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Abstract. Let A stand for a Toeplitz operator with a continuous symbol on the Bergman

space of the polydisk DN or on the Segal–Bargmann space over CN . Even in the case N = 1, the

spectrum Λ(A) of A is available only in a few very special situations. One approach to gaining

information about this spectrum is based on replacing A by a large “finite section”, that is,

by the compression An of A to the linear span of the monomials {z
k1
1 . . . z

kN
N
: 0 ≤ kj ≤ n}.

Unfortunately, in general the spectrum of An does not mimic the spectrum of A as n goes to

infinity.

However, in the same way as in numerical analysis the question “Is A invertible?” is replaced

by the question “What is ‖A−1‖ ?”, it turns out that the mysteries of Λ(An) for large n may

be much better understood by considering the pseudospectrum of An rather than the usual

spectrum. For ε > 0, the ε-pseudospectrum of an operator T is defined as the set Λε(T ) = {λ ∈

C : ‖(T−λI)−1‖ ≥ 1/ε}. Our central result says that the limit limn→∞ ‖A
−1
n ‖ exists and is equal

to the maximum of ‖A−1‖ and the norms of the inverses of 2N − 1 other operators associated

with A. This result implies that for each ε > 0 the ε-pseudospectrum of An approaches the

union of the ε-pseudospectra of A and the 2N − 1 operators associated with A. If in particular

N = 1, it follows that

Λ(A) = lim
ε→0

lim
n→∞

Λε(An),

whereas, as already said, the equality Λ(A) = lim
n→∞

lim
ε→0
Λε(An) (= lim

n→∞
Λ(An)) is in general

not true.

The paper does not aim at completeness, its purpose is rather to outline the ideas behind the

theory, and especially, to illustrate the power of C∗-algebra techniques for tackling the problem

of spectral approximation. We therefore focus our attention on Segal–Bargmann space Toeplitz

operators. Our main theorems include Fredholm criteria for such operators, results on the norms
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of the inverses of their large truncations, as well as the foundation of several approximation

methods for solving equations with a Segal–Bargmann space Toeplitz operator.

1. Introduction. The Segal–Bargmann space A2(C, dµ) is the Hilbert space of all

entire functions f on C satisfying

‖f‖2 :=
\
C

|f(z)|2 dµ(z) <∞,

where dµ(z) = (1/2π)e−|z|2/2dA(z) and dA(z) is area measure on C, i.e. dA(z) = rdrdθ

in polar coordinates. The space A2(C, dµ) has the reproducing kernel ezw/2. This means

that if a function f(w) in A2(C, dµ) is multiplied by ezw/2 and then integrated against

dµ(w) over C, we get back f(z):

(1)
\
C

ezw/2f(w) dµ(w) = f(z).

Now choose a function a(w) on C, multiply f(w) by a(w)ezw/2 and integrate against

dµ(w) over C; what results is in general a new function g(z):

(2)
\
C

a(w)ezw/2f(w) dA(w) = g(z).

The subject of this paper is the integral equation (2), that is, we think of a(w) and g(z)

as given functions and are looking for a function f(w) which satisfies (2).

The Segal–Bargmann space was introduced by Segal [23] and Bargmann [2] in the early

sixties. It turns out that representations of the Heisenberg group on the Segal–Bargmann

space have particularly interesting properties (see e.g. [16]). Problems in quantum me-

chanics lead to kernels a(w)ezw/2 in (2) for which a(w) shows highly complicated behavior

at infinity. For example, anti-Wick quantization results in the case where a(w) = p(w,w)

and p is a polynomial of two variables (see [16]); in this situation a(w) is unbounded. Or,

when using Weyl operators to represent the canonical commutation relations on C, we

encounter equation (2) with a(w) = eiRe(αw), that is, with an almost periodic function

a(w) (see [3] and [4]).

At present time one is not yet able to tackle equation (2) effectively if a(w) is un-

bounded or almost periodic, and no progress in these two directions will be made in this

paper. A Fredholm theory for equations of the form (2) has been worked out in the cases

where a(w) is uniformly continuous on C or where a(w) oscillates at infinity “less than

linearly” by Berger and Coburn in [3] and [4]. Several methods for approximately solving

equations like (2) have been studied by the authors (see [5], [9], [11], [12]) for uniformly

continuous functions a(w). Notice that in the latter case the limit

(3) a∞(eiθ) := lim
r→∞

a(reiθ)

exists for every eiθ on the complex unit circle T and that a∞ is a continuous function on

T; hence a(w) behaves very well at infinity.

This paper deals with the case where a(w) is piecewise continuous (in a sense that will

be specified in the following). For instance, if a(w) = b(w) for Rew > 0 and a(w) = c(w)

for Rew < 0, where b(w) and c(w) are uniformly continuous, then a(w) is piecewise

continuous in our sense. For the functions a(w) we consider here the limits (3) exist for
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almost all eiθ ∈ T, but the function a∞, which describes the behavior of a(w) at infinity,

is now a piecewise continuous function on T.

Our main results provide a Fredholm theory of equation (2) and its higher-dimen-

sional analogues and prove the convergence of certain approximation methods for such

equations. We also establish results on the norms of the inverses and on the pseudospectra

of truncations of the operator given by the left-hand side of (2).

2. Fredholm results. The Segal–Bargmann space A2(C, dµ) is a closed subspace of

the Hilbert space L2(C, dµ), and the orthogonal projection P of L2(C, dµ) onto the space

A2(C, dµ) is given by

(Pf)(z) =
\
C

ezw/2f(w) dµ(w) (f ∈ L2(C, dµ)).

With this expression for P , equality (1) amounts to the trivial fact that Pf = f for all

f ∈ A2(C, dµ). An orthonormal basis {en}∞n=0 in A
2(C, dµ) is constituted by the functions

(4) en(z) = (2nn!)−1/2zn.

Each function a ∈ L∞(D) induces a bounded operator T 1(a) on the space A2(C, dµ)

by the formula T 1(a)f = P (af). This operator is called a Toeplitz operator and the

function a is referred to as the symbol of T 1(a). We remark that T 1(a) acts by the rule

(T 1(a)f)(z) =
\
C

a(w)ezw/2f(w) dµ(w) (z ∈ C),

so that equation (2) is nothing but the equation T 1(a)f = g. For an operator A on

A2(C, dµ), we denote by Ajk (j, k ≥ 0) the jk entry of the matrix representation of A in

the orthonormal basis {en} given by (4). A straightforward computation shows that

(5) [T 1(a)]jk =
1

√

2jj!2kk!

\
C

a(w)wkwj dµ(w).

Suppose now that a ∈ L∞(C) is a function for which the limits (3) exist for almost

all eiθ ∈ T and for which a∞ belongs to L∞(T). We then put

(6) an =
1

2π

2π\
0

a∞(eiθ)e−inθ dθ (n ∈ Z)

and we let T 0(a) stand for the operator on A2(C, dµ) given by [T 0(a)]jk = aj−k. Since the

Toeplitz matrix (aj−k)
∞
j,k=0 induces a bounded operator on l2(Z+) whenever the entries

aj−k are related to a function a∞ ∈ L∞(T) via (6), it follows that T 0(a) is a well-defined

bounded operator on A2(C, dµ). In fact, the operator T 0(a) is unitarily equivalent to

the Toeplitz operator with the symbol a∞ on the Hardy space H2(T), and the latter

operators are fairly well understood (see e.g. [14] or [17]).

Let C denote the maximal ideal space of the C∗-algebra of all continuous functions a

on C for which the limits (3) exist for all eiθ ∈ T and represent a continuous function a∞
on T. Thus, C is the compactification of C by a circle T∞ = {∞eiθ : eiθ ∈ T} at infinity.

A neighborhood base of ∞eiθ ∈ T is given by {UR(∞eiθ)}R>0 with

UR(∞eiθ) = {reiφ ∈ C : r ∈ (R,∞), φ ∈ (θ − 1/R, θ+ 1/R)}.
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With this notation, C(C) is the C∗-algebra of all uniformly continuous functions on C,

that is, the C∗-algebra of all continuous functions a on C with the property that for every

ε > 0 there are an R = R(ε) > 0 and a δ = δ(ε) > 0 such that

|a(reiθ)− a(ρeiφ)| < ε

whenever r, ρ > R and |θ − φ| < δ.

