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Abstract. We survey results related to the Kreiss Matrix Theorem, especially examining

extensions of this theorem to Banach space and Hilbert space. The survey includes recent and

established results together with proofs of many of the interesting facts concerning the Kreiss

Matrix Theorem.

1. Introduction. We present in this review many results related to the Kreiss Matrix

Theorem for power-bounded families of matrices. Most of the results are known results,

but we have organized the material in what is hoped to be a convenient order for the

reader.

The Kreiss Matrix Theorem is of central important in the theory of finite difference

methods for partial differential equations because it deals with necessary and sufficient

conditions for stability of general systems. We present an example of a finite difference

system to motivate the discussion. Because the Kreiss Matrix Theorem deals with the

boundedness of iterates of families of linear operators, there are many related topics. We

have therefore had to limit our discussion somewhat arbitrarily. We have tried to focus

on the topics closest to the Kreiss Matrix Theorem, but also mention references to the

more extensive literature.

The organization of this review is as follows. In the remainder of this section we

present some definitions and set forth our notation. In Section 2 we present an example
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and discussion to motivate the theorem. In Section 3 we state the original Kreiss Matrix

Theorem and also some additional equivalent conditions, followed by a discussion of the

relationships between these conditions for finite dimensional problems.

In Sections 4 and 5 we discuss extensions of the Kreiss Matrix Theorem to Banach

space and Hilbert space. We present several examples showing the sharpness of several

estimates regarding the possible extension or non-extensions of the finite dimensional

results to infinite dimensions. For these sections most of the proofs are straightforward,

although some deeper results are also presented. In Section 6 we present some results

on estimates for Cesàro sums of powers and relate these to the Kreiss Matrix Theorem.

Finally, in Section 7 we present the proof of the original Kreiss Matrix Theorem and the

extensions as given in Section 3.

In the remainder of this section we set our notation and give some definitions. For

x, y ∈ Cm, m ≥ 1, let 〈x, y〉 := y∗x, where ∗ denotes the conjugate transpose, and let

‖x‖ := 〈x, x〉1/2. We denote by M the collection of m×m, complex-valued matrices, and

Mh denotes the subclass of hermitian matrices, i.e., those with H∗ = H . If A ∈ M, ‖A‖

denotes the operator norm induced by ‖ · ‖ on C
m, ReA := (A + A∗)/2 the real part of

A, ImA := (A−A∗)/(2i) the imaginary part, and Rλ(A) := (λI −A)−1 is the resolvent

for λ ∈ C.

If H,N ∈ Mh, then we say that H ≤ N if 〈Hx, x〉 ≤ 〈Nx, x〉 for all x ∈ Cm. Given

Ω ∈ Mh, the generalized numerical radius of A ∈ M is

rΩ(A) := sup
x 6=0

|〈ΩAx, x〉|

〈Ωx, x〉
,

and the spectral radius of A is |σ(A)|, defined to be the absolute value of the largest

eigenvalue, where σ(A) is the spectrum. Clearly, |σ(A)| ≤ rΩ(A) for any Ω ∈ Mh, but

strict inequality can occur. If Ω = T ∗T , then it is easy to see that rΩ(A) = rI(TAT
−1),

where I is the identity matrix. Also, we have

rI(A) ≤ ‖A‖ ≤ 2rI(A).

The first inequality is easy to verify, but the second merits a brief description of its proof.

We can decompose A as ReA + i ImA, each of which is normal and so has numerical

radius equal to its norm (cf. [19]). Also, rI(A) = rI(A
∗). Therefore,

‖A‖ ≤ ‖ReA‖+ ‖ ImA‖ = rI(ReA) + rI(ImA) ≤ rI(A) + rI(A
∗) = 2rI(A).

A collection of complex numbers, {zν}
m
ν=1, is said to be nested with constant c if

|zµ − zν | ≤ c|zi − zj|, 1 ≤ i ≤ µ ≤ ν ≤ j ≤ m.

Any finite set of complex numbers can be put into nested form simply by choosing one

and then, successively, choosing the nearest of the remaining numbers until there are

none remaining. The triangle inequality implies that c can be taken to be 2m whenever

there are exactly m numbers to be nested (see [52]).

