
LINEAR OPERATORS

BANACH CENTER PUBLICATIONS, VOLUME 38

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 1997

SPECTRAL DECOMPOSITIONS IN BANACH SPACES

AND THE HILBERT TRANSFORM

T. A. GILLESPIE

Department of Mathematics and Statistics

University of Edinburgh, James Clerk Maxwell Building

Edinburgh EH9 3JZ, Scotland

E-mail: t.a.gillespie@edinburgh.ac.uk

Abstract. This paper gives a survey of some recent developments in the spectral theory

of linear operators on Banach spaces in which the Hilbert transform and its abstract analogues

play a fundamental role.

1. Introduction. Various notions of self-adjointness have been developed for oper-

ators acting on Banach spaces, each reflecting some aspect of the Hilbert space theory.

One such notion is that of well-boundedness, a concept introduced by Smart [23] and

first studied by Smart and Ringrose [21–23]. An operator is (by definition) well-bounded

if it has a functional calculus based on the Banach algebra of absolutely continuous func-

tions on a compact real interval. This functional calculus gives rise to a form of spectral

diagonalization, as will be described in more detail below.

Initially, there were relatively few examples of well-bounded operators, other than

rather obvious ones, until Dowson and Spain [17] gave an interesting example of a well-

bounded operator A acting on Lp(Z) for p in the range 1 < p < ∞. It can be shown

that the operator they considered has the property that eiA is the bilateral shift on

Lp(Z) (see [18, p. 1044]) and this observation illustrates the more general fact [19] that

every translation operator on Lp(G), where G is a locally compact abelian group and

1 < p < ∞, is of the form eiA for some well-bounded operator A.

These examples suggest that the “unitary” concept corresponding to well-boundedness

might be worthy of consideration and this was taken up in [2], where the concept of a

trigonometrically well-bounded operator was introduced and studied systematically. Soon

after, it was shown in [4] that every power-bounded invertible operator acting on a closed

subspace of an arbitrary Lp space (1 < p < ∞) is trigonometrically well-bounded and

so has a spectral diagonalization similar to, although in general weaker than, a unitary
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operator on a Hilbert space. This, incidentally, puts the above result about translation

operators on Lp(G) into a much more general context.

The aim of the present paper is to give a fairly informal account of how the theory

of trigonometrically well-bounded operators has developed over the past decade and to

discuss the crucial role played by the Hilbert transform and its abstract analogues in this

development. To put matters into a historical context, the paper starts with a discussion

of how the theory emerged naturally from the earlier work of Dunford and his school on

spectral operators.

Throughout, all Banach spaces will be over the complex scalars C. Given a Banach

spaceX , X∗ will denote its dual space and L(X) the Banach algebra of all bounded linear

operators on X . The identity operator on X will be denoted by I and the spectrum of

T ∈ L(X) by σ(T ). As usual, R, Z and T will denote the reals, the integers and the

circle group respectively. Given a compact interval J = [a, b] in R, AC(J) will denote the

Banach algebra of all absolutely continuous functions f : J → C, with norm

‖f‖J = |f(b)|+ var
J

f.

The Banach algebra of all functions f : T → C of bounded variation with norm

‖f‖T = |f(1)|+ var
T

f

will be denoted by BV (T) and the subalgebra of absolutely continuous complex valued

functions on T by AC(T).

2. Self-adjoint and unitary operators on Banach spaces. The spectral theorem

for a normal operator N on a Hilbert space H gives an infinite dimensional diagonal

representation of N in terms of a spectral integral. More precisely, N can written as

(2.1) N =
\

σ(N)

z E(dz)

where E(·) is the spectral measure of N , a self-adjoint projection-valued function defined

on the Borel subsets of σ(N) which is countably additive in the strong operator topology.

The integral is obtained in a natural way by approximating the integrand uniformly on

σ(N) by simple Borel functions, the resulting integral (2.1) then being defined as a limit

with respect to the operator norm.

Motivated in part by this and in part by the Jordan canonical form for a matrix,

N. Dunford introduced the notion of a scalar-type spectral operator on a Banach space.

This is an operator S which can be written as

S =
\

σ(S)

z E(dz),

where E(·) is a projection-valued measure defined, as before, on the Borel subsets of σ(S).