If a ∈ C(C), then T 1(a) − T 0(a) is compact. This has certainly been known for a

long time (see [13] for the Bergman space case), but since we had not been able to find

an explicit reference, we gave a proof in [12]. By having recourse to the well-elaborated

theory of the Hardy space Toeplitz operators T 0(a), one can so gain a lot of insights into

the Segal–Bargmann space Toeplitz operators T 1(a) with a ∈ C(C).

Let L and K be the bounded and compact operators on A2(C, dµ), respectively. We

denote by C the smallest C∗-subalgebra of L containing the set {T 1(a) : a ∈ C(C)} ∪ K,

put Cπ = C/K and denote the coset A+K by Aπ. Using the compactness of T 1(a)−T 0(a)

for a ∈ C(C) and the results of [14] and [17] (for example), one can easily establish the

following.

Theorem 2.1. The C∗-algebra Cπ is commutative, its maximal ideal space may be

identified with the unit circle T, every element of Cπ is of the form [T 1(a)]π with some

a ∈ C(C), and the mapping

γc : C
π → C(T), [T 1(a)]π 7→ a∞

is an isometric C∗-algebra isomorphism.

In particular , if {ajk} is a finite collection of functions in C(C), then the operator

A =
∑

j

∏

k

T 1(ajk) ∈ C

is Fredholm (i.e. invertible modulo compact operators) if and only if

γc(A
π) =

(

∑

j

∏

k

ajk

)

∞
∈ C(T)

does not vanish on T; in that case the index (i.e. the difference of the kernel and cokernel

dimensions) of A equals minus the winding number of the curve traced out by γc(A
π)

with respect to the origin.

We now define what we mean by piecewise continuous functions on C. Fix τ = eiθ ∈ T

(and thus ∞τ ∈ T∞), let g0,τ denote the straight line through 0 and τ (oriented in such

a way that 0 comes before τ), and for d ∈ R, let gd,τ denote the (oriented) straight line

which results from g0,τ by translating it by the distance |d| to the left (d ≥ 0) or to the

right (d < 0). Hence, if g0,τ is given by

g0,τ = {reiθ : −∞ < r <∞}

then gd,τ is the straight line

gd,τ = {(id+ r)eiθ : −∞ < r <∞}.
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Given a ∈ L∞(T), we write a ∈ PCd,τ if there are two numbers, denoted by a(τ − 0) and

a(τ + 0), such that

lim
z→∞τ, z∈H±

d,τ

a(z) = a(τ ± 0),

where H+
d,τ and H−

d,τ denote the half-planes lying on the left and right of gd,τ respectively.

If d : T → R is a continuous function, we let PCd stand for the set of all functions

a ∈ L∞(C) belonging to PCd(τ),τ for every τ ∈ T. It is readily seen that PCd is in fact

a C∗-subalgebra of L∞(C). From now on we leave the function d : T → R fixed and call

the functions in PCd piecewise continuous.

Any finite collection {gj} of straight lines divides the plane C into a finite number of

connected components Ek:
⋃

k

Ek = C \
⋃

j

gj.

If no two of the lines gj are parallel, then every function a ∈ L∞(C) whose restriction to

each of the components Ek is uniformly continuous belongs to PCd for some d : T → R.

On the other hand, such functions as

a(z) =

{

1 for 0 < Re z < 1,
0 for Re z < 0 or Re z > 1,

are not in PCd for any d and are therefore not piecewise continuous in our sense.

If a ∈ PCd, then the limits (3) exist for almost all eiθ ∈ T and represent a piecewise

continuous function a∞ on T, i.e. a function a∞ ∈ L∞(T) such that the one-sided limits

a(ei(θ±0)) exist for every eiθ ∈ T. It is well-known that piecewise continuous functions

on T may have at most countably many jumps, so that a(ei(θ−0)) = a(ei(θ+0)) for all but

countably many points eiθ ∈ T. The main difficulty with piecewise continuous symbols

is that T 1(a)− T 0(a) is in general not compact if a ∈ PCd.

Let B denote the smallest C∗-subalgebra of L containing all operators T 1(a) with

a ∈ PCd and all compact operators. To study the quotient algebra Bπ = B/K, we make

use of the fact that

T 1(a)T 1(c)− T 1(ac) and T 1(c)T 1(a)− T 1(ca)

are compact whenever a ∈ L∞(C) and c ∈ C(C) (see [4]). Thus, Cπ is contained in the

center of Bπ, and we may so have recourse to the following result, which is known as the

local principle of Allan [1] and Douglas [14].

Theorem 2.2. Let B be a C∗-algebra with unit element and let C be a C∗-subalgebra

of the center of B containing the unit element. Denote the maximal ideal space of C

by M(C), and for m ∈ M(C), let Ym be the smallest closed two-sided star-ideal of B

containing m. Then
⋂

m∈M(C) Ym = {0}, the mapping

Γ : B →
⊕

m∈M(C)

B/Ym, b 7→ (b + Ym)m∈M(C)

is an isometric C∗-algebra homomorphism, and in particular , an element b ∈ B is in-

vertible in B if and only if b+ Ym is invertible in B/Ym for every m ∈M(C).
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From Theorem 2.1 we know that M(Cπ) may be identified with T: the maximal ideal

of Cπ corresponding to τ ∈ T is given by

{[T 1(c)]π : c ∈ C(C), c∞(τ) = 0}.

The smallest closed two-sided star-ideal Yτ of Bπ containing this ideal equals

{[T 1(a)]π : a ∈ PCd, a∞ is continuous at τ, a∞(τ) = 0}.

Now let a ∈ PCd. Denote by χ the characteristic function of the half-plane H+
d(τ),τ . It is

easily seen that

(7) [T 1(a)]π + Yτ = [T 1(a(τ + 0)χ+ a(τ − 0)(1− χ))]π + Yτ .

Since Bπ is generated by all [T 1(a)]π with a∈PCd, it follows that Bπ/Yτ is the C∗-algebra

generated by the identity element and [T 1(χ)]π + Yτ . One can show as in [10], p. 135

that the spectrum of [T 1(χ)]π+Yτ is the interval [0, 1], and hence Bπ/Yτ is isometrically

isomorphic to C([0, 1]). Now Theorem 2.2 gives the following

Theorem 2.3. The C∗-algebra Bπ is commutative, its maximal ideal space may be

identified with the cylinder T× [0, 1] (with an exotic topology), and the Gelfand transform

γb of Bπ onto C(T × [0, 1]) is for a ∈ PCd given by

(γb[T
1(a)]π)(τ, µ) = a∞(τ − 0)(1− µ) + a∞(τ + 0)µ.

For a ∈ PCd, denote by a
# the closed, continuous, and naturally oriented curve result-

ing from the (essential) range of a∞ by filling in a line segment between the endpoints

of each jump. The following theorem can be obtained from Theorem 2.3 by standard

arguments (see e.g. [14] or [17]).

Theorem 2.4. Let a ∈ PCd. Then T 1(a) is Fredholm if and only if a# does not

contain the origin. In that case the index of T 1(a) is minus the winding number of a#

about the origin.

For Hardy space Toeplitz operators the above two theorems are due to Gohberg and

Krupnik [18] (but also see Widom [25]), for Bergman space Toeplitz operators they were

first established by Gerard McDonald [20].

3. Finite section method. The finite section method for approximately solving

equation (2) consists in the following. We look for an approximate solution fn in the

form of a polynomial of degree at most n, i.e. in the form of a linear combination

fn(w) = c
(n)
0 e0(w) + . . .+ c(n)n en(w) (w ∈ C)

where the functions en are given by (4), and the n+1 unknown coefficients c
(n)
0 , . . . , c

(n)
n

are determined so that the first n + 1 Taylor coefficients at the origin of T 1(a)f and g

coincide. Note that the equation (2) is equivalent to an equation on l2(Z+) with the

infinite matrix [T 1(a)] (whose entries are written down in (5)) and that the finite section

method amounts to replacing this matrix by its principal (n+ 1)× (n+ 1)-section.