2. Motivation. To motivate the discussion of the Kreiss Matrix Theorem we consider

a simple system of equations for two functions u(t, x) and v(t, x),

(2.1) ut = auxx + bvx, vt = cux + dvx,
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where the subscripts denote differentiation, i.e., ut = ∂u/∂t, and the coefficients a and d

are positive. We consider the pure initial value problem with data specified for u and v

at t = 0.

To solve this system with the finite difference method, consider a grid defined by two

positive constants k and h. The grid points are (tn, xm) with t := nk for n ∈ N and

xm := mh for m ∈ Z. One possible consistent scheme for this system is

(2.2)

un+1
m − un

m

k
= a

un
m+1 − 2un

m + un
m−1

h2
+ b

vnm+1 − vnm−1

2h
,

vn+1
m − vnm

k
= c

un
m+1 − un

m−1

2h
+ d

vnm+1 − vnm
h

.

where un
m and vnm are the values of the discrete approximation at (tn, xm). For the special

case with b = c = 0 this scheme is stable if

(2.3) k ≤ h2/(2a) and k ≤ h/d

(see [56] or [52]). This system is stable if for every positive value of T there is a constant

CT such that
∞∑

m=−∞

|un
m|2 + |vnm|2 ≤ CT

∞∑

m=−∞

|u0
m|2 + |v0m|2

for 0 ≤ nk ≤ T, with (k, h) ∈ Λ.

The stability of such systems is analyzed using Fourier analysis. The quantities un
m

and vnm are replaced with ûneimhξ and v̂neimhξ, respectively. This leads to the following

system for ûn and v̂n:
(
ûn+1

v̂n+1

)
=

(
1− 4ak

h2 sin
2 1

2hξ ib k
h sinhξ

ic k
h sinhξ 1 + d k

h (e
ihξ − 1)

)(
ûn

v̂n

)

for each ξ ∈ R. We write this system as

Ûn+1 = G(k, h, ξ)Ûn,

and stability is equivalent, via Parseval’s relation, to

(2.4) ‖G(k, h, ξ)N‖ ≤ CT

for 0 ≤ kN ≤ T, all ξ, and k, h → 0 appropriately, i.e., under some restrictions such

as (2.3). It can be shown, from consistency of the scheme, that the constant CT can be

taken in the form KeαT , for some constants α and K. Thus, the estimate (2.4) can be

expressed as

‖(e−αkG(k, h, ξ))N‖ ≤ K

for all N and ξ, and k, h → 0 appropriately.

If the coefficients of the system (2.1) are functions of t and x, then the stability of

the system (2.2) depends on the relation (2.4) holding for all (t, x) as well. The family

of matrices consists of the matrices G(k, h, ξ) for values of h, k, and ξ, and for variable

coefficients, the parameters t and x, as well. For such systems, methods from pseudo-

difference operators are required (see Kreiss [31], Lax and Nirenberg [34], Michelson [42],

Shintani and Toemeda [54], Yamaguti and Nogi [69], and Wade [66]).
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In general, the stability of finite difference systems such as (2.2) is equivalent to a

family of matrices having powers that are uniformly bounded, such as the estimate (2.4).

The Kreiss Matrix Theorem presents several conditions equivalent to the family being

uniformly power-bounded.

Good references for the relationship between the Kreiss Matrix Theorem and finite

difference methods for partial differential equations are the book by Richtmyer and Mor-

ton [52] and the reviews by Thomée [64] and by van Dorsselaer et al. [16]. Other related

references are Brenner and Thomée [6], [7], Brenner, Thomée, and Wahlbin [8], Dahlquist

et al. [14], Hersh and Kato [26], Kato [27], Kreiss [32], [30], Pokrzywa [50], Strikwerda

and Wade [57], and Wade [67].

3. Statement of the Kreiss Matrix Theorem. In this section we state the Kreiss

Matrix Theorem for power-bounded families of matrices.We are given a family of matrices

F ⊂ M. The question at hand is whether this family is uniformly power-bounded, i.e.,

whether ‖An‖ is bounded by a constant that is the same for all A ∈ F and n ∈ N.

Theorem 3.1 (Kreiss Matrix Theorem). The following conditions are equivalent :

[A] There exists C > 0 such that ‖An‖ ≤ C for all A ∈ F and n ∈ N.

[R] There exists C > 0 such that ‖Rλ(A)‖ ≤ C(|λ| − 1)−1 for all A ∈ F and λ ∈ C

with |λ| > 1.

