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In this survey article we describe how the recent work in quantization in multi-variable

complex geometry (domains of holomorphy, symmetric domains, tube domains, etc.) leads

to interesting results and problems in C∗-algebras which can be viewed as examples of the

“non-commutative geometry” in the sense of A. Connes. At the same time, one obtains

new functional calculi (of pseudodifferential type) with possible applications to partial

differential equations and group representations.

1. Geometry of phase spaces. The non-commutative geometry emerging in quan-

tization theory arises as a deformation of the “classical” geometry of the underlying phase

space, along a deformation parameter (“Planck’s constant”). From the point of view of

harmonic analysis, this parameter is related to representation theory of a “symmetry

group” G acting on phase space. This interplay between complex Kähler geometry, irre-

ducible representations and C∗-algebras is closest for the so-called symmetric domains .

We will first describe the geometry of symmetric phase spaces in algebraic terms. In

the complex case (considered in this article) the appropriate objects are Jordan algebras

and Jordan triples [FK, L1, U1].

Let Z be a complex vector space of dimension n, endowed with a triple product

Z × Z × Z ∋ (u, v, w) 7→ {uv∗w} ∈ Z

which is symmetric bilinear in (u,w) and conjugate-linear in v. We say that Z is a Jordan

triple if the multiplication operators

(u � v∗)w := {uv∗w}
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acting on Z satisfy the commutation relations

(1.1) [u � v∗, x � y∗] = {uv∗x} � y∗ − x � {yu∗v}∗

for all u, v, x, y ∈ Z. Define the Bergman operators

B(u, v) = I − 2u � v∗ + 2(u � v∗)2 − {uv∗u} � v∗

so that, as a consequence of (1.1), we have

B(u, v)z = z − 2{uv∗z}+ {u{vz∗v}∗u}

for all z ∈ Z. A pair (u, v) ∈ Z × Z is called quasi-invertible iff B(u, v) ∈ GL(Z) is

invertible. Put

Zreg := {z ∈ Z : (z, z) quasi-invertible} = {z ∈ Z : B(z, z) ∈ GL(Z)}.

This is an open dense subset of Z. We will always assume that the sesqui-linear “trace

form”

(1.2) (u|v) := traceu � v∗

which satisfies the “associativity” condition ({uv∗w}|z) = (u|{vw∗z}) is non-degenerate.

In the “irreducible” case of rank r, there exists a sesqui-polynomial Nr,r(u, v) on Z ×Z,

called the Jordan triple determinant, such that DetB(u, v) = Nr,r(u, v)
p where p is an

integer called the genus.

A Jordan triple Z is called (positive) hermitian if the scalar product (1.2) is positive

definite. In this case the 0-component of Zreg is the open unit ball

(1.3) B = {z ∈ Z : I − z � z∗ > 0}

for the so-called “spectral norm”. Here > 0 means positive definite with respect to (1.2).

One can show that the group

G = Aut(B)0 (identity component)

of all biholomorphic automorphisms of B is a semi-simple Lie group acting transitively

on B, so that B = G/K whereK = {g ∈ G : g(0) = 0} is the stabilizer subgroup at 0 ∈ B.

Since B is circular, K consists of linear transformations preserving the Jordan triple

product. In particular, K preserves the inner product and is therefore compact. The

pair (G,K) is a hermitian symmetric pair making B into a bounded symmetric domain.

The relationship between hermitian Jordan triples and symmetric domains is essen-

tially one-to-one [L1, U1] and gives a Jordan theoretic refinement of the well-known

Harish-Chandra realization of hermitian symmetric spaces of non-compact type, usually

constructed in Lie-theoretic terms. For example, the curvature operatorR(u, v) which, for

any symmetric space, gives rise to a “Lie triple product” on the tangent space Z = T0(B)

can be expressed as

R(u, v) = u � v∗ − v � u∗

for all u, v ∈ Z [L1]. Thus the Jordan triple product can be regarded as the “positive

part” of the curvature. Also, the inner product (1.2) is the G-invariant Kähler structure

on B evaluated at the “base point” 0 ∈ B. The imaginary part of the Kähler metric is a

G-invariant symplectic form, so that B can be considered as a “classical phase space”.
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Example. Let Z = Cr×s (r ≤ s) be the space of all complex (r×s)-matrices z = (zij).