Denote by Pn (n = 0, 1, 2, . . .) the orthogonal projection of A2(C, dµ) onto the linear

hull of {e0, . . . , en}, and let T 1
n(a) stand for the compression of T 1(a) onto the image

ImPn:

T 1
n(a) = PnT

1(a) | ImPn.
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The finite section method replaces the equation T 1(a)f = g by the equations

(8) T 1
n(a)fn = Png (fn ∈ ImPn).

We say that the finite section method is applicable to T 1(a) if there is an n0 ≥ 0 such

that the equations (8) are uniquely solvable for all n ≥ n0 and all g ∈ A2(C, dµ) and

the functions fn converge in A2(C, dµ) to a solution f ∈ A2(C, dµ) of the equation

T 1(a)f = g.

The finite section method for Hardy space Toeplitz operators and their compact per-

turbations has been studied for a long time and these investigations have now resulted

in a round theory (see [17] and [8]). Taking into account that T 1(a) = T 0(a) +K with

some compact operator K whenever a ∈ C(C), one so can easily establish the following

result (see [9] and [12]).

Theorem 3.1. Let a ∈ C(C). Then the finite section method is applicable to T 1(a) if

and only if T 1(a) is invertible.

We will prove that the conclusion of the preceding theorem also holds for a ∈ PCd.

Since in that case the difference T 1(a)− T 0(a) is in general not compact, we employ the

algebraic approach developed in [24] and [7].

Let F denote the collection of all sequences {An}∞n=0 of operators An ∈ L(ImPn) such

that

(9) ‖{An}‖ := sup
n≥0

‖An‖ <∞.

With obvious algebraic operations and the norm (9), the set F is a C∗-algebra. Let N be

the subset of F consisting of all sequences {An} with ‖An‖ → 0 as n → ∞. Clearly, N

is a closed two-sided star-ideal of F, and we may so consider the quotient algebra F/N.

Note that if {An} ∈ F, then

‖{An}+N‖ = lim sup
n→∞

‖An‖.

A sequence {An} ∈ F is said to be stable if the operators An are invertible for all

sufficiently large n, for n ≥ n0 say, and if

sup
n≥n0

‖A−1
n ‖ <∞.

Equivalently, {An} ∈ F is stable if and only if

lim sup
n→∞

‖A−1
n ‖ <∞,

where here and in what follows we put ‖A−1‖ = ∞ if A is not invertible. Hence, in

algebraic language, the stability of {An} is equivalent to the invertibility of {An}+N in

F/N. It is easy to see that the finite section method is applicable to T 1(a) if and only

if T 1(a) is invertible and {T 1
n(a)} is stable. Thus, we are led to studying the problem of

the invertibility of {T 1
n(a)} +N in F/N.

We will now show that if a ∈ PCd has at most finitely many jumps and if c ∈ C(C),

then

T 1
n(ac) = T 1

n(a)T
1
n(c) + PnKPn +WnLWn + Cn,(10)

T 1
n(ca) = T 1

n(c)T
1
n(a) + PnMPn +WnNWn +Dn,(11)
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where K,L,M,N are compact, ‖Cn‖ → 0 and ‖Dn‖ → 0 as n → ∞, and Wn (n =

0, 1, 2, . . .) are the operators which act on A2(C, dµ) by the rule

Wn :

∞
∑

j=0

cjej 7→ c0en + c1en−1 + . . .+ cne0,

with en given by (4). Formulas like (10), (11) were first established by Widom [26] for

Hardy space Toeplitz operators and they govern computations with elements of the form

{T 1
n(a)} +N in F/N. The extension of Widom’s formula to the Segal–Bargmann space

case is not trivial.

Let σ be the characteristic function of the half-plane

Cθ1 := {z = reiθ : r > 0, θ1 < θ < θ1 + π}.

Put θ2 = θ1 + π. A straightforward computation yields

[T 1(σ)]jk =
Γ(k+j2 + 1)

√

Γ(k + 1)Γ(j + 1)

eiθ2(k−j) − eiθ1(k−j)

2πi(k − j)
(j 6= k),(12)

[T 1(σ)]jj = 1/2,(13)

and

[T 0(σ)]jk =
eiθ2(k−j) − eiθ1(k−j)

2πi(k − j)
(j 6= k),(14)

[T 0(σ)]jj = 1/2.(15)

Now denote by ρ the characteristic function of the strip

Sd,θ1 := {z ∈ C : 0 < Im(ze−iθ1) < d}.

We have

[T 1(ρ)]jk = (2kk!2jj!)−1/2
\

Sd,θ1

zkzj dµ(z)

= (2kk!2jj!)−1/2 2

∞\
0

rk+j+1e−r
2/2dr

θ1+θr\
θ1

ei(k−j)θ
dθ

2π
,

where θr = π/2 for r ≤ d and θr = arcsin(d/r) for r > d. Obviously, θr = O(1/r) as

r → ∞.

Lemma 3.2. For all j, k,

|[T 1(ρ)]jk| ≤ D/|k − j| (k 6= j),(16)

|[T 1(ρ)]jk| ≤ E Γ

(

k + j + 1

2

)

/

√

Γ(k + 1)Γ(j + 1)(17)

with some constants D and E.

P r o o f. Since θr = O(1/r), we get

|[T 1(ρ)]jk| ≤ C(2kk!2jj!)−1/2

∞\
0

rk+je−r
2/2 dr

= C 2−1/2Γ

(

k + j + 1

2

)

/

√

Γ(k + 1)Γ(j + 1)
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and we thus obtain (16). If k 6= j then

∣

∣

∣

θ1+θr\
θ1

ei(k−j)θ dθ
∣

∣

∣
=

|ei(θ1+θr)(k−j) − eiθ1(k−j)|

|k − j|
≤

2

|k − j|
,

which gives

∣

∣[T 1(ρ)]jk
∣

∣ ≤
E

|k − j|
Γ

(

k + j + 1

2

)

/

√

Γ(k + 1)Γ(j + 1),

and because Γ((x+ y)/2) ≤
√

Γ(x)Γ(y), we arrive at (17).

Lemma 3.3. Let Pn and Wn be as before and define V n+1 (n = 0, 1, 2, . . .) by

V n+1 :

∞
∑

j=0

cjej 7→ c0en+1 + c1en+2 + c2en+3 + . . . .

Then the four operators

WnT
1(ρ)Wn, Wn(T

1(σ) − T 0(σ))Wn,

PnT
1(ρ)V n+1, Pn(T

1(σ)− T 0(σ))V n+1

converge strongly to zero as n→ ∞.

P r o o f. Put R = T 1(σ) − T 0(σ) and let Rjk be the jk entry of R. Then

‖WnRWnej‖
2 =

n
∑

k=0

|Rn−k,n−j |
2.

We first show that WnRWnej → 0 as n→ ∞. Given any ε > 0, choose an N so that

(18)

∞
∑

k=N

1/|j − k|2 < ε/2.

Stirling’s formula gives

lim
n→∞

Γ(n− k+j
2 + 1)

√

Γ(n− k + 1)Γ(n− j + 1)
= 1,

and hence there is an n0 such that
(

1−
Γ(n− k+j

2 + 1)
√

Γ(n− k + 1)Γ(n− j + 1)

)2

<
ε

2N

for all k = 0, 1, . . . , N − 1 if only n ≥ n0 > N . This together with (12) to (15) implies

that if n ≥ n0, then
n
∑

k=0

|Rn−k,n−j |
2 =

∑

k∈{0,...,n}\{j}

|Rn−k,n−j |
2

≤
1

π2

∑

k∈{0,...,n}\{j}

1

(j − k)2

(

1−
Γ(n− k+j

2 + 1)
√

Γ(n− k + 1)Γ(n− j + 1)

)2

≤
∑

k∈{0,...,N−1}\{j}

1

(j − k)2
ε

2N
+

∞
∑

k=N

1

(j − k)2
< ε
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(recall that Γ((x + y)/2)/
√

Γ(x)Γ(y) ≤ 1). Thus, WnRWnej → 0 for all j, and since

the operators WnRWn are clearly uniformly bounded, it follows that WnRWn converges

strongly to zero as n → ∞. In a similar way one can show that PnRV
n+1 → 0 strongly

as n→ ∞.

