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Abstract. Let f be a complex polynomial. We relate the behaviour of f “at infinity” to the
sheaf of vanishing cycles of the family f of projective closures of fibres of f . We show that the
absence of such cycles: (i) is equivalent to a condition on the asymptotic behaviour of gradient
of f known as Malgrange’s Condition, (ii) implies the C∞-triviality of f . If the support of sheaf
of vanishing cycles of f is a finite set, then it detects precisely the change of the topology of the
fibres of f . Moreover, in this case, the generic fibre of f has the homotopy type of a bouquet of
spheres.

Let f : Cn → C be a polynomial function. A value t0 ∈ C of f is called typical
if f is a C∞-trivial fibration over a neighbourhood of t0 and atypical otherwise. The
set of atypical values, called the bifurcation set of f , consists of the critical values of f
and, maybe, some other values coming from the “singularities of f at infinity”. What is
“the singularity at infinity” is understood rather heuristically and, in general, no precise
definition exists. Under various assumptions this notion can be given a precise meaning,
for instance if “the singularities at infinity” are in some sense isolated as in [Pa], [S-T],
or [Z].

Consider the family f : X → C of projective closures of fibres of f , X being the
closure of the graph of f in Pn ×C. In this paper we study the singularities of f from
the point of view of vanishing cycles of f . In particular, as we show below (Theorem
1.2), the absence of vanishing cycles of f − t0 guarantees that t0 is typical. Thus we
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may understand “the singularities at infinity” as those points at infinity at which f has
nontrivial vanishing cycles. In the particular case when such points are isolated, they
detect precisely the change of topology of the fibres of f (Corollary 1.7 below).

Our approach to the problem is similar to that of [Pa] and [S-T]. In order to trivialize
f we study the levels of y0 on X, where y0 is a function defining, locally, the hyperplane
at infinity. Using a topological version of a theorem of Ginsburg, Theorem 1.4 below, we
show that the absence of vanishing cycles of f is equivalent to a condition on the asymp-
totic behaviour of the gradient of f known as Malgrange’s Condition. Shortly speaking,
Malgrange’s Condition detects exactly the same special fibres of f as the vanishing cycles
of f . It is plausible that our method can be applied also to study other compactifications
of f , see Remark 1.8.

Let p ∈ X be a point at infinity. Then the condition (p, dt) 6∈ W of Corollary 1.5,
which as we prove is equivalent to both the absence of vanishing cycles of f at p and to
Malgrange’s Condition as x→ p, is exactly the condition of t-regularity of f at p of [S-T].

In [S-T] the authors show that if f has only isolated singularities, possibly also at
infinity, then the generic fibre of f has a homotopy type of a bouquet of spheres of
dimension n − 1. In Section 2 we propose a proof of this theorem, based on the Morse
Theory, which works also in our more general set-up.

In particular, the results of this paper generalize those of [Pa] and [S-T]. For an
extensive bibliography related to the subject the reader is referred to [Di].

1. Vanishing cycles and Malgrange’s Condition. Let f(x1, . . . , xn) be a complex
polynomial of degree d and let f̃(x0, x1, . . . , xn) be the homogenization of f . Consider
the family of the projective closures of the fibres of f given by f : X → C, where

X = {(x, t) ∈ Pn ×C | F (x, t) = f̃(x)− txd
0 = 0}

and f is induced by the projection on the second factor. Let H∞ = {x0 = 0} ⊂ Pn be
the hyperplane at infinity and let X∞ = X ∩ (H∞ ×C). The cone at infinity C∞ of the
fibres f−1(t) of f does not depend on t and hence X∞ = C∞ ×C.

