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1. Introduction. By a linear preserver we mean a linear map of an algebra A into

itself which, roughly speaking, preserves certain properties of some elements in A. Linear

preserver problems concern the characterization of such maps. Automorphisms and anti-

automorphisms certainly preserve various properties of the elements. Therefore, it is not

surprising that these two types of maps often appear in the conclusions of the results.

In this paper, we shall concentrate on the case when A = B(X), the algebra of

all bounded linear operators on a complex infinite dimensional Banach space X. We

should point out that a great deal of work has been devoted to the case when X is finite

dimensional, that is, the case when A is a matrix algebra (see survey articles [1, 19, 20]),

and that the first papers concerning this case date back to the previous century [12].

It seems that in the last few years the interest for the infinite dimensional situation

grows. The emphasis in this paper will be on the description of the techniques that were

developed recently.

Although the literature on linear preservers in the infinite dimensional case is far from

being as vast as in the finite dimensional one, we make no attempt at a detailed survey

in this short paper.

In Section 2 we show that some questions regarding linear preservers on B(X) can

be reduced to the problem of determining all linear maps that carry the set of rank one

operators onto themselves. This approach has been developed in the finite dimensional

situation, and has later proved to be useful also in infinite dimensions. We outline how this

1991 Mathematics Subject Classification: Primary 47B49.
The paper is in final form and no version of it will be published elsewhere.

[49]



50 M. BREŠAR AND P. ŠEMRL

method can be used to characterize bijective linear maps on B(X) preserving the spectrum

of each operator (Theorem 2.5), preserving the nilpotency of operators (Theorem 2.6),

and preserving the commutativity of operators (Theorem 2.7). The result on preservers

of nilpotent operators leads to a characterization of bijective linear maps preserving the

spectral radius of each operator (Theorem 2.8).

In Section 3 we show how a number of linear preserver problems can be solved using

algebraic tools. A ring theory approach to commutativity preserving map problem is

described (Theorem 3.1), and its consequences to linear preserver problems in B(X)

are discussed (Corollaries 3.2, 3.4, 3.5). The applicability of algebraic results on Jordan

homomorphisms is presented (Propositions 3.6, 3.7 and Theorems 3.8, 3.9).

Let us remark that for the sake of simplicity we consider only maps from B(X) into

itself. Most of the results could be formulated for the maps from B(X) into B(Y ).

In the conclusions of most of the results we shall speak about automorphisms or

antiautomorphisms. These results could be formulated more precisely. Namely, it is known

that every automorphism of B(X) is inner, that is, it is of the form A 7−→ TAT−1 for some

invertible operator T ∈ B(X), and every antiautomorphism is of the form A 7−→ TA′T−1

for some invertible bounded operator T : X ′ −→ X (here, X ′ denotes the dual of X, and

A′ the adjoint of A ∈ B(X)). In particular, this tells us that in a number of theorems the

maps under consideration are automatically continuous.

Considering linear preservers on B(X) one usually assumes that the maps are at least

surjective if not bijective. It seems that without this assumption the problems would

become extremely difficult. Namely, even the question how to describe all (not necessarily

bijective) endomorphisms of B(X) does not seem to have a simple answer.

Let us fix the notation. Throughout, X will be a complex Banach space with dual

X ′, and B(X) the algebra of all bounded linear operators on X. Let A ∈ B(X). By A′,

σ(A) and r(A) we denote the adjoint of A, the spectrum of A and the spectral radius of

A, respectively.

2. Reducing to the problem of determining rank one operator preservers.

A number of questions regarding linear preservers on B(X) can be reduced to the problem

of determining linear maps that carry the operators of rank one into themselves. We need

the following lemmas to illustrate this approach.

Lemma 2.1 [17, Theorem 1]. Let A ∈ B(X), A 6= 0. Then A has rank one if and only

if σ(T +A) ∩ σ(T + λA) ⊆ σ(T ) for every T ∈ B(X) and every λ ∈ C, λ 6= 1.

Lemma 2.2 [31, Proposition 2.1]. Let N (X) be the set of all nilpotent operators in

B(X), and let N ∈ N (X), N 6= 0. Then N has rank one if and only if for every A ∈ N (X)

satisfying A+N 6∈ N (X) we have A+ λN 6∈ N (X) for every nonzero λ ∈ C.