Then the Jordan triple product on Z is given by the generalized anti-commutator

{uv∗w} := 1
2 (uv

∗w + wv∗u)

which makes sense even for rectangular matrices. In operator terms, we have

u � v∗ = 1
2 (Luv∗ +Rv∗u)

(left and right matrix multiplicators) and the inner product

traceu � v∗ = (r + s) trace(uv∗)

is positive definite. The Bergman operator is

B(u, v) = (I − Luv∗)(I −Rv∗u)

where I is the identity operator. Thus B(u, v)z = (1− uv∗)z(1− v∗u) and DetB(u, v) =

Det(1− uv∗)r+s. Hence the Jordan triple determinant is Nr,r(u, v) = Det(1− uv∗). The

set Zreg = {z ∈ Z : Det(1 − zz∗) 6= 0} has the 0-component B = {z ∈ Z : 1r − zz∗ > 0}

which is just the unit ball of Z in the operator norm. The group G consists of all Moebius

transformations (
a b
c d

)
(z) := (az + b)(cz + d)−1

where
(
a b
c d

)
is a block matrix belonging to the pseudo-unitary group U(r, s). The block-

diagonal matrices (
a 0
0 d

)
(z) = azd−1

with a ∈ U(r), d ∈ U(s) induce linear transformations preserving the Jordan triple

product. They constitute the subgroup K. Therefore B = U(r, s)/U(r) × U(s). The

number r is called the rank of B. For r = 1, we obtain the Hilbert ball B = {z ∈ Cn :

z ·z < 1} in Cn. It is the only class of symmetric domains which have a smooth boundary.

An important class of Jordan triples comes from Jordan algebras. Let X be a real

vector space of dimension n, endowed with a commutative (but non-associative) product

x ◦ y. We say that X is a Jordan algebra if the “multiplication operators”

Mxy := x ◦ y

acting on X satisfy the commutation relations [Mx,Mx2 ] = 0 for all x∈X . Here x2 :=

x ◦ x. Define the “quadratic representation” operator

Px := 2M2
x −Mx2 .

Assume thatX has a unit element e. An element x ∈ X is called invertible iff Px ∈ GL(X)

is invertible. Put

(1.4) Xreg := {x ∈ X : x invertible} = {x ∈ X : Px ∈ GL(X)}.

This is an open dense subset of X . We will always assume that the bilinear “trace form”

(1.5) (x|y) := traceMx◦y

which satisfies the “associativity” condition (x ◦ y|z) = (x|y ◦ z) is non-degenerate. In

the irreducible case, there exists a polynomial Nr(x) on X such that Nr(e) = 1 and
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DetPx = Nr(x)
n/r where n is the dimension and r is the so-called rank. Nr(x) is called

the Jordan algebra determinant. It is related to, but different from, the triple determinant

(which depends on two arguments). Another way to introduce Nr is via “Cramer’s rule”

x−1 =
gradNr(x)

Nr(x)

where x−1 is the Jordan algebra inverse and grad is the gradient with respect to (1.5).

A Jordan algebra X is called (positive) euclidean if the trace form (1.5) is positive

definite. In this case X has a unit element e, and the e-component

C = {x ∈ X : Mx > 0}

becomes a convex open cone which is symmetric in the sense that the group

GL(C) := {g ∈ GL(X) : gC = C}

acts transitively on C, and C is “self-dual” under the inner product (1.5) [FK]. One can

show that C can be endowed with the structure of Riemannian symmetric space such

that

(1.6) Sex := x−1 (Jordan inverse)

is the “symmetry” around e ∈ C.

Example. LetK be one of the real division algebrasR,C orH (quaternions), endowed

with the usual involution. Then the space X = Hr(K) = {x ∈ Kr×r : x∗ = x} of all self-

adjoint (r×r)-matrices over K becomes a real Jordan algebra under the anti-commutator

(1.7) x ◦ y = 1
2 (xy + yx).

Therefore Mx = 1
2 (Lx + Rx) and the inner product traceMx◦y = n

r Re trace(xy) is

positive definite. Note that the dimension n = r + ar(r − 1)/2, where a = 1, 2, 4 is

the real dimension of K. The quadratic representation is Px = LxRx so that Pxy = xyx.

Therefore DetPx = (Det x)n/r and the Jordan algebra determinant is Nr(x) = Det(x).

The set Xreg = {x ∈ X : Detx 6= 0} has the e-component C = {x ∈ X : x > 0}. The

group GL(C) consists of all linear transformations g · x = gxg∗ with g ∈ GL(r,K), and

the stabilizer subgroup at e ∈ C is given by x 7→ uxu∗ where u ∈ U(r,K) is unitary.

Thus C = GL(r,K)/U(r,K) in this case.

For any real Jordan algebra (X, ◦), the complexification Z = XC has the Jordan triple

product

(1.8) {uv∗w} = (u ◦ v∗) ◦ w + (w ◦ v∗) ◦ u− (u ◦ w) ◦ v∗.

Here u◦w is the complexified Jordan algebra product on Z, and v∗ denotes the involution

of Z with respect to X . Assuming that X has a unit element e, we have X = {x ∈ X :

{ex∗e} = x} and

(1.9) x ◦ y = {xe∗y}

for all x, y ∈ X . Thus the involution and the algebra product can be expressed in terms

of the triple product (1.8).
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Example. For n ≥ 3, Z = Cn has the Jordan triple product

(1.10) {uv∗w} = (u · v)w + (w · v)u− (u · w)v

where v is the usual conjugation and u ·w is the (bilinear) dot product. Note the formal

analogy with (1.8). The Jordan triple automorphism group is K = T · SO(n) where T

acts by rotation. The corresponding symmetric domain is the “Lie ball”