Let i : X ↪→ Pn ×C denote the inclusion and let i∗CX denote the constant sheaf on
X extended by zero onto Pn ×C. Let Car (X) ⊂ T ∗(Pn ×C) denote the characteristic
cycle of i∗CX , see for instance [Br] or [Sa]. As a Lagrangian cycle in T ∗(Pn×C), Car (X)
admits a presentation as a finite sum

(1.1) Car (X) =
∑

mjT
∗
Xj

(Pn ×C),

where Xj are algebraic subsets of Pn ×C and mj ∈ Z. By [BDK] or [LM], Car (X), or
rather the singular support SS(i∗CX) ⊂ T ∗(Pn ×C), can be understood as the closure
of the set of points (x, ξ) ∈ T ∗(Pn ×C), ξ 6= 0, such that there exists g : (Pn ×C, x) →
(Cn, 0) with ξ = dg(x) and nontrivial vanishing cycles Φg(i∗CX). In our case simply

(1.2) SS(i∗CX) = |Car (X)| =
⋃
T ∗Xj

(Pn ×C),

where the union is taken over all Xj for which mj 6= 0. Indeed, this is a consequence of
perversity of (complex of) sheaves i∗CX [−1] (see the proof of Definition-Proposition 1.1
below for a more detailed argument).
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Given t0 ∈ C we denote by Φf−t0
(i∗CX) the sheaf of vanishing cycles of f − t0. Since

Φf−t0
(i∗CX) is zero for all by finitely many t0 ∈ C, there is no confusion if we denote

by Φ(f) the direct sum of all nonzero Φf−t0
(i∗CX). Given p ∈ Pn × C, we denote by

(p, dt) ∈ T ∗(Pn ×C) the covector at p given by the projection on C.

Definition-Proposition 1.1. We say that f is non-characteristic at p ∈ X if one of
the following equivalent conditions hold:

(i) (p, dt) 6∈ |Car (X)|;
(ii) p 6∈ supp (Φ(f)).
Similarly we say that f is non-characteristic over t0 (or over t0 at ∞) if f is non-

characteristic at every p ∈ f−1
(t0) (resp. at every p ∈ f−1

(t0) ∩X∞).

P r o o f. Since X is a hypersurface of a nonsingular variety Pn×C the sheaf i∗CX [−1]
is perverse. Thus the proposition is virtually an immediate consequence of [BDK] or [LM].
Nevertheless, for the reader convenience, we sketch below the standard argument.

Fix a Thom stratification (S, S ′) of f , that is Whitney stratifications S of X and S ′
of C respectively, satisfying the Thom condition af . S ′ consists of a finite set ∆ and an

open stratum C\∆. Then Z = {p ∈ X | (p, dt) ∈ |Car (X)|} is contained in f
−1

(∆). Also
Z̃ = supp (Φ(f)) ⊂ f

−1
(∆). In what follows we restrict ourselves to a neighbourhood of

one of such fibres f
−1

(t0). Then f
−1

(t0) is a union of strata and so is Z̃. Subdividing S,
if necessary, we assume that Z is also a union of strata.

Suppose Z 6= Z̃. Note that by definition both Z and Z̃ are closed in Pn×C. Consider
the stratum S0 of the largest dimension in (Z \ Z̃)∪ (Z̃ \Z). Then S0 is open in one of Z
or Z̃ (depending on the case) and empty in the other. Let p0 be a generic point of S0. Our
argument is purely local so we may assume that locally at p0, (S0, p0) = (Cd × {0}, 0) ⊂
(Cn+1, 0), and that t− t0 is the (d+ 1)-st coordinate. Let π : (Cn+1, 0) → (Cd × {0}, 0)
denote the projection. Then N = π−1(0) is a transverse slice to S0 at p0. Let X ′ = X∩N
and denote f ′ = (f − t0)|X′ , both defined in a sufficiently small neighbourhood of p0.
By assumption on S, the Milnor fibre of f at p0 is product-like along S0 and Z̃ ∩ N =
supp (Φf ′) near p0. We show that similarly Z∩N = {p ∈ X∩N | (p, dt) ∈ |Car (X∩N)|}.
Since S is a Whitney stratification of X, we may take as Xj in (1.1) the closures of some,
not necessarily all, strata of S. Then near p0, a stratum S contributes nontrivially to
|Car (X)| if and only if S ∩N makes a nontrivial contribution to |Car (N ∩X)|, see for
instance [BDK]. Moreover, by Whitney (a) condition (p0, dt) ∈ T ∗S(Pn ×C) if and only
if (p0, dt) ∈ T ∗S′N , where S′ = S ∩ N . This shows Z ∩ N = {p ∈ X ∩ N | (p, dt) ∈
|Car (X ∩N)|} as required.