There is, however, a crucial difference between the Hilbert and Banach space settings. For

a normal operatorN , the existence of the corresponding spectral measure is a consequence

of the commutativity ofN andN∗ whereas the Dunford theory requires that the existence

of E(·) be postulated at the outset. To be sure, sufficient conditions on S for the existence

of E(·) can be given in certain situations, but there is nothing quite as simple as the
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normality condition NN∗ = N∗N , which is both a necessary and a sufficient condition

for a representation of the form (2.1) in the Hilbert space setting.

Another feature of the Banach space theory is that the countable additivity condition

on E(·) is relatively restrictive and, as a consequence, many operators on classical Banach

spaces do not fall within the framework of the theory of spectral operators. It would be

desirable, therefore, to weaken the integral representations of the form (2.1) in the hope of

developing a theory which will apply to a larger class of operators. One way to attempt

this is to consider an operator S with real spectrum (corresponding, of course, to the

self-adjoint case in the Hilbert space setting).

Accordingly, let A be a scalar-type spectral operator with real spectrum contained in

some closed interval [a, b] and spectral measure E(·). We may extend E(·) to the whole

of R by defining it to be zero on Borel subsets of R \ σ(A). Let E(λ) = E((−∞, λ]) for

λ ∈ R. We have

A =
\

[a,b]

λ E(dλ)

and this can be rewritten as

(2.2) A = aE(a) +
\

[a,b]

λdE(λ),

the term aE(a) being included to take account of the possibility that E(·) may have some

mass at the singleton {a}. The integral in (2.2) exists as a Riemann–Stieltjes integral

in the strong operator topology. Notice that the right-hand side of (2.2) makes sense

for a wider class of projection-valued functions E(·) than those arising from a spectral

measure.

Define a spectral family in a Banach space X to be a projection-valued function

E(·) : R → L(X) with the following properties:

(i) sup{‖E(λ)‖ : λ ∈ R} < ∞;

(ii) E(λ)E(µ) = E(µ)E(λ) = E(λ) if −∞ < λ ≤ µ < ∞;

(iii) E(µ)x → E(λ)x in norm as µ → λ+ for each x ∈ X ;

(iv) for each x ∈ X , the left-hand limit E(λ−)x exists in the norm topology;

(v) for each x ∈ X , E(λ)x → x as λ → ∞ and E(λ)x → 0 as λ → −∞, both limits

being in the norm topology.

Informally, a spectral family is a projection-valued function defined on R which in-

creases from 0 to I and has certain one-sided continuity properties relative to the strong

operator topology. Notice that, when X is reflexive, property (iv) follows from the re-

maining properties, whilst (i) follows from (ii)–(v) in a general Banach space. If (v) is

strengthened to the condition

(v′) there exist a, b ∈ R such that E(λ) = 0 for λ < a and E(λ) = I for λ ≥ b,

we say that E(·) is concentrated on [a, b].

Given a spectral family in X which is concentrated on the interval J = [a, b] and

f ∈ AC(J), the integral \
J

f(λ) dE(λ)
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exists in the strong operator topology as a Riemann–Stieltjes integral. Furthermore, prop-

erties (ii) and (v′) imply that the mapping Φ : AC(J) → L(X) defined by

(2.3) Φ(f) = f(a)E(a) +
\
J

f(λ) dE(λ)

is an identity-preserving algebra homomorphism, and integration by parts in (2.3) leads

to the inequality

‖Φ(f)‖ ≤ K‖f‖J for f ∈ AC(J)

where K ≡ sup{‖E(λ)‖ : λ ∈ J}. For brevity, the right-hand side of (2.3) is usually

denoted by \⊕
J

f(λ) dE(λ).

In particular, if

(2.4) A =
\⊕
J

λdE(λ)

and p is a complex polynomial, then p(A) = Φ(p) and

(2.5) ‖p(A)‖ ≤ K‖p‖J .

Following the terminology of Smart [23], we say that a bounded linear operator A on

a Banach space X is well-bounded if there is a compact interval J in R and a constant

K such that (2.5) holds for all polynomials p. The above discussion shows that, if A

has a representation of the form (2.4) for some spectral family E(·) in X , then A is

well-bounded. When X is reflexive, the converse statement holds [21, 23].

Theorem 1. Let X be a reflexive Banach space and let A ∈ L(X). Then A is well-

bounded if and only if there is a spectral family E(·) in X , concentrated on a compact

interval J in R, such that

A =
\⊕
J

λdE(λ).

When A is well-bounded , the spectral family E(·) is uniquely determined (and is called

the spectral family of A).