Let us now prove that WnT
1(ρ)Wnej → 0 as n → ∞. Given any ε > 0, define N

again by (18). By virtue of (17) and Stirling’s formula,

|[T 1(ρ)]n−k,n−j | ≤ lim
n→∞

E Γ(n− k+j
2 + 1

2 )
√

Γ(n− k + 1)Γ(n− j + 1)
= 0.

Hence, there is an n0 such that

|[T 1(ρ)]n−k,n−j |
2 < ε/(2N)

whenever n ≥ n0 > N and 0 ≤ k ≤ N − 1. So if n ≥ n0, we deduce from (16) that

n
∑

k=0

|[T 1(ρ)]n−k,n−j |
2 <

N−1
∑

k=0

ε

2N
+

∞
∑

k=N

D2

(j − k)2
<
ε

2
+D2 ε

2
.

It now follows as above that WnT
1(ρ)Wn → 0 strongly as n → ∞. One can show

analogously that PnT
1(ρ)V n+1 → 0 as n→ ∞.

Lemma 3.4. Define the half-plane H+
d,τ as in Section 2 and let χ be the characteristic

function of H+
d,τ . Then for every c ∈ C(C),

T 1
n(χc) = T 1

n(χ)T
1
n(c) + PnMPn +WnNWn +Dn,

T 1
n(cχ) = T 1

n(c)T
1
n(χ) + PnKPn +WnLWn + Cn,

with compact operators K,L,M,N and operators Cn, Dn for which ‖Cn‖ and ‖Dn‖ con-

verge to zero as n→ ∞.

P r o o f. We have χ = σ − ρ for suitably chosen θ1. The operator K = T 1(χc) −

T 1(χ)T 1(c) is known to be compact and clearly,

T 1
n(χc) = T 1

n(χ)T
1
n(c) + PnT

1(χ)QnT
1(c)Pn + PnMPn

with Qn = I − Pn. The operator PnT
1(χ)QnT

1(c)Pn equals

PnT
0(χ)QnT

0(c)Pn + PnR(χ)QnT
0(c)Pn + PnT

1(χ)QnR(c)Pn,

where R(a) := T 1(a)− T 0(a). By Widom’s original formula [26],

PnT
0(χ)QnT

0(c)Pn =WnLWn,

where L = T 0(χ0c0) − T 0(χ0)T 0(c0) and a0(z) := a(z) (z ∈ C). Again L is known to

be compact. Furthermore, since R(c) is compact and Qn converges strongly to zero, it

follows that

‖PnT
1(χ)QnR(c)Pn‖ → 0 as n→ ∞.

Finally, from Formula 7.7(3) in [8] we infer that QnT
0(c)Pn is equal to V n+1HWn with

some compact (Hankel) operator H . Due to Lemma 3.3, the operator PnR(χ)V
n+1 con-

verges strongly to zero, and hence as n→ ∞,

‖PnR(χ)QnT
0(c)Pn‖ = ‖PnR(χ)V

n+1HWn‖ → 0.
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This completes the proof of the first formula of the lemma. The second formula can be

verified similarly.

Here now is the Segal–Bargmann space version of Widom’s formula.

Proposition 3.5. Let a ∈ PCd and suppose a∞ has only a finite number of jumps.

Then for every c ∈ C(C),

T 1
n(ac) = T 1

n(a)T
1
n(c) + PnMPn +WnNWn +Dn,

T 1
n(ca) = T 1

n(c)T
1
n(a) + PnKPn +WnLWn + Cn,

where K,L,M,N are compact and Cn, Dn converge uniformly to zero as n goes to infinity.

P r o o f. Once Lemma 3.4 is available, the proof is the same as the one of Proposition

4.7 of [10].

After having established the preceding proposition, the machinery worked out in [7]

and [8] for the Hardy space case and in [10] for the Bergman space operators can be

carried over to the Segal–Bargmann space situation without difficulty.

Let J denote the subset of F/N consisting of all elements of the form {PnKPn +

WnLWn}+N with compact operators K and L. Define C as the smallest C∗-subalgebra

of F/N containing J and all elements {T 1
n(c)} + N with c ∈ C(C), and let B be the

smallest C∗-subalgebra of F/N containing J and all elements {T 1
n(a)}+N with a ∈ PCd.

Proposition 3.6. Let {An}+N ∈ B. Then the two strong limits

S1{An} := s-lim
n→∞

An and S2{An} := s-lim
n→∞

WnAnWn

exist and belong to B. If even {An} + N ∈ C, then S1{An} and S2{An} lie in C. If

a ∈ PCd, then

S1{T
1
n(a)} = T 1(a), S2{T

1
n(a)} = T 0(a0),

where a0(z) = a(z) (z ∈ C), and if An = PnKPn +WnLWn with K,L ∈ K, then

S1{An} = K, S2{An} = L.

P r o o f. The same arguments as in the proof of Proposition 4.7 of [10] apply.

Using the previous proposition, it is readily seen that J is a closed two-sided star ideal

of both C and B (note, for example, that

T 1
n(a)WnLWn =Wn(WnT

1
n(a)Wn)LWn,

and since WnT
1
n(a)Wn converges strongly to T 0(a0), it follows that

T 1
n(a)WnLWn =WnT

0
n(a

0)LWn + Cn

with T 0(a0)L ∈ K and {Cn} ∈ N). Hence, we may consider the quotient algebras Cπ :=

C/J and Bπ := B/J. For {An}+N in C or B, we abbreviate ({An}+N) + J to {An}π.

Proposition 3.7. The mappings

δc : C
π → Cπ, {An}

π 7→ (S1{An})
π

and

δb : B
π → Bπ, {An}

π 7→ (S1{An})
π

are well-defined isometric C∗-algebra isomorphisms.



36 A. BÖTTCHER AND H. WOLF

The proof will be based on Theorem 2.2 and the following simple (well-known but

extraordinarily useful) observation.

Lemma 3.8. Let B1 and B2 be C∗-algebras and let δ : B1 → B2 be a C∗-algebra

homomorphism with the property that for every b ∈ B1 the spectrum of b coincides with

the spectrum of δ(b). Then δ is an isometric C∗-algebra isomorphism of B1 onto δ(B1).

P r o o f o f L emma 3.8. Let b∈B1. Then ‖b‖2=‖b∗b‖, and since b∗b is self-adjoint,

the norm ‖b∗b‖ equals the spectral radius r(b∗b). By assumption, r(b∗b) coincides with

r(δ(b∗b)) = r(δ(b)∗δ(b)) and hence, by the self-adjointness of δ(b)∗δ(b), with ‖δ(b)∗δ(b)‖ =

‖δ(b)‖2.

The Hardy space analogue of Proposition 3.7 was established in [7]. Also see Theorem

7.33(b) of [8] for piecewise continuous symbols. Since T 1(c)−T 0(c) is compact for c ∈

C(C), the assertion on δc follows immediately from its Hardy space counterpart.

P r o o f o f P r o p o s i t i o n 3.7. Let us now prove the assertion for δb. We first show

that δb is well-defined. So let {An}π = 0, i.e. assume {An} + N ∈ J. Then An =

PnKPn +WnLWn +Cn with K,L ∈ K and {Cn} ∈ N. It follows that S1{An} = K ∈ K

and hence (S1{An})π = 0, as desired.

From Proposition 3.5 we know that {T 1
n(a)}

π and {T 1
n(c)}

π commute whenever a is

in PCd and a∞ has only finitely many jumps and c belongs to C(C). Since the collection

of PCd functions a for which a∞ has at most finitely many jumps is dense in PCd, it

results that {T 1
n(a)}

π and {T 1
n(c)}

π commute for every a ∈ PCd and every c ∈ C(C).

Consequently, Cπ is a C∗-subalgebra of the center of Bπ and so Theorem 2.2 may be

applied with B = Bπ and C = Cπ.

From Theorem 2.1 and the fact that Cπ ∼= Cπ, we know that M(Cπ) = T. For τ ∈ T,

the maximal ideal of Cπ corresponding to τ is

{{T 1
n(c)}

π : c ∈ C(C), c∞(τ) = 0},

and the smallest closed two-sided star-ideal Yτ of Bπ containing the latter ideal is

{{T 1
n(a)}

π : a ∈ PCd, a∞ is continuous at τ, a∞(τ) = 0}.