Consequently we may assume that one of the sets Z̃ ∩N,Z ∩N equals {p0} and the
other is empty.

Suppose S0 is a one point set. Then the statement follows from the following formula,
see e.g. [Sa, (4.6)], on the intersection index at (p0, dt) of Car (X) and {dt} = {(p, dt) |
p ∈ Pn ×C} ⊂ T ∗(Pn ×C),

(1.3) (Car (X).{dt})(p0,dt) = (−1)nχ(Φ(f))(p0).

Indeed, p0 6∈ Z if and only if the left-hand side of (1.3) vanishes. On the other hand since
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the support of the sheaf of vanishing cycles is zero-dimensional (or empty) and Φ(f) is
perverse (after a shift in degrees), the vanishing of the Euler characteristic is equivalent
to the vanishing of the cohomologies of Φ(f). Hence the right-hand side of (1.3) vanishes
if and only if p 6∈ Z̃. This ends the proof.

Suppose that we would like to trivialize topogically f near p ∈ X. If such trivialization
exists, then f has no vanishing cycles near p. We do not know whether the converse is
true. The theorem below shows that this is the case if we require only the triviality of f .

Theorem 1.2.
(i) If f is non-characteristic over t0 then f is C∞-trivial over a neighbourhood of t0,

that is t0 is typical. In particular , if supp (Φ(f)) is empty in X then f is C∞-trivial.
(ii) Similarly if f is non-characteristic over t0 at infinity then f is C∞-trivial over

a neighbourhood of t0 and near infinity (i.e. in the complement of a sufficiently big ball
in Cn).

Note that the existence of a stratification trivializing f is, at least a priori, a much
stronger assumption than the absence of vanishing cycles. Thus, in the proof of Theorem
1.2, we prefer to avoid the use of stratifications. In particular, we do not trivialize f but
only f . To prove Theorem 1.2 we use affine trivializations and the following condition on
the asymptotic behaviour of gradient of f .

We say, after [Ph], that f satisfies Malgrange’s Condition for t0 ∈ C if, for |x| large
enough and for f(x) close to t0,

(M) ∃δ > 0 |x| |grad f(x)| ≥ δ .

It is well-known that Malgrange’s Condition gives C∞-triviality of f near infinity, for the
proof see e.g. [Pa]. Hence Theorem 1.2 follows from the following theorem.

Theorem 1.3. f is non-characteristic over t0 at infinity if and only if Malgrange’s
Condition holds for t0.

P r o o f. First we outline the idea of proof. Given p ∈ X∞. The hyperplane at infinity
is defined near p by a single function, say y0. Let g : (X, p) → (C, 0) denote y0|X . Consider
W = T ∗g |X∞ — the space of limits of hyperplanes tangent to the levels {g = c}, as c→ 0.
The key point of the proof is to show that f is non-characteristic at p if and only if
(p, dt) 6∈W . This will follow from a theorem of Ginsburg. Then suppose that (p, dt) 6∈W
which in some local coordinates around p is equivalent to condition (1.5) below. Here we
note that (1.5) shows that, locally near p, we may use the levels of g = y0|X to trivialize f .
We show later in Section 2 how to “glue” such local trivializations to a global one but
we do not need this to prove Theorem 1.3. To complete the proof we just show that (1.5)
translates exactly to Malgrange’s Condition if we return to the original affine coordinates.

We begin the proof with setting up the notation. Fix p ∈ X∞. We assume that
p = ((0 : 0 : . . . : 0 : 1), 0) ∈ Pn ×C, so that y0 = x−1

n , yi = xi/xn for i = 1, . . . , n − 1,
and t, form a local system of coordinates at p. In this new coordinate system X is defined
by

F (y0, y1, . . . , yn−1, t) = f̃(y0, y1, . . . , yn−1, 1)− tyd
0 = 0.
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Let Ω be a small neighbourhood of p. Consider the relative conormal T ∗g (Ω) ⊂ T ∗(Ω)
to g. Then the divisor W in T ∗g (Ω) defined by g = 0 is a Lagrangian conical subvariety
of T ∗(Ω), [HMS], and hence is of the form

∑
pjT

∗
Zj

(Ω), for some Zj ⊂ X∞ ∩ Ω.
Let U = X \X∞ and let j : U → X denote the inclusion. Then

(1.4) Car (X) = Car (j!CU ) + Car (CX∞).

