(n) Sp(1) = (Sp(n)×

Sp(1))/{(−1,−1)}. Thus a quaternionic Kähler manifold is a manifold whose holonomy
group is a subgroup of Sp(n) Sp(1). This implies [Sa] that quaternionic Kähler manifolds
are Einstein. The curvature of G is a multiple of the scalar curvature s, so quaternionic
Kähler manifolds of scalar curvature zero are locally hyperKähler. For this reason we will
take the term quaternionic Kähler to include the condition that s be non-zero.

If M is four-dimensional, then G may be identified with Λ2
− via the metric. The

four-form Ω, is just −6 times the volume form and is so always parallel. Instead one
defines M4 to be quaternionic Kähler if it is self-dual and Einstein, with non-zero scalar
curvature, since this gives M4 the same curvature properties with respect to G as in
higher dimensions.

Examples of quaternionic Kähler manifolds include the symmetric metrics on HP (n),
Gr2(Cn), Gr4(Rn), G2/ SO(4) and their non-compact duals [Wo]. There is one such ex-
ample for each simple, simply-connected compact Lie group G. In dimension four, the
only compact examples of positive scalar curvature are S4 = HP (1) and CP (2) [H2].

If G acts on M preserving the quaternionic Kähler structure, Galicki & Lawson [GL]
defined the quaternionic Kähler moment map to be

µ:M → g∗ ⊗ G,

〈µ,X〉 = 1
λ (∇X)G ,

where (∇X)G is the component of the endomorphism ∇X lying in G and λ is a non-
zero multiple, determined by the dimension, of the (constant) scalar curvature. Note
that there are no arbitrary constants in this definition, unlike the construction of the
symplectic moment map, and that the quaternionic Kähler moment map always exists.
Also, as µ is vector-bundle-valued, there is only one level set to consider, namely µ−1(0).

Theorem [GL]. Suppose G acts freely and properly on a quaternionic Kähler mani-
fold M preserving the quaternionic Kähler structure (g,G). Then µ−1(0)/G is a quater-
nionic Kähler manifold of dimension dim M − 4 dim G.

As µ is bundle-valued, it is useful to have an alternative method to compute µ−1(0).
Over each quaternionic Kähler manifold M , there is a hyperKähler manifold U(M),
which is a principal (H∗/±1 = SO(3) × R>0)-bundle [Sw]. The action of H∗ on U(M)
does not preserve the complex structures I, J and K individually, but does preserve
the two sphere {aI + bJ + cK : a2 + b2 + c2 = 1}. If a group G acts on M preserving
the quaternionic Kähler structure then this action lifts to an action on U(M) preserving
the hyperKähler structure. On U(M) we may choose the unique hyperKähler moment
map µhk such that µhk(x · q) = q̄ µhk(x) q; this map always exists. In [Sw] it was shown
that µ−1

hk (0) = π−1µ−1(0), where π:U(M) → M is the projection, and that

U(µ−1(0)/G) = µ−1
hk (0)/G,
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i.e. the hyperKähler quotient of U(M) is the hyperKähler manifold associated to the
quaternionic Kähler quotient of M .

Example. Let M be quaternionic projective space HP (n). Then U(M) is (the Z/2-
quotient of) Hn+1 \ {0} with H∗ acting by right-multiplication.

Consider the action of S1 on HP (n) given by

eiθ · [q0, . . . , qn] = [eiθq0, . . . , e
iθqn].

Then the moment map is

µ(q) = q̄tiq = i(‖a‖2 − ‖b‖2) + 2kātb,

where q = a+jb with a, b ∈ Cn+1. Note that the above formula for µ is valid both for the
quaternionic Kähler moment map on HP (n) and for the hyperKähler moment map µhk

on Hn+1 \ {0}, in the former case it just needs to be interpreted as being G-valued. If
q = a + jb lies in µ−1(0), then a and b are orthogonal and of equal length. It is now
straightforward to show [Ga] that the quaternionic Kähler quotient is

µ−1(0)/S1 = Gr2(Cn+1).

