
SYMPLECTIC SINGULARITIES AND GEOMETRY OF GAUGE FIELDS

BANACH CENTER PUBLICATIONS, VOLUME 39

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 1997

A SIMPLE PROOF OF THE SPECTRAL CONTINUITY

OF THE STURM–LIOUVILLE PROBLEM

PRZEMYS  L AW KOSOWSKI

Institute of Mathematics, Polish Academy of Sciences

P.O. Box 137, 00-950 Warszawa, Poland

E-mail: kswsk@impan.gov.pl

Abstract. The aim of this article is to present a simple proof of the theorem about pertur-

bation of the Sturm–Liouville operator in Liouville normal form.

1. Introduction. The purpose of this paper is to give a simple proof of the per-

turbation theorem concerning the spectral continuity of the Sturm–Liouville operator in

normal form. The theorem in question can be stated as follows (see [6]): Let two problems

in Liouville normal form −u′′ + qi(x)u = λu (i = 1, 2) be given on the same interval

[a, b] with the same boundary conditions. Let λ
(i)
k (i = 1, 2) denote the k-th eigenvalues

of the two problems (k = 1, 2, . . .). If −ε ≤ q2(x) − q1(x) ≤ ε (ε > 0) on [a, b] then

−ε ≤ λ
(2)
k − λ

(1)
k ≤ ε for each k = 1, 2, . . . Instead of employing the Sturm comparison

theorems for differential equations it is enough to use the Poincaré minmax principle.

Another argument in the Hilbert space setting can be found in [4], Theorem V.4.10. The

proof is based on the resolvent estimation and so it is also different from our approach.

2. Main result. Suppose that

D = {u ∈ L2([a, b]) : u, u′ absolutely continuous, u′′ ∈ L2([a, b])

and αu(a) + α′u′(a) = 0, βu(b) + β′u′(b) = 0}.

The constants α, α′, β, β′ are assumed to be real with α2 +α′2 6= 0, β2+β′2 6= 0, and the

interval [a, b] is finite. For u ∈ D, let

Lu = −u′′ + qu,

L̃u = −u′′ + q̃u,
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where the functions q, q̃ are assumed to belong to C([a, b]). Now consider the eigenvalue

problems for operators L and L̃:

Lu = λu, u ∈ D,(1)

L̃u = λ̃u, u ∈ D.(2)

It is known that the operators L and L̃ are self-adjoint (see [7]), and the eigensystems

(1) and (2) with given separated boundary conditions are regular and have sequences of

simple real distinct eigenvalues {λk}
∞
k=1, {λ̃k}

∞
k=1 such that

λ1 < λ2 < λ3 < . . . and λ̃1 < λ̃2 < λ̃3 < . . . ,

and the corresponding sequences of orthonormal eigenfunctions {uk}
∞
k=1, {ũk}

∞
k=1 such

that ‖uk‖2 = ‖ũk‖2 = 1 (see [1]). Now we are prepared to state the theorem.

Theorem. If ‖q − q̃‖∞ ≡ supx∈[a,b] |q(x) − q̃(x)| ≤ ε, then |λk − λ̃k| ≤ ε, for each

k = 1, 2, 3, . . .

P r o o f. We have −ε ≤ q(x) − q̃(x) ≤ ε for each x in [a, b]. It is enough to consider

only one inequality, e.g. the right one q(x) ≤ q̃(x) + ε, x ∈ [a, b]. It is well known that

each eigenvalue of the Sturm–Liouville problem satisfies Poincaré’s minmax principle (see

[2]), which asserts that

λk = min
Hk⊂D

max
06=u∈Hk

R[u],(3)

where Hk denotes any k-dimensional subspace of D, and R[u] is the Rayleigh quotient of

(1), that is,

R[u] =
N [u]

D[u]
,

where N [u] = (Lu, u) and D[u] = (u, u). Integrating by parts we calculate

N [u] =

b\
a

(−u′′ + qu)u dx =

b\
a

(

(u′)2 + qu2
)

dx− [uu′]ba.