Since U is nonsingular, the Lagrangian conical cycle Car (j!CU ) has to be of the form

Car (j!CU ) = T ∗X(Pn ×C) +
∑

mjT
∗
Yj

(Pn ×C).

Now we state a theorem which relates W and Car (j!CU ). This theorem follows im-
mediately from [BMM, Théorème 3.4.2], which is a consequence of results of Ginsburg
[G, Theorems 3.3 and 5.5]. We are allowed to use this result since i∗CX [−1] is perverse.

Theorem 1.4. Let Car (j!CU ) = T ∗X(Pn ×C) +
∑
mjT

∗
Yj

(Pn ×C) as above, where
Yj ⊂ X∞ and mj 6= 0. Then in a neighbourhood Ω of p ∈ X∞

W =
∑

pjT
∗
Zj

(Ω),

where Zj = Yj ∩ Ω and pj 6= 0 if Yj 6= ∅.

Corollary 1.5. (p, dt) 6∈ |Car (X)| if and only if (p, dt) 6∈ |W |.

P r o o f. First note that (p, dt) 6∈ |Car (CX∞)| since X∞ = C∞ × C. Thus clearly
(p, dt) ∈ |Car (X)| iff (p, dt) ∈ |Car (j!CU )|.

Over SingX we have T ∗X(Pn×C) ⊂
⋃
T ∗Xj

(Pn×C), where we take all Xj 6= X given
by (1.1), and hence the corollary follows from Theorem 1.4.

Suppose that p 6∈ SingX. Let f = f0 + f1 + · · · + fd be the decomposition of f into
homogeneous components. Recall after [Di, Ch. 1 §4] or [Pa] that the singular part of X
is precisely A×C, where

A = {x ∈ H∞ | ∂fd/∂x1 = · · · = ∂fd/∂xn = fd−1 = 0} .

The singular part of X∞ can be bigger and equals precisely B ×C, where

B = {x ∈ H∞ | ∂fd/∂x1 = · · · = ∂fd/∂xn = 0} .

On X∞ \B ×C the application (y0, t)|X is submersive so neither (p, dt) ∈ |Car (X)| nor
(p, dt) ∈ |W |. If p ∈ (B \ A) ×C, then ∂F/∂y0(p) 6= 0 and the other partial derivatives
vanish at p. Consequently, (p, dt) 6∈ |Car (X)|, and hence, by Theorem 1.4, (p, dt) 6∈ |W |.
This ends the proof of the corollary.

P r o o f o f T h e o r e m 1.3 (continued). By definition W = T ∗g |X∞ is the limit, as
y0 → 0, of conormal spaces to levels of g. Hence (p, dt) 6∈ |W | if and only if

(1.5) |∂F/∂t(y, t)| ≤ C|(∂F/∂y1, . . . , ∂F/∂yn−1)(y, t)| ,

for all (y, t) ∈ X and close to p. Since ∂F/∂t = yd
0 , (1.5) translated to the old affine

coordinates (x1, . . . , xn) reads (see e.g. [S-T])

|x| |(∂F/∂x1, . . . , ∂F/∂xn−1)| ≥ δ,

where δ > 0 depends on C. This of course implies Malgrange’s Condition (M). To see
that actually (1.5) is equivalent to (M) we show the following lemma. (For the proof of
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Theorem 1.3 we need only the first part of the lemma. The second part will be used in
Section 2 below.)

Lemma 1.6. Condition (1.5) is equivalent to

(1.6) |∂F/∂t(y, t)| ≤ C|(y0∂F/∂y0, ∂F/∂y1, . . . , ∂F/∂yn−1)(y, t)| ,

for all (y, t) ∈ X and close to p. Moreover , (1.5) implies

(1.7) |y0∂F/∂y0(y, t)| � |(∂F/∂y1, . . . , ∂F/∂yn−1)(y, t)| ,

locally near p and as X 3 (y, t) → X∞.