Lemma 2.3 [22, Corollary 3.4]. Suppose that a bijective linear map φ : B(X) −→ B(X)

preserves commutativity in both directions (that is, the operators A and B commute if

and only if φ(A) and φ(B) commute). Then there exists c ∈ C, c 6= 0, such that for every

idempotent P of rank one there is an idempotent P̃ of rank one and d ∈ C such that

φ(P ) = cP̃ + dI.
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Note that Lemma 2.1 implies that a bijective linear map φ of B(X) that is spectrum–

preserving (that is, σ(φ(A)) = σ(A) for every A ∈ B(X)) is rank one operator preserving

in both directions (that is, A ∈ B(X) has rank one if and only if φ(A) has rank one).

Similarly, Lemma 2.2 shows that a bijective linear map preserving nilpotents in both

directions also preserves nilpotents of rank one in both directions. It is implicit in Lemma

2.3 that maps preserving idempotents of rank one appear when studying maps preserving

commutativity in both directions.

The above considerations show that the knowledge of the structure of bijective linear

maps on B(X) preserving operators of rank one (idempotents of rank one, nilpotents of

rank one) could be useful when studying some linear preserver problems. An interested

reader can find results on the structure of such maps in [15, 25]. Here, we shall describe

linear maps preserving rank one operators only in the finite–dimensional case as we believe

that the proof in this special case already contains the essential ideas.

Lemma 2.4. Let X be finite–dimensional. If a bijective linear map φ : B(X) −→ B(X)

preserves rank one operators then there exist invertible M,N ∈ B(X) such that either

φ(A) = MAN for every A ∈ B(X) or φ(A) = MA′N for every A ∈ B(X).

S k e t c h o f t h e p r o o f. Given x ∈ X and f ∈ X ′ we define a rank one operator

x⊗f by (x⊗f)y = f(y)x. Consider the sets Lx = {x⊗h|h ∈ X ′} and Rf = {u⊗f |u ∈ X}.
Each of Lx and Rf is a linear subspace of B(X) consisting of rank one operators and is

maximal among such spaces. As φ preserves rank one operators it follows that for any

nonzero x ∈ X, φ(Lx) is either Ly for some y ∈ X or Rg for some g ∈ X ′. In the next

step one can prove that we cannot have φ(Lx) = Ly and φ(Lz) = Rf simultaneously for

some nonzero x and z in X. Thus, we have two cases. Let us first consider the case when

for every nonzero x ∈ X there is y ∈ X such that φ(Lx) = Ly, so that φ(x⊗ f) = y ⊗ g
for every f ∈ X ′. The map f 7−→ g is linear. Therefore, g = Cxf for some linear operator

Cx : X ′ −→ X ′. It turns out that Cx and Cz are linearly dependent for every pair of

nonzero vectors x, z ∈ X. Thus, by absorbing a constant in the first term of the tensor

product, we may assume that Cx is independent of x. Whence, for every nonzero x there

exists y such that φ(x⊗ f) = y⊗Cf , f ∈ X ′. The map x 7−→ y is linear. Denoting it by

M we thus have φ(x⊗ f) = Mx⊗ Cf . The bijectivity of φ implies the bijectivity of M

and C. Thus, there is a bijective linear operator N : X −→ X such that C = N ′, and we

have φ(x⊗ f) = M(x⊗ f)N , x ∈ X, f ∈ X ′. That is, φ takes the first of the two forms

described in the lemma.

It remains to consider the case when for every nonzero x ∈ X there is f ∈ X ′ such

that φ(Lx) = Rf . Using an analogous approach one can then prove that φ takes the

second form.

Using Lemmas 2.1, 2.2, 2.3 and certain extensions of Lemma 2.4, Jafarian and Sourour

[17], Šemrl [31] and Omladič [22] have proved the following theorems.

Theorem 2.5 [17, Theorem 2]. A surjective spectrum–preserving linear map of B(X)

onto B(X) is either an automorphism or an antiautomorphism.

Theorem 2.6 [31, Main theorem]. Let B0(X) be the linear span of all nilpotent op-

erators in B(X). Suppose that a surjective linear map φ : B0(X) −→ B0(X) preserves
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nilpotent operators in both directions. Then φ is of the form φ(A) = cψ(A), A ∈ B0(X),

where c ∈ C, c 6= 0, and ψ is either an automorphism or an antiautomorphism of B(X).