Let χ denote the characteristic function of the half-plane H+
d(τ),τ . For a ∈ PCd, we then

have

(19) {T 1
n(a)}

π +Yτ = {T 1
n(a(τ + 0)χ+ a(τ − 0)(1− χ))}π +Yτ

and hence the algebra Bπ/Yτ is generated by the identity element and {T 1
n(χ)}

π +Yτ .

A little thought shows that the spectrum of {T 1
n(χ)}

π + Yτ is contained in [0, 1] and

that it contains the spectrum of [T 1(χ)]π + Yτ in Bπ/Yτ . Since the latter spectrum is

all of [0, 1], we conclude that the spectrum of {T 1
n(χ)}

π +Yτ is also the entire interval

[0, 1]. Consequently, the C∗-algebra Bπ/Yτ is isometrically isomorphic to C[0, 1], as is

the algebra Bπ/Yτ .

From (7) and (19) we see that via the Gelfand transform [T 1(a)]π+Yτ and {T 1
n(a)}

π+

Yτ are represented by the same function in C[0, 1]. Since Bπ and Bπ, respectively, are

generated by all [T 1(a)]π and {T 1
n(a)}

π with a ∈ PCd, it follows that for every {An}
π ∈

Bπ the elements (S1{An})π +Yτ and {An}π +Yτ are represented by the same function
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in C[0, 1]. Now Theorem 2.2 implies that if {An}π is any element of Bπ , then the spectra

of {An}π in Bπ and of (S1{An})π in Bπ coincide. Since δb is clearly surjective, Lemma

3.8 completes the proof.

Here now is our main result.

Theorem 3.9. Let {An} +N ∈ B. Then {An} is stable if and only if S1{An} and

S2{An} are invertible. In that case

(20) lim sup
n→∞

‖A−1
n ‖ = max {‖(S1{An})

−1‖, ‖(S2{An})
−1‖}.

P r o o f. A crucial result by Silbermann (see [24] or [7] or Theorem 7.11 of [8]) says

that {An} is stable, i.e. that {An} +N is invertible in F/N, if and only if S1{An} and

S2{An} are invertible operators and {An}π is invertible in Bπ . Proposition 3.7 tells us

that {An}π is automatically invertible if only S1{An} (and thus all the more (S1{An})π)

is invertible. This proves the first part of the theorem.

To show (20), denote by L⊕L the C∗-algebra of all ordered pairs (A,B) of operators

A,B ∈ L with componentwise algebraic operations and the norm

‖(A,B)‖ = max{‖A‖, ‖B‖}.

From Proposition 3.6 we know that the mapping

σ : B → L⊕L, {An}+N 7→ (S1{An}, (S2{An}))

is a well-defined C∗-algebra homomorphism, and from what was proved in the preceding

paragraph, we know that the spectrum of {An}+N in F/N and thus in the C∗-subalgebra

B of F/N coincides with the spectrum of the element σ({An}+N) in L⊕L. So Lemma

3.8 implies that σ is an isometric C∗-algebra isomorphism of B onto σ(B). Hence, if

{An}+N is invertible in B, then

lim sup
n→∞

‖A−1
n ‖ = ‖{A−1

n }+N‖

= max(‖S1{A
−1
n }‖, ‖S2{A

−1
n }‖)

= max(‖(S1{An})
−1‖, ‖(S2{An})

−1‖).

And here are two first consequences of Theorem 3.9.

Theorem 3.10. Let {ajk} be a finite collection of functions in PCd and put

A =
∑

j

∏

k

T 1(ajk), An =
∑

j

∏

k

T 1
n(ajk).

Then the following are equivalent :

(i) the operators An are invertible in ImPn for all sufficiently large n and for each

g ∈ A2(C, dµ) the unique solution fn ∈ ImPn of Anfn = Png converges in A2(C, dµ) to

a solution of the equation Af = g;

(ii) A and A0 :=
∑

j

∏

k T
0(a0jk) are invertible.

P r o o f. From Proposition 3.6 we have S1{An} = A and S2{An} = A0. Assertion (i)

is equivalent to the invertibility of A and the stability of {An} (see, e.g., Proposition 7.3

of [8]), and therefore the equivalence (i)⇔(ii) follows immediately from Theorem 3.9.
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Theorem 3.11. Let a ∈ PCd. Then the finite section method is applicable to T 1(a)

if and only if T 1(a) is invertible.

P r o o f. The “only if” part is a special case of the preceding theorem. If T 1(a) is

invertible, we deduce from Theorem 2.4 that 0 ∈ a# and that the winding number of a#

about the origin is zero. This in turn implies that T 0(a0) is invertible. The “if part” is

now immediate from the implication (ii)⇒(i) of the previous theorem.

Two more sets of problems that can be tackled with the help of Theorem 3.9 will be

considered in the next two sections.

4. Spectral approximation. The purpose of this section is to show how Theorem

3.9 can be used to gain insight in the relation between the spectrum of T 1(a) and the

spectrum (eigenvalues) of T 1
n(a) for large n.

Given a sequence {En}∞n=0 of sets En ⊂ C, we denote by limn→∞En the set of all

λ ∈ C with the following property: there are n1 < n2 < . . . and λk ∈ Enk
such that

λk → λ. The spectrum of an operator A will be denoted by Λ0(A), i.e.

Λ0(A) = {λ ∈ C : A− λI is not invertible}.

Theorem 3.11 says that if T 1(a) is invertible, then so is T 1
n(a) for all sufficiently large

n and we have

(21) lim sup
n→∞

‖[T 1
n(a)]

−1‖ <∞.

This is all we need to establish the inclusion

(22) lim
n→∞

Λ0(T
1
n(a)) ⊂ Λ0(T

1(a)).

Indeed, if λ 6∈ Λ0(T
1(a)), then there are an n0 and an M such that

‖[T 1
n(a− λ)]−1‖ ≤M for all n ≥ n0,

and since

(23) ‖[T 1
n(a− µ)]−1‖ ≤

‖[T 1
n(a− λ)]−1‖

1− |µ− λ| ‖[T 1
n(a− λ)]−1‖

whenever |µ− λ| < 1/M , it follows that

‖[T 1
n(a− µ)]−1‖ ≤ 2M

if n ≥ n0 and µ ∈ U1/(2M)(λ) = {ζ ∈ C : |ζ − λ| < 1/(2M)}. Hence,

U1/(2M)(λ) ∩ Λ0(T
1
n(a)) = ∅

for n ≥ n0 and thus λ 6∈ limn→∞ Λ0(T
1
n(a)).

From the work of Schmidt and Spitzer [22] we know that the limit set limn→∞

Λ0(T
0
n(a)) may be much smaller than Λ0(T

0(a)), and therefore we conjecture that in gen-

eral the inclusion in (22) is also “strict in some sense”. Instead of pursuing this question,

we will show how Theorem 3.9 produces fairly sharp results for so-called pseudospectra.

Pseudospectra were considered by Reichel and Trefethen [21]. For ε > 0, the ε-

pseudospectrum Λε(A) of an operator A is defined as

Λε(A) = {λ ∈ C : λ ∈ Λ0(A) or ‖(A− λI)−1‖ ≥ 1/ε}.
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Using a result of Widom [27], Reichel and Trefethen [21] have shown that

lim
n→∞

Λε(T
0
n(a)) = Λε(T

0(a)).

We here prove the Segal–Bargmann space analogue of this by having recourse to Theorem

3.9 and the approach of [6].

Estimating the limit set of the pseudospectra of operator sequences from below leads to

the problem whether the resolvent of an operator can have constant norm. We conjectured

that this cannot happen but had not been able to prove this. Therefore we posed the

problem at the Banach Semester in Warsaw in March, 1994. Only a few weeks later,

Andrzej Daniluk of Cracow sent us the following e-mail:

From: daniluk@im.uj.edu.pl (Andrzej Daniluk)

Subject: constant norm of the resolvent

To: aboettch@mathematik.tu-chemnitz.de

Date: Tue, 24 May 1994 17:07:10 +0200 (MET DST)

Dear Sir, Visiting the Banach center in March you asked the following question:

Can the norm of the resolvent R(z, T ) be constant for every z in the unit disk?