P r o o f. (1.6) follows trivially (1.5). We show that (1.6) implies (1.5) and (1.7).
This suffices to be shown on each real analytic curve (y(s), t(s)), where s ∈ [0, ε),
X 3 (y(s), t(s) → p′ ∈ X∞. Since F (y(s), t(s)) ≡ 0

0 =
d

ds
F (y(s), t(s)) =

dt

ds

∂F

∂t
+
dy0
ds

∂F

∂y0
+

n−1∑
i=1

dyi

ds

∂F

∂yi
,

which gives∣∣∣∣y0 ∂F∂y0
∣∣∣∣ ∼ s

∣∣∣∣dy0ds ∂F

∂y0

∣∣∣∣ ≤ C|(y, t)− p′| |(∂F/∂t, ∂F/∂y1, . . . , ∂F/∂yn−1)|

� ‖(∂F/∂t, ∂F/∂y1, . . . , ∂F/∂yn−1)‖ .

This together with (1.6) gives (1.5) and (1.7). This ends the proof of Lemma 1.6.

To complete the proof of Theorem 1.3 it suffices to note that (1.6) translates exactly
to Malgrange’s Condition when we return to the original affine coordinates (x1, . . . , xn).
This ends the proof of Theorems 1.2 and 1.3.

Let F = i∗CX [−1]. Then Car (F) is a positive cycle and the sheaf Φf−t0
F is perverse

on Pn × {t0}. Suppose now that p is an isolated point of Φ(f), t0 = f(p). Then, by
perversity of Φf−t0

F , the stalk cohomologies of the complex Φf−t0
F(p) are nonzero only

in the middle dimension n. Of course, in this case, the “geometric” vanishing cycles of f
appear only in dimension n− 1. For such p denote

µ(p) = (−1)nχ(Φf−t0
F(p)).

Note that µ(p) > 0 and equals the Milnor number of f at p if p is affine (i.e. p ∈ X \X∞).
Given t ∈ C, we denote by Ft the fibre of f at t. By Fg we denote the generic fibre of f .

The following corollary of Theorem 1.2 and the index formula (1.3) generalizes the Hà-Lê
Theorem [Hà-Lê] and its previous higher dimensional generalizations [Pa, Theorem 1],
[S-T, 5.6].

Corollary 1.7. Given t0 ∈ C. Suppose that supp (Φf−t0
F) is finite or empty. Then

t0 is atypical if and only if χ(Ft0) 6= χ(Fg).

P r o o f. Clearly if t0 is typical the Euler characteristic does not change. To show the
converse it is convenient (though not necessary) to use the formalism of perverse sheaves.
First note that since for all t, χ(f

−1
(t))−χ(Ft) = χ(C∞) does not depend on t, one may
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replace in the statement χ(Ft0) 6= χ(Fg) by χ(f
−1

(t0)) 6= χ(f
−1

(tg)), where tg is chosen
generic.

Let Σt0 = supp (Φf−t0
F) be finite. Then, we rewrite (1.3) as

(1.8) (Car (F).{dt})Σt0
=

∑
p∈Σt0

µ(p) = (−1)n−1(χ(f
−1

(tg))− χ(f
−1

(t0))),

where tg is chosen generic. Since Car (F) is a positive cycle and Σt0 finite, the left-hand
side of the above formula is nonnegative. It is zero exactly if Car (F) and {dt} do not
intersect over t0, that is if f is non-characteristic over t0. But this implies, by Theorem
1.2, that t0 is typical. This ends the proof.

R e m a r k 1.8. Note that for our crucial argument (that is Theorem 1.4) it is
Car (j!CU ) and not Car (X) that really matters. In particular, our method can be applied
to other compactifications of f . Here is one of possible statements.

Let X be a compactification of Cn such that f extends onto X and let f denote
this extension. Let U denote the image of Cn in X and j : U → X the embedding. Let
X∞ = X \ U be the divisor at infinity.

We also assume that X is a hypersurface in a nonsingular variety which implies that
j!CU is perverse. Take p ∈ X∞, f(p) = t0. Then our argument shows:

(i) If p 6∈ Φf−t0
(j!CU ) then inequality (1.5) holds near p;

(ii) If supp (Φf−t0
(j!CU )) = ∅, then t0 is typical.