There is a version of Theorem 1 valid in the non-reflexive case [22] but it involves

a weaker notion of spectral family involving projections acting on X∗ and the spectral

integrals are interpreted in a weak-star sense. (See also [14, 15] for a slightly different

approach.) Furthermore, the uniqueness assertion is no longer valid. In the present paper,

however, we shall mainly consider the reflexive case since the theory is more elegant in

that context and encompasses the main examples.

Well-boundedness gives an analogue on Banach spaces of the Hilbert space concept of

self-adjointness and suggests a corresponding analogue for the class of unitary operators.

An operator U on a Hilbert space H is unitary if and only if it can be written as

(2.6) U =
\
T

ω E(dω)
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for some self-adjoint spectral measure E(·) on the Borel subsets of the unit circle. With

U represented in this way, let E(λ) = E(Γλ) for 0 ≤ λ ≤ 2π, where Γλ is the arc

{eiλ : 0 ≤ t ≤ λ}, and extend E(·) to R by setting

E(λ) = 0 (λ < 0), E(λ) = I (λ ≥ 2π).

We obtain a spectral family in H concentrated on [0, 2π] and (2.6) can be rewritten as

(2.7) U =
\⊕

[0,2π]

eiλ dE(λ).

This leads us to consider an operator U on a Banach spaceX which has a representation of

the form (2.7) for some spectral family E(·) inX concentrated on [0, 2π]. Such an operator

U is invertible with inverse
T⊕
[0,2π]

e−iλ dE(λ) and the mapping f →
T⊕
[0,2π]

f(eiλ)dE(λ) of

AC(T) into L(X) is a norm-continuous, identity-preserving algebra homomorphism. In

particular, writing q(U) for
∑

n∈Z
anU

n, where q(eit) =
∑

n∈Z
ane

int is a trigonometric

polynomial, we have

(2.8) ‖q(U)‖ ≤ K‖q‖T,

where K ≡ sup{‖E(λ)‖ : λ ∈ [0, 2π]}. This is the analogue of (2.5) in the present

situation.

In view of the terminology for well-bounded operators, we shall say that an operator

U on a Banach space X is trigonometrically well-bounded if it is invertible and there is a

constant K such that (2.8) holds for all trigonometric polynomials. The above discussion

shows that every operator U with a representation as in (2.7) is trigonometrically well-

bounded. Strictly speaking, the existence of such a representation was originally taken

as the definition of trigonometrical well-boundedness [2], although the present definition

is more natural, given the definition of well-boundedness. However, the two definitions

coincide on reflexive spaces.

Theorem 2 ([2, §2] and [1, §3]). Let X be a reflexive Banach space and let U ∈ L(X).

Then U is trigonometrically well-bounded if and only if there is a spectral family E(·) in

X concentrated on [0, 2π] such that

U =
\⊕

[0,2π]

eiλ dE(λ).

When U is trigonometrically well-bounded , the spectral family E(·) can be chosen to be

left continuous in the strong operator topology at 2π and , with this normalization, is

uniquely determined. (It is then called the spectral decomposition of U.)

Corresponding to the fact that an operator on a Hilbert space is unitary if and only if

is of the form eiA for some self-adjoint A, we have the corresponding connection between

well-bounded and trigonometrically well-bounded operators.

Theorem 3 ([2, Corollary 2.17 and Proposition 3.1]). An operator U on a reflexive

Banach space X is trigonometrically well-bounded if and only if it is of the form eiA

for some well-bounded operator A on X. In this case, A can be chosen to have spectrum
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contained in [0, 2π] with 2π not an eigenvalue and these spectral conditions determine A

uniquely. (A is then called the argument of U and is denoted by argU.)

It is easy to see that, if U is trigonometrically well-bounded with spectral decompo-

sition E(·), then argU =
T⊕
[0,2π]

λdE(λ).

3.An example. An instructive example of a trigonometrically well-bounded operator

is provided by the bilateral shift U on the space Lp(Z) for p in the range 1 < p < ∞. The

operator U is unitary on L2(Z) and an invertible isometry on Lp(Z) for 1 ≤ p ≤ ∞. It

is easy to check that, given a trigonometric polynomial q(eit) =
∑

ane
int, the operator

q(U) is given by convolution by the sequence {an}. Note that there are no convergence

problems here since {an} has finite support. It follows that, when acting on L1(Z) or

L∞(Z), ‖q(U)‖ =
∑

|an| and hence that there is no inequality of the form ‖q(U)‖ ≤

K‖q‖T valid for all trigonometric polynomials q when the operator norm is computed

on L1(Z) or L∞(Z). For this would imply that every function in AC(T) would have

an absolutely convergent Fourier series and this is known not to be the case [26, (3.7),

p. 241]. Thus U is certainly not trigonometrically well-bounded on L1(Z) or L∞(Z).