Example. Similarly the diagonal action of Sp(1) on HP (n), gives G̃r4(Rn+1) as the
quaternionic Kähler quotient.

The above two examples are very special as the resulting quaternionic Kähler quotients
are smooth and compact. For S1-actions there is the following recent result:

Theorem [Ba]. Suppose N is a compact quaternionic Kähler manifold of positive
scalar curvature such that N is the quaternionic Kähler quotient of some quaternionic
Kähler manifold M by an S1-action. Then N = Gr2(Cn).

The proof of this may be briefly sketched as follows. If X is the vector field generated
by the S1-action and µ is the moment map, then

1
‖X‖2

((∇X)− µ)

may be regarded as an element of Λ2T ∗M and defines a non-zero harmonic 2-form on N .
This implies that the second Betti number b2(N) is non-zero. However, LeBrun & Sala-
mon [LS] have shown that the only compact quaternionic Kähler manifold of positive
scalar curvature with b2 > 0 is the complex Grassmannian Gr2(Cn). Their result in turn
relies on Wísniewski’s classification of Fano manifolds of dimension 2n + 1, index n + 1
and Picard number at least 2 [Wi] which is proved using techniques from Mori theory.

The above result partly reflects the lack of known examples of quaternionic Kähler
manifolds of positive scalar curvature. In fact the following question is still open.

Question. Is every compact quaternionic Kähler manifold of positive scalar curvature
necessarily symmetric?

In dimensions 4 and 8 this question has been answered affirmatively by Hitchin [H2]
and Poon & Salamon [PS] (see also [LS]), respectively.
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Note that the situation for complete quaternionic Kähler metrics of negative scalar
curvature is very different: LeBrun has shown [Le] that C2n has infinitely many such
metrics.

Thus, we are naturally lead to considering the quotient construction in the singular
case.

3. Singular Quotients in HyperKähler Geometry. Let us start by recalling the
results of Sjamaar & Lerman [SL] concerning the symplectic case.

Theorem [SL]. Suppose G acts properly and smoothly preserving a symplectic struc-
ture ω on M . If there is a moment map µ for this action, then the symplectic quo-
tient M//G = µ−1(0)/G is the union ⋃

(H)<G

S(H),

where (H) runs over conjugacy classes of subgroups of G and

S(H) =
(
M(H) ∩ µ−1(0)

)
/G,

with M(H) denoting the subset of M consisting of points whose stabilisers are conju-
gate in G to H. Moreover , S(H) is a smooth symplectic manifold (possibly not of pure
dimension).

In fact, Sjamaar & Lerman go on to prove that this is also a stratification of the
symplectic quotient.

The essence of the proof of the above theorem may be described as follows. Suppose
O = G · p ∼= G/H is the orbit of a point p lying in the zero set of µ. Let

V =
(TpO)⊥

TpO ∩ (TpO)⊥

be the fibre of the symplectic normal bundle at p, where ·⊥ denotes the complement with
respect to the symplectic form. Then H acts freely on the product T ∗G×V and O has a
neighbourhood in M which is equivariantly symplectomorphic to the symplectic quotient
(T ∗G×V )//H. On this manifold one now has a canonical form for the moment map and
study of this leads to the above result (see also [GS]).

If we consider hyperKähler geometry, the above approach has a promising start.

Theorem [DS1]. Consider Hm as a flat hyperKähler manifold. Suppose G is a com-
pact Lie group and H is a closed subgroup of G acting on Hm preserving all three complex
structures. Then T ∗GC has a G-invariant hyperKähler structure such that the hyperKähler
quotient of T ∗GC ×Hm by H is a hyperKähler manifold.

The crucial part of this result is the construction of the hyperKähler metric on T ∗GC

which was originally done by Kronheimer [K1]. The idea is that T ∗GC may be identified
G-equivariantly with a moduli space of solutions of Nahm’s equations. These equations
are for four functions T0, . . . , T3: [0, 1] → g and state

dTi

dt
= [Tj , Tk]− [T0, Ti],
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where (i, j, k) runs over cyclic permutations of (1, 2, 3). These equations may be in-
terpreted as a hyperKähler moment map for the action of the group G0

0 of smooth
maps from f : [0, 1] → G which are the identity at t = 0, 1, on the affine space of all
d
dt + T0 + T1i + T2j + T3k, by

T0 7→ f T0f
−1 − df

dt
f−1 and Ti 7→ f Tif

−1, for i = 1, 2, 3.