Indeed, in this case, we may trivialize f using the technique developed in Section 2
below.

R e m a r k 1.9. The key step of our proof, the theorem of Ginsburg, was originally
stated and proven in the D-module set-up. Its topological counterpart, which we are
using, can be proven by purely topological means as in [MM] (see also [LM]).

R e m a r k 1.10. In some cases Malgrange’s Condition can be strengthened. For in-
stance, if n = 2 then Malgrange’s Condition at t0 is equivalent to the “tameness” at t0,
that is

(1.9) ∃δ > 0 |grad f(x)| ≥ δ ,

as |x| → ∞ and f(x) → t0, see [Hà]. Also if f is convenient with nondegenerate principal
part at infinity, then |grad f(x)| ≥ δ > 0 for |x| sufficiently large, see [Ph].

Suppose that all Yj appearing in the decomposition Car (j!CU ) = T ∗X(Pn × C) +∑
mjT

∗
Yj

(Pn × C) are either trivial Yj = Cj × C or contained in the special fibres of
f . This holds for instance if SingX = A ×C is one-dimensional, the case considered in
details in [Pa]. Then, by Theorem 1.4, the same triviality holds for the cycles Zj appearing
in the decomposition of W = T ∗g |X∞ . Thus near p ∈ X∞, provided (p, dt) 6∈ Car (X), the
local inequality characterizing this condition is

|∂F/∂t(y)| � |(∂F/∂y1, . . . , ∂F/∂yn−1)(y)| ,

as y → X∞. Now we may argue as in [Pa, §3.1]. First, by ojasiewicz Inequality [], the
above condition is equivalent to

∃N > 0 |∂F/∂t| ≤ |y0|1/N |(∂F/∂y1, . . . , ∂F/∂yn−1)| ,
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which is equivalent to the following affine condition

(1.10) ∃N ≥ 0∃δ > 0 |x|(N−1)/N |grad f(x)| ≥ δ .

If the above condition is satisfied, then we may actually trivialize f so that the induced
trivialization on X∞ is by the product X∞ = C∞ ×C. The reader may consult [Pa] for
the details.

Example 1.11. In general, for n > 2, one cannot expect Malgrange’s Condition to
be equivalent to (1.10). The following example shows that condition (1.10) is not generic
that is may fail over all values of f .

Let f(x, y, z) = x+ x2y + x4yz. Given t0 6= 0. Consider the curve

γ(s) = (x(s), y(s), z(s)) = (s, 2t0s−2,−1
2
s−2(1 + (4t0)−1s)),

as s→ 0. Then f(γ(s)) → t0, ∂f/∂x(γ(s)) ≡ 0 and it is easy to check that

|γ(s)| |grad f(γ(s))| → const. 6= 0,

so (M) cannot be improved to (1.10).

2. A bouquet theorem.

Theorem 2.1. Suppose that supp (Φ(f)) is finite. Then the generic fibre of f is ho-
motopy equivalent to a bouquet of spheres of dimension n− 1.

P r o o f. First we give an outline of the proof. Fix for each p ∈ X∞ a local coordinate
system y0, y1, . . . , yn−1, t at p such that the hyperplane at infinity is given by y0 = 0.
We construct a global nonnegative “control function” ϕ : X → R, which locally behaves
as |y0|2. Actually we do assume that ϕ is of such form ϕ = |y0|2 near all points of
Σ∞ = supp (Φ(f))∩X∞. We will also require that the fibres ϕ−1(ε), for sufficiently small
ε > 0, are transverse to the fibres of f everywhere except the points on the polar curves
Γi defined at pi ∈ Σ∞. Take any t0 ∈ C, such that f

−1
(t0) ∩ Σ∞ = ∅ and a disc DN =

{t ∈ C | |t− t0| < N}, with N large enough so it contains all atypical values of f . Then
we apply the Morse Theory to ψ = |f − t0|2 restricted to Mε = ϕ−1([ε,∞)) ∩ f−1