[S] There exists C > 0 such that for each A ∈ F there is a nonsingular S ∈ M, with

‖S‖, ‖S−1‖ ≤ C, such that Â := SAS−1 is upper triangular and

(i) |Âii| ≤ 1, for 1 ≤ i ≤ m,

(ii) |Âij | ≤ Cmin{1− |Âii|, 1− |Âjj |}, for i < j.

[H] There exists C > 0 such that for each A ∈ F there is H ∈ Mh such that C−1I ≤

H ≤ CI and A∗HA ≤ H.

There are several other conditions that are equivalent to the original conditions. Some

of these are stated in the next theorem. Another set of equivalent conditions is presented

in Section 6.

Theorem 3.2. The following conditions are equivalent to the conditions of Theo-

rem 3.1:

[B] There exists C > 0 such that for each A ∈ F there is a unitary matrix U such that

Â := UAU∗ is upper triangular with nested diagonal and

(i) |Âii| ≤ 1, for 1 ≤ i ≤ m,

(ii) |Âij | ≤ Cmax{1− |Âii|, 1− |Âjj |, |Âii − Âjj |}, for i < j.

[N] There exist c0, c1 > 0 such that for each A ∈ F there is N ∈ Mh such that

c−1
1 I ≤ N ≤ c1I and

Re(N(I − zA)) ≥ c0(1− |z|)I, ∀z ∈ C, |z| ≤ 1.

[Ω] There exists c > 0 such that for each A ∈ F there is Ω ∈ Mh such that c−1I ≤

Ω ≤ cI and rΩ(A) ≤ 1.
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Kreiss’ original paper [30] contains the conditions [A], [R], [S], and [H]. The condition

[B] is due to Buchanon [9]. Condition [N] comes from Strikwerda and Wade [57], [66],

and condition [Ω] was introduced by Tadmor [61]. A complete proof of Theorems 3.1 and

3.2 is given in Section 7.

The first condition, [A], is the object of study—it deals with the uniform power-

boundedness of the family of matrices F . The Buchanon criterion [B] deals only with

unitary upper triangularizations, which always exist by Schur’s lemma. The requirement

is simply to check a certain relationship between the elements of any unitarily upper

triangularized version which is first put into a convenient nested form. For this reason, this

condition is a practical one, although it is not always easy to find upper triangularizations.

Still, [B] is closer to being a practical condition than [S] because it would normally be

difficult to directly check [S]. Condition [S] is mainly useful as a bridge between [R]

and [H].

In the book by Richtmyer and Morton [52, p. 82] two examples are presented showing

the need for the nesting property in the Buchanon criterion [B]. We note, too, that a

careful examination of the proof that [B] implies [S] (in Section 7) brings to light the

reason for the nesting requirement; also see the comments in [46].

The remaining conditions [H], [N], and [Ω] are closely linked. [H] and [N] are useful

in actually proving the power-boundedness, or stability, and these both can be utilized

in the study of stability for variable coefficient finite difference operators (cf. [32], [57],

[66] or [67]). Condition [Ω] is less useful in the variable coefficient case, but it sometimes

can be directly verified with Ω = I (cf. [19] or [61]).

If condition [A] holds with a given constant C, then condition [R] holds with the same

constant. The reverse is not true, the constant for condition [A] must grow with the

dimension of the space. Tadmor [61] was the first to prove this result. Improvements on

the constant of proportionality were made by LeVeque and Trefethen [38], Lubich and

Nevanlinna [39], and Spijker [55].

Theorem 3.3. If condition [R] holds with constant CR for any family F ⊂ M of

m×m matrices , then the constant CA for condition [A] can be bounded as

CA ≤ emCR.

Example. If we consider the specific example

(am)ij =

{
γm, j = i+ 1,
0, else,

1 ≤ i, j ≤ m,

where γm := m, then it is not hard to show that

(em− c)CR ≤ CA (m large),

where c > 0 does not depend on m. So the linear dependence of the ratio between the

constants in [A] and [R] is sharp.

For proving the stability of variable coefficient finite difference equations it is essential

to be able to construct “smooth” matrix families {H} or {N} (cf. [32], [31], [42], [64], [67]

and [68]). A basic question in this line of reasoning is whether one can always construct

such a matrix H for condition [H] from the resolvent condition so that H is a continuous
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function of the matrix A. In the works just cited, restrictions are placed on the difference

schemes so that there is a continuous dependence of H on A.