One can now show that the quotient is indeed a hyperKähler manifold.
Nahm’s equations are precisely the self-duality equations for the curvature of the R3-

invariant connection T0 dt+T1 dx1+T2 dx2+T3 dx3 on the trivial principal G-bundle over
[0, 1]×R3 (for example, see [AH]). Thus the above moduli space is a particular example
of a hyperKähler moduli space of instantons as mentioned above.

Unfortunately, unlike the symplectic case, the above manifold no longer provides a
normal form for the hyperKähler moment map: note that any hyperKähler equivalence
is necessarily an isometry and thus is much stronger than a symplectomorphism.

However, there is an alternative approach. Consider the symplectic case. Given H 6
G, set

MH = {x ∈ M : stabG x = H}.

Then MH is symplectic. Let M ′
H denote the union of the connected components of MH

which meet the zero set of µ. Sjamaar & Lerman prove that µ|M ′
H

is a moment map for
the free action of L := NG(H)/H on M ′

H and hence

S(H) = M ′
H//L.

This argument carries directly over to the hyperKähler case and we get

Theorem [DS2]. If G acts properly and smoothly on a hyperKähler manifold M , then
the hyperKähler quotient of M is a union⋃

(H)<G

S(H)

of smooth hyperKähler manifolds S(H), given as the hyperKähler quotients of M ′
H by L =

NG(H)/H.

We do not yet know whether the above union is a stratification, or even a decompo-
sition, of the hyperKähler quotient; though it would not be surprising if one does get a
stratification this way.

Example. Suppose G is a classical Lie group (U(n), SU(n), O(n) or Sp(n)). Let
gC be the complexification of the Lie algebra of G. Inside gC we have the nilpotent
variety N which consists of all nilpotent matrices in gC. This variety is preserved by
the adjoint action of GC and decomposes as a union of nilpotent orbits. Each orbit is
a smooth complex manifold carrying the Kostant-Kirillov-Souriau complex symplectic
structure, so is of even complex dimension. Kronheimer [K4] showed that each nilpotent
orbit carries a hyperKähler structure. As above this is proved by identifying the orbit
with a moduli space of solutions to Nahm’s equations.

However, the nilpotent variety as a whole may be obtained as a finite-dimensional
hyperKähler quotient of flat space [KS]. In the case of G = SU(n) the construction is as



150 A. F. SWANN

follows (see also [Na]). The flat space we consider is

M =
k−1⊕
a=0

(
Hom(Ca, Ca+1)⊕Hom(Ca+1, Ca)

)
.

A point of this space may be conveniently represented as a diagram

{0}
α0

�
β0

C
α1

�
β1

C2
α2

�
β2

· · ·
αn−1

�
βn−1

Cn.

This is given the structure of a finite-dimensional right H-module by defining

(αa, βa)j := (−β∗a, α∗a),

where ·∗ denotes the Hermitian adjoint with respect to the standard inner products on Ca

and Ca+1. The group K = U(1) × U(2) × · · · × U(n − 1) acts in the usual way, factor
by factor, on C ⊕ C2 ⊕ · · · ⊕ Cn−1 and this induces an action of K on M preserving
the hyperKähler structure. A hyperKähler moment map for this action is given at a
point (αa, βa) of M by

µ = i(αaα∗a − β∗aβa + βa+1β
∗
a+1 − α∗a+1αa+1) + 2k(αaβa − βa+1αa+1).

Here the Lie algebra of U(a) is identified with the skew-adjoint endomorphisms of Ca.
The hyperKähler quotient µ−1(0)/K is then precisely the nilpotent variety in sl(n, C).
The identification with the nilpotent variety is via the map

(αa, βa) 7→ X := αn−1βn−1.