The situation when 1 < p < ∞ is, however, very different. Here U is trigonometrically

well-bounded. An easy way to see this is to apply a theorem of S. B. Stečkin [24] which

asserts that, for p in the range 1 < p < ∞, there is a constant Cp with the property that,

for each trigonometric polynomial q, the norm on Lp(Z) of convolution by the sequence

{q̂(n)} of Fourier coefficients of q does not exceed Cp‖q‖T. Thus, taking operator norms

on Lp(Z) for 1 < p < ∞, ‖q(U)‖ ≤ Cp‖q‖T for all trigonometric polynomials and so U is

trigonometrically well-bounded. In other words, a vestige of the unitary spectral structure

remains when we pass from the Hilbert space L2(Z) to the reflexive Lp(Z) spaces.

The result of Stečkin which underlies the trigonometric well-boundedness of U on the

reflexive Lp(Z) spaces follows by an integration-by-parts argument from the boundedness

on Lp(Z) when 1 < p < ∞ of convolution by the discrete Hilbert kernel

h(n) = n−1 (n 6= 0), h(0) = 0,

that is, the discrete Hilbert transformHZ. This result is usually attributed to Titchmarsh

[25], although it really goes back to the work of M. Riesz on the Lp-boundedness of the

Hilbert transform on T and R. (An interesting account of these matters and related

correspondence between G. H. Hardy and M. Riesz is given by M. L. Cartwright [12].)

The spectral decomposition and argument of U can also be given in terms if HZ and its

conjugates as follows.

For 0 < λ < 2π, let χλ denote the characteristic function of the arc {eit : 2π − λ ≤

t ≤ 2π} of T. Then χλ has Fourier coefficients χ̂λ(n) given by

χ̂λ(n) =
i

2πn
(1− einλ) (n 6= 0), χ̂λ(0) =

λ

2π
.

It follows from the Lp-boundedness of HZ that convolution by the sequence {χ̂λ(−n)} on

Lp(Z) is also bounded when 1 < p < ∞. Indeed, if we denote this convolution operator

by E(λ), then

(3.1) E(λ) =
λ

2π
I +

i

2π
(V −1

λ HZVλ −HZ)
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for 0 ≤ λ ≤ 2π, where Vλ({xn}) = {einλxn}. Furthermore, it follows from (3.1) that

sup{‖E(·)‖ : 0 ≤ λ ≤ 2π} < ∞.

Also, we have (E(λ)x)̂ = χλ.x̂ (at least for a finitely supported sequence x), where

̂ denotes the Fourier transform on Lp(Z) ∩ L2(Z). Hence each E(λ) is a projection. If

we define

E(λ) = I (λ ≥ 2π), E(λ) = 0 (λ < 0),

it is readily verified that we obtain a spectral family concentrated on [0, 2π] and that the

corresponding well-bounded operator

A =
\⊕

[0,2π]

λdE(λ)

is the operator on Lp(Z) corresponding to the p-multiplier on T defined by ϕ(eit) =

2π−t(0 ≤ t < 2π). Hence (eiAx)̂ (eit) = e−itx̂(eit), again for finitely supported sequences

x, from which it is seen that eiA = U. The spectral family E(·) is continuous in the strong

operator topology, so that A has no eigenvalues. Thus A = argU. Since ϕ̂(−n) = in−1

for n 6= 0 and ϕ̂(0) = π, it follows that

A = πI + iHZ.

The well-boundedness of πI + iHZ was first observed in [17], although the connection

with the bilateral shift was not noted there.

4. The ergodic Hilbert transform and trigonometric well-boundedness. The

calculations in the above example show that the trigonometric well-boundedness and

spectral structure of the bilateral shift on Lp(Z) for 1 < p < ∞ is intimately related to

the discrete Hilbert transform. In fact, this reflects the role of the Hilbert transform in

the general theory of trigonometrically well-bounded operators. We discuss this in the

present section.