Theorem 2.7 [22, Theorem 1.1]. Suppose that the dimension of X is greater than 2 and

φ : B(X) −→ B(X) is a bijective linear map preserving commutativity in both directions.

Then φ is of the form φ(A) = cψ(A) + f(A)I, where c ∈ C, c 6= 0, ψ is either an

automorphism or an antiautomorphism of B(X), and f is a linear functional on B(X).

Let us mention the papers [23, 30] which also use the approach just described.

We remark that Theorems 2.5, 2.6 and 2.7 generalize a number of results existing in

the literature (see [17, 31, 22] for details concerning background).

It should be mentioned that the assumption in Theorem 2.7 concerning the dimension

of X is not superfluous (see an example in [34]). In the next section we shall see how

Theorem 2.7 can be generalized using completely different approach.

Theorem 2.5 has been extended in several ways [3, 24, 32]. In these papers a similar

approach based on some spectral characterizations of rank one operators has been used.

Let us just mention the result of Sourour [32] stating that Theorem 2.5 remains true when

assuming that φ is unital and preserves invertible operators (that is, σ(φ(A)) ⊆ σ(A) for

every A ∈ B(X)). For other results on invertibility preserving maps of various algebras

we recommend [18, Section 9] and [33].

Let us state another generalization of Theorem 2.5, due to the present authors, which

was obtained by quite different means.

Theorem 2.8 [9, Theorem 1]. Suppose that a surjective linear map φ of B(X) onto

B(X) preserves the spectral radius (that is, r(φ(A)) = r(A) for every A ∈ B(X)). Then

φ = cψ where c ∈ C, |c| = 1, and ψ is either an automorphism or an antiautomorphism

of B(X).

S k e t c h o f t h e p r o o f. We shall outline only the main steps in the proof. It is easy

to see that φ is injective, and that without loss of generality one can assume φ(I) = I.

In the next step one proves that Bk = 0, k ≥ 2, implies φ(B)2k−1 = 0. In order to

show this one considers the expression r(A+λQ)k where λ ∈ C, Q = φ(B), and A ∈ B(X)

satisfies AQiA = 0 for i = 0, 1, . . . , k − 1. On the one hand we have

r(A+ λQ)k = r((A+ λQ)k) = |λ|k−1r(B1 + λB2)

where B1 = AQk−1 + QAQk−2 + . . . + Qk−1A and B2 = Qk. On the other hand, using

Bk = 0 we get

r(A+ λQ)k = r(φ−1(A+ λQ))k = r((φ−1(A) + λB)k) = r(A0 + λA1 + . . .+ λk−1Ak−1)

for some Ai ∈ B(X). Comparing both results one can then show that the function

λ 7−→ r(B1 + λB2) is bounded. As this function is subharmonic by Vesentini’s theo-

rem [2, Theorem 3.4.7], it follows from the Liouville theorem for subharmonic functions

[2, Theorem A.1.11] that it is a constant. Noting that r(B1) = 0 we thus have

r(B1 + λB2) = r(AQk−1 +QAQk−2 + . . .+Qk−1A+ λQk) = 0

for every λ ∈ C. Chosing the operator A in a suitable way one then shows that this is

impossible unless Q2k−1 = 0.
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This step shows, in particular, that φ preserves nilpotent operators in both directions

(namely, φ−1 also preserves the spectral radius). Therefore, Theorem 2.6 can be applied.

Thus, in case B0(X) = B(X) (for instance, this is true when X is a Hilbert space [27])

we are done. In general, however, we still have some work to do. The rest of the proof is

based on the observation that φ preserves a certain ”small part” of the spectrum – more

precisley, π(φ(A)) = π(A) for each A ∈ B(X) where π(A) = {λ ∈ σ(A)|r(A) = |λ|}.

3. Using algebraic tools. We begin by stating a ring theory theorem which can be,

as we shall see, applied to some linear preserver problems.

Theorem 3.1 [4, Theorem 2]. Let A and A′ be centrally closed prime algebras over

a field F . Suppose that the characteristic of A and A′ is different from 2 and 3 and

that neither A nor A′ satisfies S4. If a bijective linear map φ : A −→ A′ satisfies

φ(x2)φ(x) = φ(x)φ(x2) for all x ∈ A, then φ is of the form φ(x) = cψ(x) + f(x)1,

where c ∈ F , c 6= 0, ψ is either an isomorphism or an antiisomorphism of A onto A′,
and f is a linear functional on A.