As defined, X is an endomorphism of Cn. However, when (αa, βa) lies in µ−1(0) it follows
from the moment map equations that Xn = 0 and hence X is nilpotent. In particular,
X is trace-free and so lies in sl(n, C).

Note that by considering a non-zero value of the above moment map, Nakajima [Na]
has obtained the cotangent bundle

T ∗
(

U(n)
U(1)n

)
as a (non-singular) hyperKähler quotient. In fact, Nakajima obtains a complete hy-
perKähler metric on the cotangent bundle of any flag manifold for U(n) this way, but the
method does not extend to flag manifolds for other groups.

4. Singular Quotients in Quaternionic Kähler Geometry. In the quaternionic
Kähler case, despite the close links with the hyperKähler quotient construction, we do
not get the quaternionic Kähler quotient as a union of quaternionic Kähler manifolds.

Suppose G acts properly on a quaternionic Kähler manifold M preserving the quater-
nionic Kähler structure. At point x of M , the stabiliser H = stabG(x) acts on the bundle G
of local almost complex structures. As H acts isometrically and preserves the orientation
we have a map φ:H → SO(3). We will consider two such maps to be equivalent if they
are conjugate in SO(3). Let M(H),φ denote the set of points with stabiliser conjugate
to H and representation H → SO(3) conjugate to φ. A similar notation without brackets
will be used when conjugation is not to be considered. Write S(H),φ for the corresponding
part (M(H),φ ∩ µ−1(0))/G of the quaternionic Kähler quotient.
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Two cases are quite straightforward [DS2]:

a) If dim φ(H) is non-zero, then the set M(H),φ does not meet the zero set of the
moment. So these submanifolds do not contribute to the quaternionic Kähler quotient.

b) If φ(H) is trivial, then MH,1 is a quaternionic Kähler submanifold of M and the
restriction of µ to the components of MH,1 meeting µ−1(0) is the quaternionic Kähler
moment map for the free action of L = NG(H)/H on MH,1. Thus S(H),1 is a quaternionic
Kähler manifold. vskip4pt As a consequence of the above two results, if all the stabilisers
of the action of G on M are connected, then the quaternionic Kähler quotient of M by G

is a union of quaternionic Kähler manifolds.
So far we have had no surprises, but:

c) If φ(H) is a cyclic subgroup of SO(3), then S(H),φ is locally Kähler.

Example. Let S1 act on HP (n) by

eiθ · [u, v] = [epiθu, eqiθv],

where (u, v) ∈ Hn+1 = Hn⊕H and q and p are coprime integers with q < p. The moment
map is

[u, v] 7→ pūtiu + qv̄iv.

Then the quaternionic Kähler quotient splits into three pieces

U ∪Gr2(Cn) ∪ CP (n− 1),

where U is open, dense and quaternionic Kähler. The part CP (n − 1) comes from the
points [ja, 1], where a ∈ Cn has |a|2 = 1. Such points have the cyclic group Z/p + q as
stabiliser. Thus, if n is even we obtain a submanifold of the quotient which does not even
have the correct dimension to be quaternionic Kähler.

The final case to consider is:

d) If φ(H) is finite but not cyclic, then MH,φ is a totally real submanifold of M and
hence S(H),φ does not inherit any local almost complex structures from M .

This last case actually occurs, as the following example illustrates.

Example. Let Sp(1) ∼= SU(2) act on HP (4) via its irreducible representation on H5 =
S9C2. Suppose {x, y} is an orthonormal basis for C2 = H such that y = jx. Then the
element [x9 + 6

√
7x3y6] lies in the zero set of the moment for the action of Sp(1) and for

this point, φ(H) is the dihedral group D6.

Thus we can write an arbitrary quaternionic Kähler quotient as a union of manifolds,
but in general these will not be quaternionic Kähler. It is intriguing to ask what special
properties the geometric structure on the non-quaternionic parts has.
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[Ca1] E. Calabi,Métriques Kählériennes et Fibrés Holomorphes, Ann. Scient. École Norm.
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