The reader should also consult [21] or [63, §2] where questions related to the Kreiss

Matrix Theorem for families of matrices of unbounded order arise in the context of

spectral methods for partial differential equations. A theorem similar to Theorem 3.1 by

Kreiss [31] gives necessary and sufficient conditions for the well-posedness of constant

coefficient partial differential equations.

4. Extension of results to Banach space. An obvious question concerning the

Kreiss Matrix Theoremis the possibility of extending the results to a Hilbert space or

Banach space setting. Condition [S] is clearly finite-dimensional in its statement. Indeed,

Theorem 3.1 as stated is not true unless the dimension is finite. However questions about

how much of the theorem can be extended are of interest. These questions are considered

in the next sections.

It is obvious from the proof that the condition [A] implies condition [R] in Banach

space. The proof that condition [R] implies conditions [B] and [S] is inherently finite-

dimensional, as is the proof that condition [S] implies condition [H]. Conditions [H],

[N], and [Ω] require Hilbert space for their statements, and indeed, these conditions are

related in Hilbert space, as shown in Section 5. The implication that these conditions

imply condition [A] is valid in Hilbert space.

At first we consider any given sequence {an}
∞
n=0 in a Banach space B, but we will

later specialize to the case an = An. In the more general case we will use the notation

r(z) to denote
∑∞

n=0 anz
n. In the special case where the sequence consists of powers of

the matrix A then Rλ(A) = r(λ−1)λ−1.

In the context of sequences the resolvent condition is equivalent to the following

condition.

[R] There is a constant C such that for all z ∈ C with |z| < 1,

∥∥∥
∞∑

n=0

anz
n
∥∥∥ ≤

C

1− |z|
.

We first prove that when B is a Banach space condition [R] for sequences implies

uniform linear growth of the sequences in F . That is, [R] implies

(4.1) ‖an‖ ≤ eC(n+ 1), ∀{an}
∞
n=0 ∈ F , n ∈ N,

where C is the resolvent constant.

Inequality (4.1) is proved using the residue calculus. We have

an =
1

2πi

\
γ

z−(n+1)r(z) dz,

where γ is any simple closed contour circling the origin in the positive direction. For

n > 0 we take γ to be the contour given by |z| = 1− 1/(n+ 1). Therefore

‖an‖ ≤ c
1

2π

2π\
0

(
1−

1

n+ 1

)−(n+1)

(n+ 1) dθ ≤ 2ce(n+ 1),
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where c depends only on the resolvent constant. The result for n = 0 can be proved

similarly. This proves our claim.

The estimate (4.1) is sharp, in the sense that an may grow linearly with n, even when

the sequence is a sequence of powers. An example of an operator that satisfies condition

[R] and whose powers satisfy ‖An‖ = n+1 has been given by Shields [53]. Because of its

simplicity, and since we use it in Section 6, we present it here.

Example. The Banach space B is the set of functions analytic in the open unit disc

with the norm

‖f‖ = ‖f‖∞ +
1

2π

2π\
0

|f ′(eiθ)| dθ.

B is a commutative Banach algebra under ordinary multiplication. We consider B also as

a set of operators on B and it is easy to see that the operator norm coincides with the

norm on B. We consider the operator A defined as multiplication by z. It is then easy to

check that the norm of An is n+ 1.

The resolvent of A is the function rλ(z) = (λ− z)−1. The norm of the resolvent is

‖Rλ(A)‖ =
1

|λ| − 1
+

1

2π

2π\
0

1

|λ− eiθ|2
dθ =

1

|λ| − 1
+

1

|λ|2 − 1
≤

2

|λ| − 1
.

(The integrand in the integral is the Poisson kernel.) Thus this operator satisfies the

resolvent condition [R] but is not power-bounded.

Shields [53] considers conditions under which Möbius transformations of a bounded

operator are uniformly bounded. In particular, a power-bounded operator is Möbius

bounded [53].

Several authors have considered the following stronger condition, referred to as the

strong resolvent condition:

[SR] There exists C > 0 such that ‖Rz(A)
n‖ ≤ C(|z| − 1)−n for all A ∈ F and z ∈ C

with |z| > 1 and n ∈ N.