(1.11) B = {z ∈ C
n : 1− z · z > 0, 1− 2(z · z)2 + |z · z|2 > 0}

which has rank 2. The group G = SO(n, 2) acts on B via fractional “quadratic” transfor-

mations in a transitive way [L1,U1] so that B = SO(n, 2)/T ·SO(n). Let e = (1, 0, . . . , 0)

be the “unit element”. Applying (1.9) and (1.10), we obtain a real Jordan algebra

X = R× iRn−1 with product

(x1, ix
′) ◦ (y1, iy

′) = (x1y1 + x′ · y′, i(x1y
′ + y1x

′))

for all x1, y1 ∈ R and x′, y′ ∈ Rn−1. Note that X is not the real form with respect to

the conjugation z 7→ z, but with respect to the “involution” z 7→ {ez∗e}. Computing the

inverse

(x1, ix
′)−1 =

(x1,−ix′)

x2
1 − x′ · x′

we obtain N2(x1, ix
′) = x2

1 − x′ · x′. Its complexification is N2(z) = z · z. The Jordan

algebra X is called a real spin factor. The condition n ≥ 3 implies that X is irreducible.

For domains of rank 1, namely the Hilbert ball in Cn, the boundary is the (smooth)

sphere ∂B = S2n−1. In all other cases the boundary is not smooth but has a stratification

∂B = ∂1B ∪ . . . ∪ ∂rB.

The kth stratum ∂kB is a fibre bundle

∂kB =

·⋃

c∈Sk

c+Bc

which is best described in terms of the underlying Jordan triple Z. An element c ∈ Z

is called a tripotent if {cc∗c} = c. Analogous to the idempotents in an algebra, one can

write tripotents as an “orthogonal” sum

c = c1 + . . .+ ck

of “minimal” tripotents and thus define the rank of c. The set Sk of all tripotents of rank

k is a compact homogeneous manifold Sk = K/Lk which we call the kth skeleton of the

boundary. For maximal rank k = r, we obtain the Shilov boundary S = Sr = K/Lr which

coincides with the extreme boundary of B. For k ≤ r, the fibre over c ∈ Sk, called the

boundary component determined by c, is a symmetric domain of rank r − k (translated

by c), which is given explicitly as the unit ball

(1.12) Bc = B ∩ Zc

of the so-called Peirce 0-space Zc := {z ∈ Z : {cc∗z} = 0}. For maximal tripotents, we

have Zc = {0} so that ∂rB = Sr.
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Example. For the matrix Jordan triple Z = Cr×s (r ≤ s) the tripotents are given by

the equation c = cc∗c which characterizes the partial isometries. Thus Sk consists of all

partial isometries of (matrix) rank k ≤ r. In particular, for r = s we have S = Sr = U(r)

(unitary group). Every partial isometry c induces Hilbert space decompositions of Cr and

Cs, resp., such that

c =

(
1k 0
0 0

)
.

In terms of this decomposition the boundary component of c is

c+Bc =

{(
1k 0
0 w

)
: ‖w‖ < 1

}
.

Note that this set belongs to ∂B if k ≥ 1.

Example. For the Lie ball B ⊂ Cn (cf. (1.11)), the non-zero tripotents fall into two

classes: The maximal (rank 2) tripotents constitute the Lie sphere S = S2 = T · Sn−1.

For n = 4, the Lie sphere is known as the “conformal universe”. The minimal (rank 1)

tripotents have the form

(1.13) c =
x+ iξ

2

with x, ξ ∈ Sn−1 and x · ξ = 0. In other words, S1 is isomorphic to the cosphere bundle

S1 = S∗(Sn−1) via the identification (1.13). The Peirce 0-space of (1.13) is Zc = C · c

with c = x−iξ
2 , so that Bc = {ζc : |ζ| < 1} is a disk.

An important general fact is the Siegel domain realization of bounded symmetric do-

mains. We will consider only the case of domains of “tube type”. Let Z be the hermitian

Jordan triple arising by complexification of a euclidean Jordan algebra X (cf. (1.8)). Let

B be the open unit ball of Z given by (1.3). On the other hand, let C be the positive

cone of X and consider the tube domain

(1.14) D = C + iX = {z ∈ Z : z + z∗ ∈ C}.

One can show that the Cayley transformation

(1.15) γ(z) := (e + z) ◦ (e− z)−1

gives a biholomorphic mapping γ : B → D mapping 0 ∈ B to e ∈ D. The domain D

(called a “Siegel domain of the first kind”) is the unbounded realization of B.

We will now point out possible generalizations concerning non-convex phase spaces.

The set Xreg of all invertible elements in a unital Jordan algebra X has also other con-

nected components. For example, if X is euclidean the opposite cone

−C = {x ∈ X : Mx < 0}

is the (−e)-component. It is also convex. For Jordan algebras of rank > 1, there exist also

non-convex components V of X which are “pseudo-symmetric” cones. This means that

the group GL(C), which can be described in terms of the Jordan triple determinant as

GL(C) = {g ∈ GL(X) : Nr(gx) = Nr(ge) ·Nr(x)},

is still transitive on V , but the stabilizer of a point in V is not compact so that V =

GL(C)/H where H is non-compact. Thus V carries only a pseudo-Riemannian metric.
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These so-called “satellite” cones can be described in a uniform way using a “frame”

e1, . . . , er of mutually orthogonal minimal idempotents in X . For each 0 ≤ k ≤ r consider

the idempotent

e(k) := e1 + . . .+ ek − ek+1 − . . .− er.