Unfortunately I don’t remember if you considered T being an element of any Banach

algebra or an operator on a Hilbert (Banach?) space. As you probably know, I found the

NEGATIVE answer to your question in the second case but I didn’t in general. I’m sorry

that I’m writing you so late but I got your e-mail address only just yesterday.

So now I’m going to sketch you the proof. The same result can however be obtained

when T acts not on a Hilbert space but on a Banach space with a positive modulus of

convexity (so in particular on Lp). Although the reasoning is the same in both cases, the

proof is nicer for Hilbert spaces and I’ll concentrate on it.

Let us assume that the norm |R(z, T )| =M , for |z| ≤ 1. As

R(z, T ) =
∑

j

zjT−j−1

we easily compute for any vector f

|R(z, T )f |2 =
∑

j,k

zjz−k〈T−j−1f, T−k−1f〉

and its integral mean

1

2iπ

\
|z|=1

|R(z, T )f |2dz =
∑

j

|T−j−1f |2,

which is by assumption less than or equal to M2|f |2. But as |T−1| = M we can find a

normalized vector f such that |T−1f |2 > M2 − ε. So every other component in the last

sum above must be less than ε. Particularly, 0 must be then in the approximate spectrum

of T−2, which is a contradiction.

Yours faithfully, Andrzej Daniluk
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Thus, Andrzej Daniluk solved the problem we could not solve, and both the following

result and its proof are due to him (1).

Proposition 4.1. Let H be a Hilbert space and let T ∈ L(H). Suppose T − λI is

invertible for all λ in some open subset U of C and ‖(T − λI)−1‖ ≤ M for all λ ∈ U .

Then ‖(T − λI)−1‖ < M for all λ ∈ U .

P r o o f. A little thought reveals that what we must show is the following: if U is

an open subset of C containing the origin and ‖(T − λI)−1‖ ≤ M for all λ ∈ U , then

‖T−1‖ < M . To prove this, assume the contrary, i.e. let ‖T−1‖ =M . We have

(T − λI)−1 =

∞
∑

j=0

λjT−j−1

for all λ in some disk |λ| ≤ r. Given any f ∈ H , we therefore get

‖(T − λI)−1f‖2 =
∑

j,k≥0

λjλ
k
(T−j−1f, T−k−1f)

whenever |λ| ≤ r. Integrating the latter equality along the circle |λ| = r we obtain

1

2π

\
|λ|=r

‖(T − λI)−1f‖2|dz| =
∞
∑

j=0

r2j‖T−j−1f‖2,

and since ‖(T − λI)−1f‖ ≤M‖f‖, we arrive at the inequality

‖T−1f‖2 + r2‖T−2f‖2 ≤
∞
∑

j=0

r2j‖T−j−1f‖2 ≤M2‖f‖2.

Now pick an arbitrary ε > 0. Because ‖T−1‖ = M by assumption, there is an fε ∈ H

such that ‖fε‖ = 1 and ‖T−1fε‖2 > M2 − ε. It follows that

M2 − ε+ r2‖T−2fε‖
2 < M2,

i.e. ‖T−2fε‖2 < εr−2, and consequently,

1 = ‖fε‖
2 ≤ ‖T 2‖2‖T−2fε‖

2 < εr−2‖T 2‖2,

which is impossible if ε > 0 is sufficiently small. This contradiction shows that ‖T−1‖

< M .

Now we are in a position to give a lower bound for the limit set of the pseudospectra

of certain sequences of operators.

Proposition 4.2. Let H be a Hilbert space, and let Pn ∈ L(H) be a sequence of

projections converging strongly to the identity operator. If A ∈ L(H) is any operator and

An ∈ L(ImPn) any sequence of operators such that An → A and A∗
n → A∗ strongly, then

Λε(A) ⊂ lim
n→∞

Λε(An)

for each ε > 0.

(1) Editorial note: See also J. Globevnik, Schwarz’s lemma for the spectral radius, Rev.

Roumaine Math. Pures Appl. 19 (1974), 1009–1012.
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P r o o f. Let first λ ∈ Λ0(A). We claim that then

(24) lim sup
n→∞

‖(An − λI)−1‖ = ∞.

Indeed, if ‖(An − λI)−1‖ ≤ M for n ≥ n0, then ‖Pnϕ‖ ≤ M‖(An − λI)Pnϕ‖ for all

ϕ ∈ H , and passage to limit n→ ∞ gives ‖ϕ‖ ≤M‖(A− λI)ϕ‖ for all ϕ ∈ H , implying

that the range of A− λI is closed and that A− λI is injective. Considering adjoints we

similarly get ‖ϕ‖ ≤M‖(A∗ −λI)ϕ‖ for all ϕ ∈ H , which shows that the range of A−λI

is dense. Hence, if (24) is not valid then A− λI is invertible. Our assumption that λ be

in Λ0(A) therefore implies that (24) holds. From (24) we infer that there is a sequence

nk → ∞ such that λ ∈ Λε(Ank
) and thus, λ ∈ limn→∞ Λε(An).

Now suppose λ ∈ Λε(A) \Λ0(A). Then A− λI is invertible and ‖(A− λI)−1‖ ≥ 1/ε.

Let U be any open neighborhood of λ. From Proposition 4.1 we deduce that there is

a µ ∈ U such that ‖(A − µI)−1‖ > 1/ε and thus ‖(A − µI)−1‖ > 1/(ε − 1/k) for all

sufficiently large k. Consequently, we have λ = limk→∞ λk with λk ∈ Λ1/ε−1/k(A). If T

is any invertible Hilbert space operator, then

(25) ‖T−1‖ = sup
ψ 6=0

‖T−1ψ‖

‖ψ‖
= sup

ϕ 6=0

‖ϕ‖

‖Tϕ‖
=

(

inf
ϕ=0

‖Tϕ‖

‖ϕ‖

)−1

Hence, for each n, there exists a ϕ in H such that

‖ϕ‖ = 1, ‖(A− λkI)ϕ‖ < ε− 1/(2k).

We have

‖(An − λkI)Pnϕ‖ ≤ ‖(An −A)Pnϕ‖+ ‖(A− λkI)Pnϕ‖

≤ ‖(An −A)Pnϕ‖+ ‖(A− λkI)ϕ‖ + ‖(A− λkI)(I − Pn)ϕ‖

and since (An −A)Pn and I − Pn converge strongly to zero, we obtain

‖(An − λkI)Pnϕ‖ < ε− 1/(3k)

for all sufficiently large n. Because ‖Pnϕ‖ tends to ‖ϕ‖ = 1 as n→ ∞, we get

‖(An − λkI)Pnϕ‖/‖Pnϕ‖ < ε− 1/(4k) < ε

for all n large enough. Now (25) implies that

‖(An − λkI)
−1‖ > 1/ε

and consequently, λk∈Λε(An) for all sufficiently large n. This proves that λ=limk→∞ λk
belongs to limn→∞ Λε(An).

The following result sharpens (21).

Theorem 4.3. Let a ∈ PCd and suppose (21) holds. Then T 1(a) and T 0(a0) are

invertible, the limit limn→∞ ‖[T 1
n(a)]

−1‖ exists , and

(26) lim
n→∞

‖[T 1
n(a)]

−1‖ = max {‖[T 1(a)]−1‖, ‖[T 0(a0)]−1‖}.

P r o o f. Theorem 3.9 with An = T 1
n(a) implies the invertibility of T 1(a) and T 0(a0)

and yields (26) with limsup in place of lim. Since [T 1
n(a)]

−1 converges strongly to

[T 1(a)]−1, it follows that

lim inf
n→∞

‖[T 1
n(a)]

−1‖ ≥ ‖[T 1(a)]−1‖,
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and because [T 0(a0)]−1 is the strong limit of Wn[T
1
n(a)]

−1Wn, we obtain

lim inf
n→∞

‖[T 1
n(a)]

−1‖ ≥ lim inf
n→∞

‖Wn[T
1
n(a)]

−1Wn‖ = ‖[T 0(a0)]−1‖.

Theorem 4.4. Let a ∈ PCd. Then for each ε > 0,

(27) lim
n→∞

Λε(T
1
n(a)) = Λε(T

1(a)) ∪ Λε(T
0(a0)).