Let us explain roughly some notions appearing in the formulation of this theorem.

An algebra A is called prime if IJ = 0, where I and J are ideals of A, implies I = 0

or J = 0. A prime algebra A over a field F is said to be centrally closed over F if its

extended centroid is equal to F1 (1 being the unit element of A). The extended centroid

of a prime ring is a certain field containing the center of a ring (it is often, but not always,

the field of fractions of the center) – for an exact definition we refer the reader to [13]

or [21]. Let us just mention that B(X) is centrally closed over C (the same is true, for

instance, for subalgebras of B(X) containing the identity and all finite rank operators, for

prime C∗−algebras, and finite dimensional prime normed algebras). The condition that

A does not satisfy S4, the standard polynomial identity of degree 4, is equivalent to the

condition that A is noncommutative and does not embed in the ring of 2 by 2 matrices

over a field.

Theorem 3.1 follows from a result which characterizes biadditive maps B of a prime

ring R (satisfying some additional assumptions) such that B(x, x)x = xB(x, x) for every

x ∈ R. It turns out that there is λ ∈ C, the extended centroid of R, and maps µ, ν :

R −→ C such that B(x, x) = λx2 + µ(x)x + ν(x) for every x ∈ R [4, Theorem 1]. The

proof of this result is elementary in a sense that only basic properties of prime rings and

their extended centroids are used. The computations in the proof, however, are rather

involved. The proof of Theorem 3.1 is based on the following observation. The condition

φ(x2)φ(x) = φ(x)φ(x2), x ∈ A, can be expressed in the form φ(φ−1(y)2)y = yφ(φ−1(y)2),

y ∈ A′. That is, B(y, y)y = yB(y, y) where B is a bilinear map of A′ defined by B(y, z) =

φ(φ−1(y)φ−1(z)). Now, of course, a result just mentioned applies.

The algebra B(X) satisfies all conditions of Theorem 3.1 provided that the dimension

of X is not 1 or 2. As x and x2 certainly commute, we have the following immediate

consequence of Theorem 3.1.

Corollary 3.2. Suppose that the dimension of X is greater than 2 and φ : B(X) −→
B(X) is bijective linear map preserving commutativity. Then φ is of the form φ(A) =
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cψ(A)+f(A)I, where c ∈ C, c 6= 0, ψ is either an automorphism or an antiautomorphism

of B(X), and f is a linear functional on B(X).

Thus, this result tells us that in Theorem 2.7 one does not need to assume that φ

preserves commutativity in both directions. We also mention that a similar approach

gives a description of commutativity preserving maps on von Neumann algebras [5].

In order to obtain two other applications of Theorem 3.1 we need an easy lemma.

Lemma 3.3. Let X be a Hilbert space. Suppose that a map φ : B(X) −→ B(X) satisfies

φ(S2)φ(S) = φ(S)φ(S2) for every self–adjoint S ∈ B(X). Then φ(A2)φ(A) = φ(A)φ(A2)

for every A ∈ B(X).

P r o o f. Let S, T ∈ B(X) be self–adjoint and let t ∈ R. Replacing S by S + tT in

[φ(S2), φ(S)] = 0 (here, [X,Y] denotes the commutator XY − Y X) we get

t([φ(ST + TS), φ(S)] + [φ(S2), φ(T )]) + t2([φ(T 2), φ(S)] + [φ(ST + TS), φ(T )]) = 0.

Whence

[φ(T 2), φ(S)] + [φ(ST + TS), φ(T )] = 0

for all self–adjoint S, T ∈ B(X). Decomposing an arbitrary A ∈ B(X) as A = S+ iT with

S, T self–adjoint, we thus get

[φ(A2), φ(A)] = i([φ(S2), φ(T )] + [φ(ST + TS), φ(S)])

−([φ(ST + TS), φ(T )] + [φ(T 2), φ(S)]) = 0,

proving the lemma.

Clearly, for the case when X is a Hilbert space, Theorem 3.1 and Lemma 3.3 give the

following slight generalization of Corollary 3.2.

Corollary 3.4. Let X be a Hilbert space of dimension greater than 2. Suppose that

φ : B(X) −→ B(X) is a bijective linear map preserving commutativity of self–adjoint

operators (that is, φ(S)φ(T ) = φ(T )φ(S) whenever ST = TS and S, T are self–adjoint).