Then e(0) = −e, e(r) = e. The kth satellite cone is Vk := GL(C)/Hk where Hk =

{g ∈ GL(C) : ge(k) = e(k)}. The cones V1, . . . , Vr−1 are non-convex, and

Xreg =
⋃

0≤k≤r

Vk.

Example. Consider the 3-dimensional spin factor realized as a matrix Jordan algebra

X = H2(R) = {x ∈ R
2×2 : xt = x}.

Then Xreg = X ∩GL2(R) has 3 connected components

Xreg = V++ ∪ V+− ∪ V−−

according to the signs of the two eigenvalues of x. Here C = V++, −C = V−− but V+− is

a non-convex pseudo-symmetric cone. In suitable coordinates V+− arises as the exterior

of the double light cone. The non-convex cone V+− has dimension 3 but its “slices” [G1]

are 2-dimensional. Also, V+− is not contractible but has non-trivial 1-homology.

A real Jordan algebra X is called pseudo-euclidean (or semi-simple) if the trace form

(1.5) is non-degenerate but may have negative eigenvalues. The euclidean Jordan algebras

are a special case. It turns out that for any pseudo-euclidean algebra X the regular set

(1.4) decomposes into pseudo-symmetric cones

Xreg =
·⋃

θ

Vθ

but in the non-euclidean case none of the cones Vθ are convex. An example is the full

matrix algebra X = Rr×r with anticommutator product (1.7) and Nr(x) = Det x. Thus

Xreg = GLr(R) = GL+
r (R) ∪GL−

r (R)

decomposes into 2 non-convex cones according to the sign of the determinant. They carry

an invariant pseudo-Riemannian metric.

For any satellite cone V or, more generally, for any pseudo-symmetric cone V in

a pseudo-euclidean Jordan algebra X , the tube domain D = V + iX ⊂ Z defined as

in (1.14) is still homogeneous under holomorphic transformations (since V is linearly

homogeneous) but D will always contain non-invertible elements so there is no analog of

the symmetry (1.6). However, there is the following important

Theorem. Let V be a pseudo-symmetric cone. Then the tube domain D is a dense

open subset of a pseudo-symmetric (in fact , pseudo-Kähler) complex manifold D →֒

Gτ := G/Gτ where the group G can be defined explicitly in terms of the underlying

Jordan algebra, and Gτ is the stabilizer of a point in V . Note that Gτ is non-compact.

We will call Gτ =: D̂ the pseudo-symmetric hull of D. We have D = D̂ if and only if

V is convex.
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This theorem has essentially been proved case-by-case by Kaneyuki (for the satellite

cones) [K1] and d’Atri–Gindikin (for pseudo-euclidean Jordan algebras) [AG]. A more

uniform treatment using directly the underlying Jordan algebra has still to be worked

out.

2. Harmonic analysis of state spaces. In quantization theory the basic idea is to

replace the phase space (whose points are the “pure states” of the classical theory) by

a complex Hilbert space whose elements, usually realized as “wave functions”, represent

the states of the quantum mechanical system. We will describe the Hilbert state spaces as

representation spaces of the semi-simple Lie groupG underlying the phase space geometry

(G serves as the “symmetry group” of the quantization procedure).

Let B be an (irreducible) bounded symmetric domain of rank r and genus p. For a

real parameter λ > p− 1 consider the Hilbert space

H2
λ(B) :=

{
h : B → C holomorphic:

\
B

|h(z)|2 Nr,r(z, z)
λ−p dV (z) < ∞

}

where Nr,r is the Jordan triple determinant and dV is Lebesgue measure. One can show

that H2
λ(B) contains the polynomial algebra P (Z) and in particular is non-trivial [FK,

U5]. H2
λ(B) is called the λth Bergman space since it has a reproducing kernel

(2.1) Eλ(z, w) = Nr,r(z, w)
−λ

specializing to the standard Bergman space for λ = p. This means that (putting a suitable

normalization constant into the Lebesgue measure) we have

h(z) =
\
B

Nr,r(z, w)
−λh(w)Nr,r(w,w)

λ−p dV (w)

for all h ∈ H2
λ(B). The λ-Bergman space carries an irreducible (projective) representation

(2.2) πλ(g
−1)h(z) := Det(∂zg)

λ/p · h(g(z))

for all g ∈ G, h ∈ H2
λ(B) and z ∈ B. Here ∂zg is the complex derivative and we

choose a branch of Det(∂zg)
λ/p on the (simply-connected) domain B. This representation

belongs to the “holomorphic discrete series” (analytically continued) of the semi-simple

Lie group G.