As remarked earlier, a trigonometrically well-bounded operator U on a reflexive space

X has both a unique spectral decomposition E(·) and a unique argument A. In view of

the above example, it is natural to ask how E(·) and A can be obtained directly from U .

It can be shown that, given an arbitrary ϕ ∈ BV (T), the integral\⊕
[0,2π]

ϕ(eiλ) dE(λ)

exists as a Riemann–Stieltjes integral in the strong operator topology on L(X) (see

[16] or [4]) provided, in the approximating Riemann sums, evaluation of ϕ is at the

right-hand endpoint of each partitioning interval. Denoting the resulting operator by Sϕ,

it can be verified that the mapping ϕ → Sϕ is a norm-continuous, identity-preserving

homomorphism of BV (T) into L(X). Writing
∑

n∈Z
ϕ̂(n)eint for the Fourier series of ϕ

and recalling both that

Un =
\⊕

[0,2π]

einλdE(λ) (n ∈ Z)
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and that
∑

n∈Z
ϕ̂(n)eint converges to ϕ̃(eit), where ϕ̃ is the normalization of ϕ defined

by

ϕ̃(eit) =
1

2
{ lim
s→t+

ϕ(eis) + lim
s→t−

ϕ(eis)},

it seems likely that there is some connection between the (formal) series
∑

n∈Z
ϕ̂(n)Un

and the operator Sϕ. In fact, using routine properties of Fourier series, it can be shown [4,

Theorem (3.10)] that the series
∑

n∈Z
ϕ̂(n)Un is (C,1) summable to Sϕ̃. Taking ϕ(e

it) = t

for 0 ≤ t < 2π and using the fact that

A =
\⊕

[0,2π]

λdE(λ),

it is readily seen that

(4.1) A = π(I − E(0)) +

∞∑

n=−∞

′
in−1Un (C,1)

in the strong operator topology, where ′ denotes the omission of the term n = 0. (As

usual, (C,1) summability in this context refers to the convergence of the Cesàro means of

balanced partial sums.) The (C,1) sum of the series in (4.1) can be viewed as the ergodic

Hilbert transform HU of U and, with this notation, we may write (4.1) as

(4.2) argU = π(I − E(0)) + iHU .

In much the same way, taking ϕ to be the characteristic function of the arc {eit : 0 ≤ t

≤ λ}, we also obtain the formula

(4.3) 2−1(E(λ−) + E(λ)) = 2−1E(0) +
λ

2π
I +

i

2π
(HUλ

−HU )

for 0 ≤ λ < 2π, where Uλis the trigonometrically well-bounded operator e−iλU . Writing

Gλ for the operator λ
2π I + i

2π (HUλ
−HU ), we can use (4.3) to express E(λ) directly in

terms of the ergodic Hilbert transforms of U and its rotates Uλ as

(4.4) E(λ) = 3Gλ − 2G2
λ

for λ in the range 0 < λ < 2π . Notice also that (4.3) implies that

(4.5) E(0) = lim
λ→0+

i

π
(HUλ

−HU )

in the strong operator topology. We now have, in (4.2), (4.4) and (4.5), expressions for

the argument and spectral decomposition of a trigonometrically well-bounded operator

U on a reflexive space in terms of the ergodic Hilbert transform of U and its rotates Uλ .

In fact, these formulae will apply in the Banach space setting provided U is assumed to

be of the form

U =
\⊕

[0,2π]

eiλ dE(λ)

for a normalized spectral family concentrated on [0,2π], but this is not guaranteed from

(2.8) without reflexivity.

The formal ergodic Hilbert transform of the rotates of an invertible operator U can

also be used to characterise the trigonometrical well-boundedness of U . To make this
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more precise, let σn(e
it) be the nth Cesàro mean of the balanced partial sums of the

trigonometric series
∞∑

n=−∞

′ eint

n

and let U be an invertible operator on a Banach space X. Then {σn : n ∈ N} is bounded

with respect to the BV norm ‖ · ‖T and hence, if U satisfies (2.8) for all trigonometric

polynomials q, then the sequence {σn(U) : n ∈ N} is bounded in norm. Furthermore, if

for a trigonometric polynomial q and λ ∈ R, qλ denotes the rotated polynomial qλ(e
it) =

q(eiλeit), then ‖qλ‖T ≤ 2‖q‖T. It follows immediately that, if U satisfies (2.8), then there

is a constant M such that

‖σn(Uλ)‖ ≤ M

for all λ ∈ R and all n ∈ N, where Uλ = eiλU. In other words, the Cesàro means

{σn(U, e
iλ)} of the partial sums of the trigonometric series

(4.6)

∞∑

n=−∞

′ einλ

n
Un

are uniformly bounded for eiλ ∈ T. The series (4.6) is, of course, the formal ergodic

Hilbert transform of Uλ.