Furthermore,

(28) lim
ε→0

lim
n→∞

Λε(T
1
n(a)) = Λ0(T

1(a)).

P r o o f. Proposition 4.2 with An = T 1
n(a) shows that Λε(T

1(a)) is contained in

limn→∞ Λε(T
1
n(a)). Because

‖[WnT
1
n(a− λ)Wn]

−1‖ = ‖Wn[T
1
n(a− λ)]−1Wn‖ ≤ ‖[T 1

n(a− λ)]−1‖,

we have

Λε(WnT
1
n(a)Wn) ⊂ Λε(T

1
n(a)),

and hence Proposition 4.2 with An = WnT
1
n(a)Wn and A∗

n = WnT
1
n(a)Wn implies that

Λε(T
0(a0)) is a subset of limn→∞ Λε(T

1
n(a)).

To prove the reverse inclusion of (27), assume

λ 6∈ Λε(T
1(a)) ∪ Λε(T

0(a0)).

Then ‖[T 1(a−λ)]−1‖ < 1/ε and ‖[T 0(a0−λ)]−1‖ < 1/ε, and from (26) we conclude that

‖[T 1
n(a− λ)]−1‖ ≤ 1/ε− δ < 1/ε

for all n ≥ n0. Taking into account the estimate (23), we see that if µ is in a sufficiently

small neighborhood Uη(λ) of λ, then

‖[T 1
n(a− µ)]−1‖ < 1/ε− δ/2 < 1/ε

for all n ≥ n0. Consequently, Uη(λ) ∩ Λε(T
1
n(a)) = ∅ for all n ≥ n0, implying that

λ 6∈ limΛε(T
1
n(a)).

Finally, since

lim
ε→0

Λε(A) = Λ0(A)

for every operator A, equality (27) gives

lim
ε→0

lim
n→∞

Λε(T
1
n(a)) = Λ0(T

1(a)) ∪ Λ0(T
0(a0)),

and Theorem 2.4 in conjunction with the well-known invertibility criterion for Hardy

space Toeplitz operators with piecewise continuous symbols (see [17]) shows that

Λ0(T
0(a0)) ⊂ Λ0(T

1(a)).

We remark that (26) and (27) can be extended to the situation considered in Theorem

3.10. Namely, define An, A, and A
0 as in that theorem. Then if {An} is a stable sequence,

the operators A and A0 are invertible, the limit limn→∞ ‖A−1
n ‖ exists, and

lim
n→∞

‖A−1
n ‖ = max{‖A−1‖, ‖[A0]−1‖}.

Moreover, if ε > 0, then

lim
n→∞

Λε(An) = Λε(A) ∪ Λε(A
0).

The proofs are the same as those of Theorems 4.3 and 4.4.
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5. Collocation methods. A collocation method for approximately solving equation

(2) consists in the following. Choose n + 1 points z0, z1, . . . , zn ∈ C (the collocation

points) and n+1 functions ϕ0, ϕ1, . . . , ϕn ∈ A2(C, dµ) (the basis functions). Look for an

approximate solution fn in the form of a linear combination

fn(w) = c0ϕ0(w) + c1ϕ1(w) + . . .+ cnϕn(w) (w ∈ C)

and determine the n+ 1 unknown coefficients so that (T 1(a)fn)(z) and g(z) coincide at

the n+1 points z = z0, z1, . . . , zn. Notice that the n+1 equations (T 1(a)fn)(zk) = g(zk)

are the linear algebraic system
n
∑

j=0

cj

\
C

a(w)ezkw/2ϕj(w) dµ(w) = g(zk) (k = 0, 1, . . . , n).

When studying the problem of the convergence of a collocation method, one has to choose

for each n collocation points z
(n)
0 , z

(n)
1 , . . . , z

(n)
n and basis functions ϕ

(n)
0 , ϕ

(n)
1 , . . . , ϕ

(n)
n .

We here choose the following system of collocation points: fix r > 0, and let

z
(n)
0 , z

(n)
1 , . . . , z

(n)
n be the zeros of the equation zn+1−rn+1 = 0. Throughout what follows

z
(n)
0 , z

(n)
1 , . . . , z

(n)
n are always specified in this way.

We say that the collocation method with a system of basis functions {ϕ
(n)
0 ,

ϕ
(n)
1 , . . . , ϕ

(n)
n } (n = 0, 1, 2, . . .) is applicable to T 1(a) if there is an n0 such that the

equations

(29)

n
∑

j=0

c
(n)
j

\
C

a(w)ez
(n)

k
w/2ϕ

(n)
j (w) dµ(w) = g(z

(n)
k ) (k = 0, 1, . . . , n)

are uniquely solvable for all n ≥ n0 and all g ∈ A2(C, dµ) and the functions fn given by

fn(w) = c
(n)
0 ϕ

(n)
0 (w) + c

(n)
1 ϕ

(n)
1 (w) + . . .+ c(n)n ϕ(n)

n (w) (w ∈ C)

converge in A2(C, dµ) to a solution f ∈ A2(C, dµ) of the original equation T 1(a)f = g.

In case we choose {ϕ
(n)
0 , . . . , ϕ

(n)
n } = {e0, . . . , en} as the basis functions, where the

monomials ej are given by (4), we speak of polynomial collocation.

Theorem 5.1. Let a ∈ PCd. Then polynomial collocation is applicable to T 1(a) if and

only if T 1(a) is invertible.

Another choice of the basis functions is

(30) {ϕ
(n)
0 , . . . , ϕ(n)

n } = {K
z
(n)
0

, . . . ,K
z
(n)
n

},

where, for z ∈ C, the function Kz ∈ A2(C, dµ) is given by

Kz(w) = ezw/2 (w ∈ C).

If the basis functions are chosen in this way, we speak of analytic element collocation.

Theorem 5.2. Let a ∈ PCd. Then analytic element collocation is applicable to T 1(a)

if and only if T 1(a) is invertible.

The Bergman space analogues of the above two theorems were established in [11].

Therefore we here confine us to merely pointing out the main ideas of their proofs.

Recall that Pn is the orthogonal projection of A2(C, dµ) onto the space ImPn of all

polynomials of degree at most n. We denote by Ln : A2(C, dµ) → ImPn the Lagrange
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interpolation projection, that is, the projection that sends f ∈ A2(C, dµ) to the (unique)

polynomial Lnf ∈ ImPn satisfying (Lnf)(z
(n)
k ) = f(z

(n)
k ) for k = 0, . . . , n. If we put

q
(n)
j (z) =

∏

k 6=j

z − zj
zk − zj

(z ∈ C),

then q
(n)
j ∈ ImPn and we have

(31) Lnf =

n
∑

j=0

f(z
(n)
j )q

(n)
j .

Now the functions Kz(w) = ezw/2 enter the scene. Equality (1) just says that

f(z) = (f,Kz) for all f ∈ A2(C, dµ) and all z ∈ C.

Hence, we may write (31) in the form

Lnf =

n
∑

j=0

(f,K
z
(n)
j

)q
(n)
j ,

which immediately implies that the adjoint L∗
n of Ln is the projection of A2(C, dµ) onto

the linear hull of the functions (30) acting by the rule

L∗
nf =

n
∑

j=0

(f, q
(n)
j )K

z
(n)
j

.

In the case of polynomial and analytic element collocation, the equations (29) are

equivalent to the equations

LnT
1(a)fn = Lng (fn ∈ ImPn)

and

LnT
1(a)fn = Lng (fn ∈ ImL∗

n),

respectively. As in [11] one can show (and this is the crucial point) that

(32) ‖Ln − Pn‖ = ‖L∗
n − Pn‖ → 0 as n→ ∞.

Since PnT
1(a)Pn : ImPn → ImPn is stable if and only if T 1(a) is invertible (Theorem

3.11), it follows easily from (32) that the stability of sequences given by

LnT
1(a)Pn : ImPn → ImPn, LnT

1(a)L∗
n : ImL∗

n → ImPn

is equivalent to the invertibility of T 1(a). This proves Theorems 5.1 and 5.2.

6. Higher dimensions. The Segal–Bargmann space A2(CN , dµ) is the Hilbert space

of all functions f which are analytic on C
N and satisfy

‖f‖2 :=
\

CN

|f(z1, . . . , zN)|
2 dµ(z1) . . . dµ(zN ) <∞.