For any complex vector space Z ≈ Cn with scalar product (z|w) one can define the

Segal–Bargmann (or Fock) space

H2
~(Z) :=

{
h : Z → C holomorphic :

\
Z

|h(z)|2e−(z|z)/~ dV (z) < ∞
}
.

Here ~ > 0 is “Planck’s constant” which can also be interpreted as the parameter of

the “complex wave representation” of the (2n + 1)-dimensional Heisenberg group. The

corresponding Kähler geometry is flat, so it cannot be directly related to the “curved”

geometry of symmetric spaces but it can be obtained by deformation of the bounded

realization B by considering R ·B (R > 0) for R → ∞. The reproducing kernel of H2
~
(Z)

is given by plane waves

E~(z, w) = e(z|w)/~.
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The algebra P (Z) of all polynomials on Z is a dense subspace of H2
~
(Z) and, for p, q ∈

P (Z), the inner product

(p|q)Z := π−n
\
Z

p(z)q(z)e−(z|z) dV (z)

(taking ~ = 1) coincides with the “Fischer” inner product

(2.3) (p|q)Z = (∂pq)(0).

Here ∂p is the constant coefficient differential operator associated with p via the scalar

product.

A crucial fact concerning the λ-Bergman spaces is the Fourier decomposition under the

action ofK [S1, U2]. Let α = (α1, . . . , αr) be a “signature” of integers α1 ≥ . . . ≥ αr ≥ 0.

It is known [U2] that the “conical polynomial”

Nα(z) = N1(z)
α1−α2N2(z)

α2−α3 . . .Nr(z)
αr

generates an irreducible K-module Pα(Z) ⊂ P (Z). Here N1, . . . , Nr are the “minors”

on Z defined in terms of the Peirce decomposition [U2]. For example, Nr is the Jordan

algebra determinant for tube type domains. The decomposition

P (Z) =
∑⊕

α1≥α2≥...≥αr≥0

Pα(Z)

is multiplicity-free and orthogonal with respect to the canonical inner product (2.3) on

P (Z).

Theorem. We have an orthogonal decomposition

(2.4) H2
λ(B) =

∑

α1≥...≥αr≥0

Pα(Z) (Hilbert sum)

such that for all p, q ∈ Pα(Z),

(p|q)Z
(p|q)λ

= ((λ))α

where

((λ))α =

r∏

j=1

(
λ−

a

2
(j − 1)

)

αj

=

r∏

j=1

αj−1∏

i=0

(
λ−

a

2
(j − 1) + i

)

is the “multi-Pochhammer” symbol. Here a is a fixed parameter.

For a detailed proof, cf. [FK, U5]. A far-reaching generalization is the well-known

“Blattner’s conjecture”, proved in [S2], concerning the K-decomposition of any discrete

series representation of G.

Example. For the tube type domains of rank 2, the so-called Lie balls (1.11), the

decomposition (2.4) takes the form

H2
λ(B) =

∑

α1≥α2≥0

Pα(Cn)
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and the conical polynomial Nα(z), which characterizes the K-module Pα(Cn) as its

highest weight vector, is given explicitly as

Nα(z) = (z1 − iz2)
α1−α2(z · z)α2 .

These polynomials are closely related to the Gegenbauer polynomials.

The decomposition (2.4) concerns the bounded realization B for which the stabilizer

subgroup K is linear. If we pass to the unbounded realization D (here we consider only

tube domains) there is also a λ-Bergman space H2
λ(D) of holomorphic functions on D

which has the reproducing kernel

(2.5) Eλ(z, w) = Nr

(
z + w∗

2

)−λ

for all z, w ∈ D, where Nr is the Jordan algebra determinant. The two Bergman type

spaces are unitarily equivalent via the Cayley transform (1.15). However, in the un-

bounded case, it is more suitable to consider the Laplace transform

(Lλφ)(z) = cλ

\
C

e−(z|ξ)φ(ξ)Nr(ξ)
(λ−n/r)/2 dξ

over the convex cone C. Here Nr(ξ)
−n/rdξ is the invariant measure on C and (z|ξ) is the

trace form (1.5). The constant cλ is related to Gindikin’s multi-variable Γ -function [FK,

UU].

Theorem. The Laplace transform induces a unitary equivalence Lλ : L2(C) →

H2
λ(D).

Up to now, the state spaces were constructed as certain G-invariant Hilbert spaces

of holomorphic functions . This corresponds geometrically to the fact that the underlying

phase space (B, resp.D) is convex and therefore a domain of holomorphy. If one replaces C

by a non-convex satellite cone V (or, more generally, by any pseudo-symmetric cone), the

tube domain D = V + iX or its pseudo-symmetric hull D̂ are no longer pseudo-convex in

the sense of complex analysis and therefore do not carry interesting holomorphic function

spaces. Recently it has been shown by Gindikin [G1] that instead one has to look at

(Dolbeault or Čech) cohomology classes.