Conversely, suppose that there is a constant M such that

‖σn(U, e
iλ)‖ ≤ M

for all n ∈ N and all eiλ ∈ T and let q be a trigonometric polynomial of degree N . For

m ≥ N , we have

q(U) = q̂(0)I +

m∑

n=−m

′ 1

2π

2π\
0

q(eiλ)e−inλUn dλ

= q̂(0)I −
i

2π

2π\
0

{ m∑

n=−m

′
e−inλU

n

n

}
dq(eiλ).

Since the terms in these sums are in fact zero for |n| > N , it is readily seen that

q(U)− q̂(0)I +
i

2π

2π\
0

σn(U, e
−iλ) dq(eiλ) → 0

in norm as n → ∞, from which it follows that ‖q(U)‖ ≤
(
1 + M

2π

)
‖q‖T.

We can thus summarise the above discussion in the following result.

Theorem 4. Let U be an invertible operator on a Banach space X. Then there exists

a constant K such that ‖q(U)‖ ≤ K‖q‖T for all trigonometric polynomials q if and only

if

(4.7) sup{‖σn(U, e
iλ)‖ : n ∈ N and λ ∈ R} < ∞.

When X is reflexive, (4.7) can be replaced by the stronger condition that {σn(U, e
iλ)}

converges in the strong (or weak) operator topology at each eiλ ∈ T with limit which is

uniformly bounded for eiλ ∈ T. This is discussed in [3] in greater detail.
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5. UMD spaces and trigonometric well-boundedness. The results of the pre-

vious section show that, in order to check the well-boundedness condition (2.8), it is

sufficient (as well as necessary) to verify it only for the trigonometric polynomials σn(e
it)

and their rotates. Whilst this is of theoretical interest, it may not be easy to do for a

particular operator U . In this section, we show how to do so when U is power-bounded

and the underlying space belongs to a particular class of Banach spaces.

The class in question consists of the so-called UMD spaces. These are the spaces X

for which the Hilbert transform has the same boundedness properties when considered

as acting on the Lebesgue–Bochner spaces of X-valued functions as the classical Hilbert

transform on spaces of scalar-valued functions. To make this more precise, the formula

(HR,Xf)(t) =
1

π

∞\
−∞

f(t− s)

s
ds

makes sense for almost all t ∈ R in the principal value sense for (say) all compactly

supported X-valued simple functions f . One can then ask whether the resultant X-

valued Hilbert transform HR,X is bounded relative to the norm ‖ · ‖p inherited from the

Lebesgue–Bochner space Lp(R, X) of all p-integrableX-valued functions on R when p is in

the range 1 < p < ∞, as in the scalar case. One can ask a similar questions of the discrete

X-valued Hilbert transform HZ,X , that is convolution by the discrete Hilbert kernel h

on the space Lp(Z, X) of p-summable sequences of elements of X , and of the periodic

Hilbert transform HT,X given by convolution by the function eit → 1
2π cot t

2 (0 < |t| < π)

on Lp(T, X). It can be shown that, for a given Banach space X , the Lp-boundedness

of any one of these operators for any single value of p in the range 1 < p < ∞ ensures

the Lp-boundedness of all three for every value of p in this range. Furthermore, this is

equivalent both to a geometric property of X called ζ-convexity and to the property of

X-valued martingale difference sequences referred to as the unconditionality property for

martingale differences. Banach spaces having these properties are called UMD spaces and

are automatically reflexive. These results are due to Burkholder and Bourgain [11], [9]

(see also [7] where the discrete Hilbert transform is considered and further background

references are given).

To attack the problem of verifying the trigonometric well-boundedness property (2.8)

when U is an invertible power-bounded operator (that is, sup{‖Un‖ : n ∈ Z} < ∞) we

use a technique called transference. The background for this is as follows. Let G be a

locally compact abelian group and let u → Ru be a strongly continuous representation

of G in a Banach space X such that

c ≡ sup{‖Ru‖ : u ∈ G} < ∞.