(DN ),
where ε > 0 is sufficiently small. We show that all critical points of ψ, not on the zero
fibre ψ−1(0), are isolated, and they either are the critical points of f or lie on ∂Mε ∩ Γi.
It is well known that each point of the first type can be perturbed to finitely many
nondegenerate critical points of index n. By a local calculation we show that the points
of the second type make a similar contribution to the homotopy type of Mε. Consequently
we show that, up to homotopy, Mε can be obtained from Ft0 = f−1(t0) by attaching a
finite number of cells of dimension n. Since Mε is contractible and Ft0 has a homotopy
type of an n − 1-dimensional CW-complex, Ft0 has a homotopy type of a bouquet of
spheres by Whitehead Theorem.

Now we present the details of our construction. Since the role of (affine) isolated
critical points of f is classical and well-understood we concentrate on the points of Σ∞ =
supp (Φ(f))∩X∞. Let L be the line bundle on Pn×C associated to the divisor H∞×C.
Then H∞×C is the zero set of a holomorphic section v of L. Choose a Hermitian metric
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on L and let ϕ : X → R be given by

ϕ(p) = ‖v(p)‖2.

For each pi ∈ Σ∞ fix a local coordinate system y0, y1, . . . , yn−1, t at pi like the one used
in the proof of Theorem 1.3 and assume that in a neighbourhood Ui of each pi ∈ Σ∞ our
metric is standard with respect to this system.

Lemma 2.2. There is a neighbourhood U of X∞ in X such that ϕ is regular on U \X∞.
Moreover , on U \

⋃
Ui the levels of ϕ and f are transverse.

P r o o f. On Ui \X∞, ϕ = |y0|2 is regular.
Suppose p ∈ X∞ \ supp (Φ(f)). Let y0, y1, . . . , yn−1, t be a local system of coordinates

at p such that y0 = 0 defines H∞×C locally at p. Then v = y0e, where e is a holomorphic
section of L defined and nowhere vanishing in a neighbourhood of p. To prove the lemma
it suffices to show that near p and on X \X∞, dF , dt, and the holomorphic part of d|v|2
are linearly independent.

Denote by D the holomorphic connection associated to the metric on L. Let θ denote
the local connection form associated to e as a local frame at p. Then

d|v|2 = (Dv,v) + (v, Dv) = (ȳ0dy0 + |y0|2θ)|e|2 + (ȳ0dy0 + |y0|2θ)|e|2.

Hence the holomorphic part of d|v|2 is parallel to dy0 +y0θ. But it follows from (1.5) and
(1.7) of Lemma 1.6 that

dF =
∂F

∂y0
dy0 +

n−1∑
i=1

∂F

∂yi
dyi +

∂F

∂t
dt, dy0 + y0θ, and dt

are linearly independent. This shows the lemma.

Fix t0 ∈ C, such that f−1(t0) has no singularities at infinity that is f
−1

(t0)∩Σ∞ = ∅.
Choose N large enough so that DN = {t ∈ C | |t − t0| < N} contains all atypical
values of f . Let Mε = ϕ−1([ε,∞)) ∩ f−1

(DN ), where ε > 0 is sufficiently small. Then,
Lemma 2.2 implies that both Mε ↪→ X \X∞ ' Cn and Mε ∩ Ft0 ↪→ Ft0 are homotopy
equivalences.

Consider ψ : Mε → R defined by

ψ(x) = |f(x)− t0|2.

The critical points of ψ which are not in the zero fibre ψ−1(0), are either critical points of
f or the points on the boundary ∂Mε and these lie in the neighbourhoods Ui. By assump-
tion, the points of the first type are isolated and they are in the interior Int(Mε). Near
such a point p, ψ can be perturbed to a Morse function with exactly µ(p) nondegenerate
critical points of index n.

To study the critical points on the boundary ∂Mε we follow closely [Hm-Lê]. Fix
pi ∈ Σ∞ and the associated local coordinate system y0, . . . , yn−1, t. Then the levels of f
and y0|X are not transverse exactly along the polar curve

(2.1) Γi = Closure {(y, t) ∈ X \X∞ | ∂F/∂y1 = · · · = ∂F/∂yn−1 = F = 0}.