Let V ⊂ Xreg be a pseudo-symmetric cone of dimension n. Let p be the dimension of

the largest convex subspace (“slice”) and put q := n− p. Consider the open covering

(2.6) {V #
σ + iX : Vσ slice of V }

of V + iX , where V #
σ is the so-called dual cone (V = V # is self-dual). Then we define

Čech q-cocycles

hσ0,...,σq ∈ O
( q⋂

j=0

(V #
σ + iX)

)
(holomorphic functions)

with vanishing coboundary

(∂h)σ0,...,σq+1 :=

q+1∑

i=0

(−1)ihσ0,...,σ̂i,...,σq+1

∣∣∣⋂q+1

j=0
(V #

σj
+iX)

= 0.



TOEPLITZ–BEREZIN QUANTIZATION 395

Let Oq(D) be the corresponding q-cohomology group. Since (2.6) is a Stein covering, the

cohomology classes can also be expressed more explicitly using the ∂-operator (Dolbeault

cohomology). With this notation we have [G1]

Theorem. There exists a Hardy-type completion H2
q (D) of q-cocycles which can ac-

tually be defined on the pseudo-symmetric hull D̂ of D such that the boundary evaluation

map together with the Laplace transform yields a unitary equivalence

L : L2(V )
→
≈ H2

q (D)|iX (restriction).

3. Toeplitz operator algebras and Berezin quantization. The reproducing ker-

nel property of Eλ(z, w) = Nr,r(z, w)
−λ (cf. (2.1)) means that the functions on B defined

by

kw(z) := Eλ(z, w)/Eλ(w,w)
1/2 = Nr,r(z, w)

−λNr,r(w,w)
λ/2

for fixed w ∈ B form an “overcomplete basis” of H2
λ(B) in the sense that

h =
\
B

(kw|h)λkwNr,r(w,w)
−p dV (w)

for each h ∈ H2
λ(B). In operator terms, one obtains a resolution of the identity operator

I =
\
B

kw ⊗ k∗w Nr,r(w,w)
−p dV (w)

where (kw⊗k∗w)h := kw(kw |h)λ is the usual rank one operator, linear in h. This idea leads

to the concept of Berezin symbol of a (bounded, linear) operator T on H2
λ(B), defined as

the “diagonal”

σλ(T )(w) := (kw|Tkw)λ = traceT (kw ⊗ k∗w)

for all w ∈ B. As an explicit integral formula, we have

σλ(T )(w) =
\
B

kw(z)(Tkw)(z)Nr,r(z, z)
λ−p dV (z)

=
\
B

Nr,r(w, z)
−λ(TNr,r(−, w)−λ)(z)Nr,r(w,w)

λNr,r(z, z)
λ−p dV (z).

We will also call σλ(T ) the passive symbol of T . The transformation property

πλ(g
−1)kw = kgw

of the normalized kernel vectors shows that σλ intertwines the “classical” action of G on

phase space and the “quantum” action (2.2) on state space: For all g ∈ G and operators

T we have

(3.1) σλ(T ) ◦ g = σλ(Adπλ(g
−1)T ),

where Ad is the adjoint representation. The Kähler geometry of B defines a G-invariant

“Liouville” measure

dµ(z) = Nr,r(z, z)
−pdV (z)

on B, and thus gives rise to the Lebesgue space L2(B) with its unitary (unweighted)

translation action of G. On the other hand, consider the Hilbert–Schmidt inner prod-

uct (S|T ) := traceS∗T on the space L2(H2
λ(B)) of all Hilbert–Schmidt operators. The
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Berezin quantization map is constructed as the adjoint of the symbol map σλ, with re-

spect to the inner products described above. More precisely, let f ∈ L∞(B) and put

Tλ(f)h := Eλ(fh) for all h ∈ H2
λ(B), where Eλ is the orthogonal projection defined by

the reproducing kernel (2.1). More explicitly,

Tλ(f)h(z) =
\
B

Eλ(z, w)f(w)h(w)Nr,r(w,w)
λ−p dV (w)

=
\
B

Nr,r(z, w)
−λf(w)h(w)Nr,r(w,w)

λ−p dV (w)

=
\
B

Nr,r(z, w)
−λNr,r(w,w)

λf(w)h(w) dµ(w)

for all z ∈ B. The bounded linear operator Tλ(f) on H2
λ(B) is called the Toeplitz op-

erator with active Berezin symbol f , and the assignment f 7→ Tλ(f) is called Berezin

quantization. It is easy to show [UU] that

traceT ∗ Tλ(f) =
\
B

σλ(T )f dµ

for suitable operators T and functions f , which explains the duality mentioned above.

As a consequence, or by direct calculation, it follows that

(3.2) Tλ(f ◦ g) = Adπλ(g
−1)Tλ(f)

whenever g ∈ G. Here πλ is the projective representation (2.2).