It is easy to see that if condition [A] holds then condition [SR] holds with the same con-

stant. As shown first by McCarthy [40], condition [SR] does not imply power-boundedness,

i.e., condition [A]. In fact, the following result has been obtained by several authors (see

Bollobás [3], Brenner and Thomée [6], Crabb [11], Crouzeix et al. [13], Friedland [18],

McCarthy [40], Hedstrom [25], Kraaijevanger [29], and Lubich and Nevanlinna [39]).

Theorem 4.1. If a family of operators on a Banach space satisfies condition [SR],

then there is a constant C such that

‖An‖ ≤ C(n+ 1)1/2

for all n ∈ N.

The growth rate in Theorem 4.1 is sharp, that is, there are families of operators for

which the growth rate of O(n1/2) is the best possible. Examples have been given in most

of the works just cited. An example, due to T. Kato [12], is the family given by

Kε = (1− εD)−1(1 + εD)
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where D is differentiation and ε ∈ (0, 1]. When considered as operating on L1(R) it can

be shown that

‖Kn
1/n‖ ≥ cn1/2

for some constant c.

Lubich and Nevanlinna [39] show that appropriate Möbius transformations of the shift

on bounded sequences satisfies condition [SR], but the powers grow as n1/2.

O. Nevanlinna [47] has suggested that the resolvent condition [R] be replaced by a

similar condition on the Yosida approximation

Yλ(A) = λA(λI −A)−1.

Nevanlinna has the following result (see [47]).

Theorem 4.2. For a family of operators on a Banach space the following are equiva-

lent :

[A] There exists C > 0 such that ‖An‖ ≤ C for all A ∈ F and n ∈ N.

[Y] There exists C > 0 such that ‖Yλ(A)
k‖ ≤ C(|λ|/(|λ| − 1))k for all A ∈ F , λ ∈ C

with |λ| > 1 and k ∈ N.

Actually, this can be easily generalized to the following.

Theorem 4.3. Let g(z) be any function analytic in a neighborhood of the origin with

nonnegative Taylor series coefficients , and g(0) = 0 and g′(0) = 1. Then condition [A] is

equivalent to there being a positive constant c such that

‖g(zA)k‖ ≤ cg(|z|)k

for all k ∈ N and all z in a neighborhood of the origin.

The proof follows easily from the observation that

An = lim
z→0

z−ng(zA)n.

The works [17], [20], [22], [38], [41], [44], [59], [62] and [61] each contain aspects of the

question regarding power-bounded operators. We mention [24, ch. 23], [23, §6], and [60,

ch. 1, §11], which discuss similar types of questions in functional analysis. Also, there is

an extensive literature on power-bounded operators whose spectrum consists of the set

{1} (see the review by Zemánek [71] for a review of related results) (1).

5. Extension of results to Hilbert space. Condition [H] of Theorem 3.1 is

equivalent to the statement that the operator A is a contraction in the Hilbert space

norm induced by H. Thus a conclusion from the Kreiss Matrix Theoremis that in finite-

dimensional spaces every power-bounded operator is similar to a contraction. The ques-

tion of whether every power-bounded operator in Hilbert space is similar to a contraction

has been answered in the negative by Foguel [17] (see also the comments by Halmos [22]).

Foguel presents an example of a power-bounded operator which is not equivalent to a

contraction.

(1) Editorial note: See also the paper by O. Nevanlinna in this volume.
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In a Hilbert space the conditions [H], [N], and [Ω] of Section 3 are related as follows.

Theorem 5.1. In a Hilbert space H, conditions [N] and [Ω] are equivalent. Condition

[H] implies conditions [N] and [Ω].

We begin by proving that the condition [H] implies condition [N]. Assuming condition

[H] holds, let A ∈ F , let H be the corresponding positive definite hermitian matrix and

let z ∈ C with |z| ≤ 1. Expanding the relation

0 ≤ (I − zA)∗H(I − zA),

we obtain

0 ≤ H−2Re(zHA)+|z|2A∗HA ≤ H−2Re(zHA)+|z|2H = 2Re(H(I−zA))+(|z|2−1)H.

Thus
1

2
(1− |z|)H ≤

1

2
(1 − |z|2)H ≤ Re(H(I − zA)),

and condition [N] follows with N taken as H .