This gives rise to a representation k → Tk of the group algebra L1(G) by means of the

formula

(5.1) Tk =
\
G

k(u)R−u du,

where integration is with respect to Haar measure on G and the integral exists as a

Bochner integral in the strong operator topology. The estimate ‖Tk‖≤c‖k‖1 is immediate
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from (5.1). However, an averaging argument [8, Theorem (2.8)] gives the estimate

(5.2) ‖Tk‖ ≤ c2Np,X(k),

where 1 ≤ p < ∞ and Np,X(k) denotes the norm of convolution by k on the Lebesgue–

Bochner space Lp(G,X) of all p-integrable X-valued functions on G. Notice that, when

u → Ru is the regular representation of G in Lp(X,G), Tk is given by convolution by

k. The force of (5.2) is that, for an arbitary bounded representation, the norm of the

transferred operator Tk is controlled by the norm Np,X(k) of the transferred operator in

this special case. The inequality (5.2), as well as its proof, is a mild adaptation of the

transference result of R. R. Coifman and G. Weiss [13, Theorem 2.4], in which X is a

subspace of an Lp-space of scalar-valued functions and Np,X(k) is replaced by the norm

Np(k) of convolution by k on Lp(G). Note that, in the scalar case, a particular value of

p is specified at the outset, corresponding to the Lp-subspace in which G is represented,

and the estimate ‖Tk‖ ≤ c2Np(k) involves the same value of p. On the other hand, in the

vector case no particular value of p is specified in advance and an inequality of the form

(5.2) is obtained for each value of p in the range 1 ≤ p < ∞.

Suppose now that U is an invertible operator on a UMD space X with c ≡ sup{‖Un‖ :

n ∈ Z} < ∞. This gives rise to the representation n → Un of Z in X and, given a

trigonometric polynomial q, q(U) is the transferred operator Tk corresponding to the

kernel k, where k(n) = q̂(−n) = q̌(n) (here q̌ denotes the inverse Fourier transform of q).

In particular, (5.2) gives the estimate

(5.3) ‖σn(U)‖ ≤ c2Np,X(σ̌n),

where σn is as in the previous section. For 1 ≤ p < ∞ and ω ∈ T, let Vω be the invertible

isometry on Lp(Z, X) defined by Vω({xm}) = {ωmxm}. A simple calculation shows that,

for 1 < p < ∞,

σ̌n ∗ x =
\
T

κn(ω)(VωHZ,XV −1
ω x) dω (x ∈ Lp(Z, X)),

where HZ,X is the discrete Hilbert transform on Lp(Z, X) and κn is the nth Fejér kernel.

This leads to the estimate

(5.4) Np,X(σ̌n) ≤ Cp,X

for n ∈ N, where 1 < p < ∞ and Cp,X denotes the norm of the discrete Hilbert transform

on Lp(Z, X). The UMD property for X ensures that Cp,X is finite. Using (5.3) and (5.4),

it is seen that

‖σn(U)‖ ≤ c2Cp,X

for n ∈ N and 1 < p < ∞. Replacing U by eiλU , it follows that, for 1 < p < ∞,

‖σn(U, e
iλ)‖ ≤ c2Cp,X

for all eiλ ∈ T and all n ∈ N. Hence, by Theorem 4, U is trigonometrically well-bounded.

Since spaces belonging to the class UMD are automatically reflexive, we can sum-

marise what we have just proved in the following result.



116 T. A. GILLESPIE

Theorem 5 [7, Theorem 4.5]. Let U be a power-bounded invertible operator on a UMD

space X. Then there is a spectral family in X , concentrated on [0, 2π], such that

U =
\⊕

[0,2π]

eiλ dE(λ).

It is worth commenting that closed subspaces of Lp-spaces are UMD if 1 < p < ∞; in

particular, Hilbert spaces belong to the class UMD. Since an invertible power-bounded

operator on a Hilbert is similar to a unitary operator [16, Theorem 8.1], Theorem 5 shows

that a vestige of this spectral structure remains for power-bounded operators on general

UMD spaces.

Furthermore, it should be remarked that, although the spectral family in Theorem 5

will not in general generate a spectral measure on the Borel subsets of [0, 2π], nevertheless

it does give rise to a spectral measure associated with a dyadic partitioning of [0, 2π] (see

[6] for details). This can be viewed as an operator-theoretic analogue of the classical

Littlewood–Paley theorem for Lp(Z) and is underpinned by a version of the Littlewood–

Paley result for Lp(T, X) valid when X is a UMD space [10], together with several

transference arguments.