In the corresponding flat situation Z = Cn, with Planck’s constant ~ > 0 and the

associated Segal–Bargmann space H2
~
(Z), the Berezin type quantization leads to the so-

called Wick calculus . Thus (putting a normalization constant into the Lebesgue measure)

T~(f)h(z) = E~(fh)(z) =
\
Z

E~(z, w)f(w)h(w)e
−(w|w)/~ dV (w)(3.3)

=
\
Z

e(z|w)/~−(w|w)/~f(w)h(w) dV (w)

defines the operator T~(f) on H2
~
(Z) with “active” Wick symbol f ∈ L∞(Z), whereas

σ~(T )(w) = (kw|Tkw)~ =
\
Z

kw(z)(Tkw)(z)e
−(z|z)/~ dV (z)

=
\
Z

e(w|z)/~T (e(.|w)/~)(z)e−(w|w)/~−(z|z)/~ dV (z)

is the “passive” Wick symbol of an operator T on H2
~
(Z). One can show that the Wick

calculus arises in a formal way as a limit of the Berezin calculus on the unit ball B of Z,

by letting the radius of B tend to infinity.

The theory of Berezin quantization and its connections to operator theory, complex

analysis and harmonic analysis (discrete series representations ofG) form an active area of

current research. We will concentrate on two results that elucidate the operator-theoretic

aspects of Berezin quantization.

Given two Berezin type operators with active symbols f and g, resp., one may form

the operator Tλ(f)Tλ(g) and ask for its (active or passive) symbol which will depend on
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f, g and λ. In quantization theory such bilinear compositions are called ∗-products (or

Moyal products) and denoted by f ∗ g. Formally,

Tλ(f)Tλ(g) = Tλ(f ∗ g)

but f ∗ g may only exist as an asymptotic series in 1/λ, and the coefficients of this

expansion are not explicitly known (except for the Weyl or Wick calculus in the flat

case). However, the first two terms of the expansion (which are physically most relevant)

can be recovered in the strongest possible way (operator norm convergence) as λ → ∞:

Theorem [BLU]. For suitable smooth symbols f, g on B, we have, as λ → ∞,

‖Tλ(f)Tλ(g)− Tλ(fg)‖ → 0, ‖λ[Tλ(f), Tλ(g)]− iTλ({f, g})‖ → 0,

where [S, T ] is the operator commutator and {f, g} is the invariant Poisson bracket.

Thus the usual product fg and the Poisson bracket {f, g} give the 0th and 1st order

term of the expansion in 1/λ. It would be very interesting to find higher differential

analogues.

The next result concerns C∗-algebraic properties of the Berezin quantization proce-

dure. Consider the Toeplitz C∗-algebra

Tλ(B) = C∗(Tλ(f) : f ∈ C(B))

generated by all λ-Toeplitz operators with continuous symbol on the closure B. A sim-

ilar (but different) C∗-algebra can be defined in the unbounded case by the additional

requirement that the symbols vanish at infinity. The C∗-algebra Tλ(B) represents the

“non-commutative” geometry of the underlying phase space B, including the boundary.

As described in Section 1, the boundary has a natural stratification given by the bound-

ary components. The next result (originally proved for the case of Hardy space Toeplitz

operators) shows that the stratification of the boundary induces a natural filtration of

the associated Toeplitz C∗-algebra.

Theorem [U3, U4, U5]. Let B be an (irreducible) bounded symmetric domain of rank

r. Then the Toeplitz C∗-algebra Tλ(B) has a natural filtration

(3.4) K = I1 ⊳ I2 ⊳ . . . ⊳ Ir ⊳ Tλ(B)

into C∗-ideals , with associated graduation

Ik+1/Ik ≈ C(Sk) (stably isomorphic)

for 0 ≤ k ≤ r being essentially commutative.

Here we put Ir+1 := Tλ(B) and S0 := {0}. K denotes the compact operators.

The essential geometric meaning of this result is that the irreducible representations of

Tλ(B) (modulo unitary equivalence) are in one-to-one correspondence with the tripotents

of Z (including 0). In fact, for c∈Sk, the corresponding representation τc can be explicitly

realized on the Bergman space H2
µ(Bc) of the boundary component (1.12) given by c:

τc : Tλ(B) → L(H2
µ(Bc))

is uniquely characterized by the property τc(Tλ(f)) = Tµ(fc) for all f ∈ C(B), where

fc(w) := f(c+ w) denotes the restriction of f to the fibre c+ Bc (here continuity up to
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the boundary is essential) and µ is a parameter depending on λ which is adapted to the

lower-dimensional geometry of Bc. For maximal tripotents, we obtain the characters

τc(Tλ(f)) = f(c) (c ∈ Sr)

which form the classical Toeplitz-type symbol familiar from the disk or the Hilbert ball.

The filtration (3.4) of Tλ(B) gives rise to index mappings

Indk : K1(Sk) → K0(Sk−1)

defined in terms of K-theory and related to the Atiyah–Singer family index. In [U5],

these analytic indices are expressed topologically using the geometry of the boundary.

Only the minimal tripotents (k = 1) give rise to a Z-valued index

Ind1 : K1(S1) → Z

since S0 = {0}. The space S1 is a Stiefel type manifold but its K-theory has not been

calculated in a uniform way.