The boundary conditions are normal separated ones, so the problem is well posed. Pre-

cisely if we denote by BC ≡ −[uu′]ba, then BC can be expressed asBC = Bu2(b)−Au2(a),

where the constants A, B are real, whence

λk = min
Hk⊂D

max
06=u∈Hk

Tb
a

(

(u′)2 + qu2
)

dx+BCTb
a
u2 dx

≤ min
Hk⊂D

max
06=u∈Hk

Tb
a
(u′)2 dx+

Tb
a
(q̃ + ε)u2 dx+BCTb

a
u2 dx

= λ̃k + ε.

Similarly we obtain that λ̃k ≤ λk + ε, whence |λk − λ̃k| ≤ ε. This completes the proof.

Corollary. Suppose that the function q in (1) depends on a parameter t with Lip-

schitz constant C > 0, so |q(x, s) − q(x, t)| ≤ C|s − t|, x ∈ [a, b], s, t ∈ R. Then each λk

depends continuously on t with the same Lipschitz constant.



SPECTRAL CONTINUITY OF THE STURM–LIOUVILLE PROBLEM 185

P r o o f. For fixed s and t it is enough to take ε = C|s − t| and apply the Theorem,

obtaining thus

|λk(s)− λk(t)| ≤ C|s− t| ∀k = 1, 2, . . .

Now we give three examples.

Example 1. Consider the perturbation of the equation −u′′ = λu, u(0) = u(π) = 0

to −u′′ + ε x
π
u = λu with the same boundary conditions u(0) = u(π) = 0. For the unper-

turbed Sturm–Liouville problem we have the eigenvalues λk = k2 and the eigenfunctions

uk(x) =
√

2
π
sinkx (k = 1, 2, . . .). Let qε(x) = ε x

π
and q0(x) = 0. We compute the

approximation of the smallest eigenvalue λε
1 of the perturbed equation. To do this we

use the finite element method with the basis of hat functions with 1200 nodes in [0, π].

This method gives us the accuracy up to 5 digits after the period. The calculations were

made on PC486 computer with floating point arithmetic for the real type. Results are

presented in the table given below:

ε λε
1 ‖qε − q0‖∞ λε

1 − λ1

1 1.48919 1 0.48919

0.1 1.04989 0.1 0.04989

0.2 1.09956 0.2 0.09956

0.01 1.00499 0.01 0.00499

Example 2. In this example we consider two equations −u′′+qi(x)u = λu (i = 1, 2)

on the interval [0, π], where q1(x) = 0.1 · x
π
and q2(x) = 0.1 · ( x

π
)2 with the same boundary

conditions u(0) = u(π) = 0. We compute the first three eigenvalues of these equations

using the method described in Example 1. Results are presented in the table given below:

k λ
(1)
k λ

(2)
k λ

(1)
k − λ

(2)
k ‖q1 − q2‖∞

1 1.04989 1.02815 0.02174 0.025

2 4.05003 4.03210 0.01794 0.025

3 9.05001 9.03283 0.01723 0.025

Example 3. If we consider the perturbed equation −u′′ + εu = λu with boundary

conditions u(0) = u(π) = 0, ε > 0 we obtain eigenvalues λε
k = k2+ε. Further ‖qε−q0‖∞ =

ε, and so |λε
k − λk| = ε = ‖qε − q0‖∞.

Conclusion. These three examples show that the inequality in the Theorem can be

strict (like in Examples 1, 2; for eigenvalue and eigenfunction asymptotics for a regular

Sturm–Liouville operator see [3], [5]) or it just becomes equality (like in Example 3). In

this sense the result of the Theorem is sharp.

3. Extensions and generalizations. The idea of our proof can be extended to

higher dimensions, that is the following spectral continuity problem in two dimensions

can be considered: −∆u+ qu = λu in Ω ⊂ R
2 and u = 0 on ∂Ω.

For numerical analysis, the inequality in the Theorem gives an estimation of the

absolute error of eigenvalues λk for the eigenvalue problem (1) when the data (function q)
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are perturbed. There is a natural question about the relative error of λk, that is, an

estimation of | λ̃k−λk

λk

|. The author intends to consider this question in another paper.
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