6. Weighted shifts. We now turn to an analysis of weighted shift operators in the

context of trigonometric well-boundedness. Since trigonometrically well-bounded opera-

tors are invertible, we consider a bilateral weighted shift acting on Lp(Z); in other words,

we analyse the structure of an operator Sα acting on Lp(Z) of the form

(6.1) Sα({xn}) = {αnxn−1},

where α = {αn}n∈Z is a bounded sequence. Since Sα is isometrically similar to Sβ where

βn = |αn|, we assume that αn ≥ 0 for all n. Also, Sα is invertible if and only if the

sequence {αn} is bounded away from zero and so we must also assume this. To analyse

Sα, it is in fact convenient to analyse instead the unweighted shift

U({xn}) = {xn−1}

acting on a weighted Lp space. To make this more precise, set

wn =





(α1 . . . αn)
p if n > 0,

1 if n = 0,
(αn+1 . . . α0)

−p if n < 0,

for n ∈ Z, and let Lp(Z, w) denote the associated weighted Lp space of complex sequences

x = {xn} such that ‖x‖w,p ≡ {
∑

n∈Z
|xn|

pwn}
1/p < ∞. It is straightforward to check

that Sα acting on Lp(Z) is isometrically similar to U acting on Lp(Z, w). Conversely,

starting with U acting on a weighted Lp space Lp(Z, w), where the weights wn are strictly

positive, it is easy to construct a weighted shift Sα on Lp(Z) isometrically similar to U.

Thus the problem of analysing a weighted shift on Lp(Z) is equivalent to the analysis

of the unweighted shift U on a weighted space Lp(Z, w). It is convenient to write Uw to

denote the unweighted shift U when considered as acting on the weighted space Lp(Z, w).

Notice that Uw is bounded if and only of the sequence {wn+1/wn}n∈Z is bounded, whilst
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Uw is bounded and invertible if and only if {wn+1/wn}n∈Z is bounded and bounded away

from zero.

The criterion for trigonometric well-boundedness given by Theorem 4 takes on a

simpler form in this situation since Uw is isometrically similar to eiλUw for λ ∈ R whenever

Uw is bounded. Furthermore, given a trigonometric polynomial q, q(Uw) is given by

convolution by the sequence q̂. Thus, Uw is a trigonometrically well-bounded operator on

Lp(Z, w) if and only if it is bounded and invertible and there is a constant K such that

(6.2) ‖σ̂n ∗ x‖w,p ≤ K‖x‖w,p

for all finitely supported sequences x and all n ∈ N, where σn is as in §4. It is not

hard to show that (6.2) is equivalent to the Lp(Z, w) boundedness of convolution by the

discrete Hilbert kernel h. A deep result of Hunt, Muckenhoupt and Wheeden [20] gives

the equivalence, for 1 < p < ∞, of the boundedness of the discrete Hilbert transform on

Lp(Z, w) and the Ap-condition for the weight sequence w, namely that there is a constant

C such that {∑

k∈I

wk

}{∑

k∈I

w
−1/(p−1)
k

}p−1

≤ C|I|p

for all finite intervals I in Z, where |I| denotes the cardinality of I. Furthermore, it is

easy to verify that Uw is bounded and invertible when w satisfies the Ap-condition.

We thus have the following result (see [5, Theorem (4.2)]).

Theorem 6. Let 1 < p < ∞ and let αn ∈ C for n ∈ Z. Then the operator Sα given

by (6.1) is trigonometrically well-bounded on Lp(Z) if and only if αn 6= 0 for all n and

the sequence {wn}n∈Z defined by

w0 = 1, wn = |α1 . . . αn|
p if n > 0, γn = |αn+1 . . . α0|

−p if n < 0

satisfies the Ap condition.

This result gives an effective way of constructing examples to exhibit various aspects

of the theory of trigonometrical well-boundedness. For instance, it can be used to show

that there is no characterization of trigonometrical well-boundedness for an invertible

operator U on a Hilbert space in terms of the growth of ‖Un‖ as |n| → ∞, contrasting

with a result of J. Wermer [16, Theorem 8.3] that such an operator U is a scalar-type

spectral operator with spectrum contained in T if and only of ‖Un‖ = O(1) as |n| → ∞

(see [5, §5]).
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