Since the space A2(CN , dµ) is the Hilbert space tensor product of N copies of A2(C, dµ),

many of the results established in the preceding sections can be carried over to A2(CN , dµ)

by means of the techniques developed in [7] and [10]. We therefore limit ourselves to only

formulating the results.Moreover, in order to avoid unnecessary notational complications,

we will mainly consider the case N = 2.
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The Toeplitz operator on A2(C2, dµ) induced by a function a ∈ L∞(C2) will be

denoted by T 1,1(a). It is defined by

(T 1,1(a)f)(z) =
\
C2

a(w)ezw/2f(w) dµ(w) (z ∈ C
2)

with zw = z1w1+z2w2 and dµ(w) = dµ(w1)dµ(w2). Let PCd⊙PCd denote the algebraic

tensor product of two copies of PCd, i.e. the collection of all functions a on C2 which are

representable as a finite sum of the form

(33) a(z1, z2) =
∑

j

bj(z1)cj(z2) (bj , cj ∈ PCd),

and we let PCd ⊗ PCd stand for the closure of PCd ⊙ PCd in L∞(C2). Notice that if a

is of the form (33), then

T 1,1(a) =
∑

j

T 1(bj)⊗ T 1(cj).

The role played by the operator T 0(a) in the foregoing sections is now taken upon by

three operators T 1,0(a), T 0,1(a), T 0,0(a). In case a is given by (33), we put

(34) T γ,δ(a) =
∑

j

T γ(bj)⊗ T δ(cj)

for γ, δ ∈ {0, 1}. For functions a ∈ PCd ⊗ PCd, the “mixed” operators T ε,δ(a) may be

defined via approximation of a by symbols an ∈ PCd ⊙ PCd. Here is an alternative way

of defining T γ,δ(a) for general a ∈ PCd ⊗ PCd. We know from Proposition 3.6 that if

b ∈ PCd, then T
0(b) is the strong limit of WnT

1(b0)Wn where b0(z) = b(z). Hence, for

a ∈ PCd ⊗ PCd we might put

a1,0(z1, z2) = a(z1, z2), a
0,1(z1, z2) = a(z1, z2), a

0,0(z1, z2) = a(z1, z2),

and then

T 1,0(a) = s-lim
n→∞

(Pn ⊗Wn)T
1,1(a1,0)(Pn ⊗Wn)

T 0,1(a) = s-lim
n→∞

(Wn ⊗ Pn)T
1,1(a0,1)(Wn ⊗ Pn)

T 0,0(a) = s-lim
n→∞

(Wn ⊗Wn)T
1,1(a0,0)(Wn ⊗Wn).

One can indeed show that the three strong limits exist and define operators in the C∗-

algebra tensor product B⊗B, with B as in Section 2. For functions a ∈ PCd ⊙PCd, the

three operators defined in this way coincide with the operators given by (34).

The orthogonal projection of A2(C2, dµ) onto the linear hull of the monomials zj11 z
j2
2

(j1, j2 = 0, . . . , n) is Pn ⊗ Pn. We say that the finite section method is applicable to an

operator A ∈ L(A2(C2, dµ)) if there is an n0 such that the equations

(Pn ⊗ Pn)Afn = (Pn ⊗ Pn)g (fn ∈ Im(Pn ⊗ Pn))

are uniquely solvable for all n ≥ n0 and all g ∈ A2(C2, dµ) and fn converges in A2(C2, dµ)

to a solution f ∈ A2(C2, dµ) of the equation Af = g.
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Theorem 6.1. Let a ∈ PCd ⊗ PCd. Then the finite section method is applicable to

T 1,1(a) if and only if the four operators

(35) T 1,1(a), T 1,0(a1,0), T 0,1(a0,1), T 0,0(a0,0)

are invertible.

Here is the extension of this theorem to mixed Toeplitz operators.

Theorem 6.2. Let a ∈ PCd⊗PCd and (γ, δ) ∈ {0, 1}2. Then the finite section method

is applicable to T γ,δ(a) if and only if the four operators

(36) T γ,δ(a), T γ,0(a1,0), T 0,δ(a0,1), T 0,0(a0,0)

are invertible.

Of course, Theorem 6.1 motivates the consideration of mixed Toeplitz operators. But

what is the motivation for establishing Theorem 6.2? In this connection we first remark

that the operator T 0,0(a) is unitarily equivalent to a Toeplitz (or discrete Wiener-Hopf)

operator on the quarter-plane Z+ × Z+; thus, Theorem 6.2 comprises the result (proved

by Kozak [19] for continuous and in [7] for piecewise continuous symbols) that the finite

section method is applicable to T 0,0(a) if and only if the four operators

T 0,0(a), T 0,0(a1,0), T 0,0(a0,1), T 0,0(a0,0)

are invertible. However, the actual justification of Theorem 6.2 is as follows.

The reader will certainly see how to generalize Theorems 6.1 and 6.2 to dimensions

N ≥ 3: the four operators occurring in these theorems have then to be replaced by 2N

operators constructed in an obvious way. We can indeed prove such a generalization,

and our proof uses induction on the dimension N . However, when proving results by

induction, one is occasionally confronted with the phenomenon that such a proof works

only if the result to be proved is sufficiently strong. And this is exactly what happens

in our situation: it is difficult to extend Theorem 6.1 by induction to higher dimensions,

but it is relatively easy to generalize the stronger Theorem 6.2 by induction on N to

dimensions N ≥ 2 (see also [12], p. 30).

Due to what was said in the last two paragraphs, we formulate the following results for

mixed Toeplitz operators (although our primary interest is in the “pure” Segal–Bargmann

space operators T 1,1(a)).

Let a ∈ PCd ⊗ PCd and w ∈ C. Then the functions ϕ and ψ given by ϕ(z) = a(z, w)

and ψ(z) = a(w, z) belong to PCd and hence, ϕ(τ ± 0) and ψ(τ ± 0) are well defined for

each τ ∈ T. We put

a(τ ± 0, w) = ϕ(τ ± 0), a(w, τ ± 0) = ψ(τ ± 0).

We also remark that the limits

lim
r→∞
s→∞

a(rτ, sσ) =: a∞(τ, σ)

exist for almost every (τ, σ) ∈ T
2 and represent a function a∞ ∈ PC(T) ⊗ PC(T), and

thus a function with well-defined limits a(τ ± 0, σ ± 0) at each point (τ, σ) ∈ T2.
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Theorem 6.3. Let a ∈ PCd ⊗PCd and (γ, δ) ∈ {0, 1}2. For (τ, µ) ∈ T× [0, 1], define

a1τ,µ and a2τ,µ in PCd by

a1τ,µ(z) = (1 − µ)a(τ − 0, z) + µa(τ + 0, z),

a2τ,µ(z) = (1 − µ)a(z, τ − 0) + µa(z, τ + 0).

Then T γ,δ(a) is Fredholm if and only if the operators T δ(a1τ,µ) and T
γ(a2τ,µ) are invertible

on A2(C, dµ) for all (τ, µ) ∈ T× [0, 1].

In the case of N ≥ 3 dimensions, the Fredholmness of a mixed Toeplitz operator is

equivalent to the invertibility of N families of mixed Toeplitz operators on A2(CN−1, dµ).

For γ = δ = 0, the previous theorem is Duduchava’s [15].

Theorem 6.4. Let a ∈ PCd ⊗ PCd and (γ, δ) ∈ {0, 1}2.

(a) If the sequence

T γ,δn (a) := (Pn ⊗ Pn)T
γ,δ(Pn ⊗ Pn)| Im(Pn ⊗ Pn)

is stable, then the four operators (36) are invertible and

lim
n→∞

‖[T γ,δn (a)]−1‖ = max
(α,β)∈{0,1}2

‖[T γα,δβ(aα,β)]−1‖.

(b) For each ε > 0,

lim
n→∞

Λε(T
γ,δ
n (a)) =

⋃

(α,β)∈{0,1}2

Λε(T
γα,δβ(aα,β)).

We finally remark that Theorems 5.1 and 5.2 may also be “tensored”: polynomial or

analytical element collocation is applicable to T 1,1(a) if and only if the four operators

(35) are invertible.
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