Then the conclusion of Corollary 3.2 holds.

The third application of Theorem 3.1 is a description of normal–preserving maps.

Corollary 3.5 [7, Theorem 2]. Let X be a Hilbert space of dimension greater than 2.

Suppose that φ : B(X) −→ B(X) is a bijective linear map preserving normal operators.

Then φ is of the form φ(A) = cψ(A) + f(A)I, where c ∈ C, c 6= 0, ψ is either a

∗−automorphism or a ∗−antiautomorphism of B(X), and f is a linear functional on

B(X).

S k e t c h o f t h e p r o o f. Let S ∈ B(X) be self–adjoint. Then S2 +λS is normal for

each λ ∈ C. Whence φ(S2)+λφ(S) is normal which further implies [φ(S2), φ(S)∗] = 0. As

φ(S) is normal it follows from Fuglede’s theorem [28, Corollary 1.18] that [φ(S2), φ(S)] =

0. Theorem 3.1 and Lemma 3.3 now tell us that φ is of the form φ(A) = cψ(A) +

f(A)I where c ∈ C, f is a linear functional on B(X) and ψ is an automorphism or an

antiautomorphism. It remains to prove that ψ is adjoint–preserving. But this is not too

difficult.
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Both Corollary 3.4 and 3.5 were proved in [10] under the additional assumption that

the map φ preserves adjoints. The proofs, however, are completely different from those

outlined here.

Recall that a linear map φ from an algebra A into an algebra A′ is called a Jordan

homomorphism if φ(x2) = φ(x)2 for every x ∈ A. As both homomorphisms and antiho-

momorphisms are obvious examples, it comes as no surprise that Jordan homomorphisms

can appear when studying linear preserver problems. A well–known result of Herstein [14,

Theorem 3.1] states that if φ is onto and A′ is prime, then these two examples are in

fact the only examples. This shows, in particular, that a bijective Jordan homomorphism

on B(X) is either an automorphism or an antiautomorphism. In the next two results we

illustrate how this fact can be used.

Proposition 3.6. Let X be a Hilbert space. Suppose that a bijective continuous linear

map φ : B(X) −→ B(X) preserves unitary operators. If φ(I) = I then φ is either a

∗−automorphism or a ∗−antiautomorphism.

P r o o f. Pick a self–adjoint S ∈ B(X). Then eitS is unitary for every t ∈ R. Therefore,

I = φ(eitS)φ(eitS)∗ = φ(I + itS − t2

2
S2 + . . .)φ(I + itS − t2

2
S2 + . . .)∗

= (I + itφ(S)− t2

2
φ(S2) + . . .)(I − itφ(S)∗ − t2

2
φ(S2)∗ + . . .)

= I + t(iφ(S)− iφ(S)∗) + t2(−1

2
φ(S2)− 1

2
φ(S2)∗ + φ(S)φ(S)∗) + . . .

Whence φ(S) = φ(S)∗ and 1
2φ(S2) + 1

2φ(S2)∗ = φ(S)φ(S)∗ for every self–adjoint S ∈
B(X). The first relation implies that φ preserves adjoints. Therefore, the second relation

can be written as φ(S2) = φ(S)2. Substituting S + T for S we arrive at φ(ST + TS) =

φ(S)φ(T ) +φ(T )φ(S). Using the fact that every A ∈ B(X) can be written as A = S+ iT

with S, T self–adjoint, we get φ(A2) = φ(A)2. Thus, Herstein’s theorem now gives the

desired conclusion.

By a projection in B(X), where X is a Hilbert space, we mean a self–adjoint idem-

potent.

Proposition 3.7. Let X be a Hilbert space. Suppose that a bijective continuous linear

map φ : B(X) −→ B(X) preserves projections. Then φ is either a ∗−automorphism or a

∗−antiautomorphism.

P r o o f. Let P and Q be orthogonal projections. Then P +Q is a again a projection.

Therefore, φ(P +Q)2 = φ(P +Q), which yields φ(P )φ(Q) + φ(Q)φ(P ) = 0. Whence we

see that φ(P ) and φ(Q) are orthogonal projections. This implies that φ(H2) = φ(H)2

holds for every operator H which is a real–linear combination of mutually orthogonal

projections. Observe that φ(H) is self–adjoint. As φ is continuous and the set of all such

operators H is dense in the set of all self–adjoint operators in B(X), it follows that

φ(S2) = φ(S)2 holds for every self–adjoint S ∈ B(X), and that φ preserves adjoints. Now

continue in the same fashion as in the proof of the last proposition.
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It is quite clear that the proofs of both propositions work in a more general setting.