Hence the singularities of ψ|∂Mε
must lie on Γi. Fix a branch Γ of Γi and choose a local

parametrization γ(s) = (y(s), t(s)) of Γ such that y0 = sm, m > 0. On Γ, f cannot be
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constant since then ∂F/∂t would also vanish on Γ which together with (2.1) would imply
Γ ⊂ SingX. Hence

(f − t0)(s) = a0 + aks
k + . . . ,

where a0 6= 0, ak 6= 0, and k > 0. Let s = reiα. Then

ψ(γ(s)) = |ao|2 + 2rk Re(a0āke
ikα) + . . . .

Hence
∂ψ/∂α = 2krk Re(ia0āke

ikα) + . . .

∂2ψ/∂α2 = −2k2rk Re(a0āke
ikα) + . . .

∂ψ/∂r = 2krk−1 Re(a0āke
ikα) + . . . .

The above formulas show that, on {|y0|2 = ε}, ε > 0 and sufficiently small, ψ has exactly
2k critical points. At these points ∂2ψ/∂α2 6= 0 and

(2.2) sign(∂2ψ/∂α2) = − sign(∂ψ/∂r).

Suppose, for simplicity, that the points on Γ \ pi are of multiplicity 1, that is f
restricted to each nonzero level {y0 = c} ∩ X, has at the points of Γ nondegenerate
critical points. Fix a critical point p of ψ. Now we use the parametrization γ of Γ which
we described above. Let p = γ(s0) and we assume that s0 = ε2/m. Then α = Arg(s) and
z1 = y1−γ1(s0eiα), . . . , zn−1 = yn−1−γn−1(s0eiα) form a local coordinate system on ∂Mε

at p. Consequently ∂ψ/∂zi = ∂ψ/∂yi = 0 on ∂Mε ∩ Γ and hence ∂2ψ/∂zi∂α(p) = 0. In
particular, the Hessian H(ψ|∂Mε

)(p) splits with respect to coordinates z = (z1, . . . , zn−1)
and α. The index coming from the first summand is n−1. By (2.2) the index coming from
the second one ∂2ψ/∂α2 is 1 if the gradient gradψ(p) is directed outward of Mε and −1
if the gradient is directed inward. Consequently, by the Morse theory on manifolds with
boundary, see e.g. [Hm-Lê], only the latter critical points contribute to the homotopy
type of the sets {ψ ≤ const.}, and each of them gives a cell of dimension n.

The same property holds even if the points on Γ are not of multiplicity 1. Indeed, then
we perturb ψ near its critical points by taking for instance ψ̃(y, t) = |t− t0−

∑n−1
i=1 aiyi|2,

where ai are small and generic. Since such perturbation preserves the property (2.2), the
critical points we get make a similar contribution to the homotopy type.

Consequently we show that, up to homotopy, Mε can be obtained from Ft0 by at-
taching a finite number of cells of dimension n. Since Mε is contractible and Ft0 has
a homotopy type of an n − 1-dimensional CW-complex, Ft0 has a homotopy type of a
bouquet of spheres by Whitehead Theorem. This ends the proof of Theorem 2.1.

R e m a r k 2.3. Our proof shows that Theorem 2.1 still holds for such special fibres
Ft0 of f which do not have singularities at infinity. On the other hand, Siersma and Tibăr
[S-T] give the following example of a special fibre for which the statement of Theorem
2.1 does not hold: f(x, y) = x2y + x : C2 → C and t0 = 0.

Note that our arguments work and the statement of Theorem 2.1 remains true, for
all t0, if we replace the homotopy type of the fibre f−1(t0) by the one of f−1(Dt0), where
Dt0 is a small disc around t0. But if f−1(t0) has singularities at infinity and we repeat
the construction of the proof of Theorem 2.1, we find out that all the critical points of
ψ = |f − t0|2 on the polar curves corresponding to pi ∈ Σ∞ ∩ f−1

(t0) are essential. In
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this case, all the gradients are directed inward and a half of critical points is of index n
and the other half of index n− 1.

In particular, the above example shows that for atypical t0 the inclusion f−1(t0) ↪→
f−1(Dt0) need not be a homotopy equivalence.
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