Example. For the Lie ball (1.11), the filtration (3.4) and associated index mappings

can be expressed in terms of pseudo-differential operators. We have a filtration K ⊳ I2 ⊳

Tλ(B) such that Tλ(B)/I2 ∼= C(T · Sn−1) and

I2/K ≈ C(S∗(Sn−1)) (stable isomorphism).

One can show [U5] that I2 can be realized as the C∗-algebra of Calderón–Zygmund

operators (i.e., pseudo-differential operators of order 0) on Sn−1. Via this identification,

the mapping Ind1 : K1(S∗(Sn−1)) → Z is the Atiyah–Singer index.

4. Berezin transform and invariant differential operators. Combining the

Berezin symbol map σλ and its adjoint, the Berezin quantization map, we obtain the

Berezin transform

(4.1) σλ(Tλ(f))(w) = (kw|fkw)λ

of a (bounded measurable) function f on B. By (3.1) and (3.2), we have

σλ(Tλf) ◦ g = σλ(Tλ(f ◦ g))

for all g ∈ G, i.e., the Berezin transform commutes with the (unweighted) translation

action of G. Restricting to smooth functions, it should therefore be expressible in terms

of (scalar) G-invariant differential operators.

In the case of Wick quantization (cf. (3.3)), corresponding to the flat phase space

Z = Cn with Kähler metric (z|w) = z · w, this relationship is well-known [G2]: For

Planck’s constant ~ > 0 we have

(4.2) σ~(T~(f)) = e~∆f

where

∆ =
∑

i

∂2

∂zi∂zi

is the non-positive Laplace–Beltrami operator of Z. Thus the Berezin transform is essen-

tially the heat semigroup on Z. This relationship has important consequences, in partic-

ular for the connection between the Wick calculus and the Weyl calculus (usually defined
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on the real wave space L2(Rn)), and for characterizing growth properties of operators in

terms of their symbols.

For any symmetric domain (in its bounded or unbounded) realization there exists

a unique G-invariant Laplace–Beltrami operator ∆ which is defined in terms of the G-

invariant Riemannian metric (the real part of the Kähler metric). For example, the unit

disk has the Laplace–Beltrami operator

∆ = (1 − |z|2)2
∂2

∂z∂z
.

Since in general ∆ is a differential operator of order 2 involving z-derivatives and z-

derivatives in a balanced way, we write ∆ = ∆1,1. However, for domains of rank > 1, not

every G-invariant differential operator is a polynomial in ∆. More precisely, for an irre-

ducible symmetric domain G/K of rank r, the algebra DG(G/K) of all scalar G-invariant

differential operators on G/K is commutative and has r algebraically independent gen-

erators ∆1,1, ∆2,2, . . . , ∆r,r of order 2, 4, . . . , 2r. Thus

DG(G/K) = C[∆1,1, ∆2,2, . . . , ∆r,r].

These operators are called the “higher Laplacians” of G/K, since ∆1,1 is the usual

Laplace–Beltrami operator. It is unique up to a constant. The other generators are not

canonical but one can choose appropriate generators by prescribing their “radial parts”

with respect to the Iwasawa decomposition G = KAN .

Since the operators ∆1,1, . . . , ∆r,r commute with each other, one may use the func-

tional calculus to form functions f(∆1,1, . . . , ∆r,r) of these operators. In view of (4.2), it

is natural to expect that for symmetric domains of rank r the Berezin transform (4.1) will

be an operator function of this type for a suitable multi-variable f(t1, . . . , tr). This idea

was carried out by Berezin [B1] for the classical spaces (without proof), and in general

in [UU]. The proof in [UU] does not use the classification of symmetric domains and

establishes the result in the strongest, spectral-theoretic, sense:

Theorem [UU]. Let B = G/K be an irreducible symmetric domain of rank r, and

choose a basis ∆k,k (1 ≤ k ≤ r) of G-invariant differential operators on B such that

the (orispherical) radial part of ∆k,k corresponds to the (even symmetric) polynomial

t2k1 + . . .+ t2kr . Then the Berezin transform is given by

σλ(Tλ(f)) = Γλ(∆1,1, . . . , ∆r,r)f

where

Γλ(t1, . . . , tr) =

r∏

j=1

Γ
(
λ− p−1

2 + itj
)
Γ
(
λ− p−1

2 − itj
)

Γ
(
λ− p−1

2 + ρj
)
Γ
(
λ− p−1

2 − ρj
) .

Here Γ is Euler’s Γ -function, p is the “genus” of B and (ρ1, . . . , ρr) corresponds to the

half-sum of positive roots of (G,K).

The main point of this theorem is that a multi-variable Γ -type function replaces the

exponential in (4.2) when passing to the case of bounded symmetric domains. The occur-

rence of multivariable special functions (of hypergeometric type) is an attractive feature

of quantization theory of symmetric spaces. For example, the on-going investigation of

Berezin transforms in the vector-valued setting (discrete series representations of G) or
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for the Weyl-type quantization studied in [U6,U7] leads to novel multivariable special

functions closely related to the harmonic analysis of the underlying phase spaces.
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