It was our purpose, however, to present the methods rather than the results. For more

general results see [29] and [11].

In the next theorem we do not assume the continuity of the map. This makes the

proof quite more nontrivial.

Theorem 3.8 [8, Theorem 1]. Let X be a Hilbert space. Suppose that a bijective linear

map φ : B(X) −→ B(X) preserves idempotents. Then φ is either an automorphism or an

antiautomorphism.

S k e t c h o f t h e p r o o f. Every self–adjoint operator of finite rank is a real–linear

combination of mutually orthogonal projections. Using this fact and arguing similarly as

in the proof of Proposition 3.7, one shows that φ|F(X), the restriction of φ to the algebra

F(X) of all finite rank operators, is a Jordan homomorphism. As F(X) is a locally matrix

algebra, a result of Jacobson and Rickart [16, Theorem 8] tells us that φ|F(X) = ψ + θ

where ψ is a homomorphism and θ is an antihomomorphism. In the next step one shows

that φ preserves rank one idempotents. This readily implies that at least one of ψ and θ

has a nonzero kernel. Since the kernels of homomorphisms and antihomomorphisms are

ideals and F(X) is a simple algebra, it follows that ψ = 0 or θ = 0. It is easy to see

that without loss of generality we may assume that φ|F(X) is a homomorphism. Now fix

x ∈ X with norm 1 and consider x⊗x (by z⊗w we denote the rank one operator defined

by (z⊗w)y =< y,w > z). We have φ(x⊗x) = u⊗v for some u, v ∈ X with < u, v >= 1.

Define a linear operator T : X −→ X by Ty = φ(y ⊗ x)u. It is straightforward to verify

that TF = φ(F )T holds for every F ∈ F(X). Using this one can show that TP = φ(P )T

for every idempotent P ∈ B(X). As every operator in B(X) is a linear combination of

idempotents [27] it follows that TA = φ(A)T holds for every A ∈ B(X). It is now easy

to see that T is bijective and so φ is an automorphism.

If X is a Banach space, Theorem 3.8 remains true under the additional assumption

that φ is continuous in the weak operator topology [6, Theorem 3.3].

We close this paper by an application of Theorem 3.8. By a potent operator we mean

an operator A satisfying Ar = A for some integer r ≥ 2.

Theorem 3.9 [26, Theorem 4]. Let X be a Hilbert space. Suppose that a surjective

linear map φ : B(X) −→ B(X) preserves potent operators in both directions. Then φ is of

the form φ(A) = cψ(A) where c ∈ C is a root of unity and ψ is either an automorphism

or an antiautomorphism.

S k e t c h o f t h e p r o o f. The most difficult part of the proof is to show that φ(I) =

cI for some root of unity c. Once we know this, there is clearly no loss of generality

in assuming φ(I) = I. According to Theorem 3.8 it suffices to prove that φ(P ) is an

idempotent whenever P ∈ B(X) is an idempotent. Since φ(P ) is a potent, it is enough

to show that every λ ∈ σ(φ(P )) is either 0 or 1. Since P, I − P , and I − 2P are potents,

φ(P ), I − φ(P ), and I − 2φ(P ) are potents, too. But then each of the numbers λ, 1− λ,

and 1− 2λ is either a root of unity or 0. But then λ = 0 or λ = 1.
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[6] M. Bre šar and P. Šemrl, Mappings which preserve idempotents, local automorphisms, and

local derivations, Canad. J. Math. 45 (1993), 483–496.

[7] —, —, Normal–preserving linear mappings, Canad. Math. Bull. 37 (1994), 306–309.

[8] —, —, On local automorphisms and mappings that preserve idempotents, Studia Math. 113

(1995), 101–108.

[9] —, —, Linear maps preserving the spectral radius, J. Funct. Anal. 142 (1996), 360–368.

[10] M. D. Choi, A. A. Jafar ian and H. Radjavi, Linear maps preserving commutativity,

Linear Algebra Appl. 87 (1987), 227–241.

[11] H. A. Dye, On the geometry of projections in certain operator algebras, Ann. of Math. (2)

61 (1955), 73–89.
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