To see that condition [N] is equivalent to condition [Ω], note that if [N] holds then

Re(N(I − zA)) ≥ c0(1− |z|)I ≥ 0.

This implies that

ReN ≥ Re(NzA) for all |z| ≤ 1.

Given x ∈ H, choose z such that

Re(〈NAx, x〉z) = |〈NAx, x〉|.

Therefore,

|〈NAx, x〉| ≤ 〈Nx, x〉, x ∈ H,

which implies rN (A) ≤ 1. This proves that condition [Ω] holds with the matrix Ω taken

to be N .

Conversely, assume that condition [Ω] holds. We will show that this implies condition

[N]. We have, for x ∈ H and |z| ≤ 1,

Re〈Ω(I − zA)x, x〉 = Re〈Ωx, x〉 − Re〈zΩAx, x〉 ≥ 〈Ωx, x〉 − |z||〈ΩAx, x〉|

≥ 〈Ωx, x〉 − |z|〈Ωx, x〉 = (1− |z|)〈Ωx, x〉 ≥ c−1
Ω (1− |z|)〈x, x〉.

This implies condition [N] with N := Ω, and c1 := cΩ, and c0 := c−1
Ω .

Example. We show that the matrix N can be taken equal to H , but not the converse.

Here is an example using a family of a single matrix:

F :=

{(
1
2 1
0 1

2

)}
.

Referring to [19], the numerical radius of A can be computed because it equals the spectral

radius of its real part. This last claim is seen to be true because

rI(A) = max{|〈Ax, x〉| : x ∈ C
2, ‖x‖ = 1} = |〈Ax0, x0〉|,

for some ‖x0‖ = 1. Hence

rI(A) = |〈Ax0, x0〉| ≤ Re〈Ay0, y0〉 ≤ rI(A)
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where (y0)i := |(x0)i|, i = 1, 2, since the elements of A are nonnegative. Therefore

rI(A) = max{|Re〈Ax, x〉| : x ∈ C
2, ‖x‖ = 1}

= max{|〈ReAx, x〉| : x ∈ C
2, ‖x‖ = 1} = rI(ReA) = |σ(ReA)|

because ReA is normal. Since |σ(ReA)| = 1, N may be taken equal to Ω = I (using the

fact that [N]⇔[Ω]), yet it is easy to check that ‖A‖ > 1 and so the matrix H cannot be

the identity.

Condition [Ω] is equivalent to the resolvent condition with constant 1 (see the text

by Pazy [48]). For condition [Ω] we point out that an equivalent formulation is: there

exists c > 0 such that for each A ∈ F there is Ω ∈ Mh such that c−1I ≤ Ω ≤ cI and

rΩ(A
n) ≤ 1 for all n ∈ N. The reason this modified version of Tadmor’s condition is

equivalent to the original is simply that the (generalized) power inequality holds (cf. [61]

or [24, #221]), that is, rΩ(A
n) ≤ (rΩ(A))

n. Also, one can find an alternate proof that

[Ω] implies [A] by adapting the solution of [24, #221]. Each proof amounts to the same

basic idea—proving the power inequality for the generalized numerical radius.

Condition [N] is closely related to both the power inequality ([24, #221]) and also

the sharp G̊arding inequality from pseudodifference operator theory (cf. [57] or [67]).

Additionally, condition [N] is a straight generalization of the condition on the symbol

given in [34, 1.12], in which the matrix N is the identity.

The interested reader may consult the works by Berger and Stampfli [2], Bonsall

and Duncan [4] and [5], Crabb [10], Goldberg and Tadmor [19], Kato [28], Lenferink and

Spijker [35]–[37], and Reddy and Trefethen [51]. Many of the results for Hilbert space can

be extended to Banach space by using the duality map, see Yosida [70], however, little

appears to be gained in this regard.

6. Conditions on Cesàro means. In this section we discuss the relation of Abel

and Cesàro means of the sequence of powers of an operator A on a Banach space B. As in

Section 4 we start by considering general sequences in the Banach space and the function

r(z).

We define the Abel means of the sequence {an}
∞
n=0 to be

α(z) :=
( ∞∑

n=0

anz
n
)/( ∞∑

n=0

|z|n
)
,

where z ∈ C with |z| < 1. If z = ̺eiφ with ̺ < 1, then

α(z) =
( ∞∑

n=0

anz
n
)
(1− ̺) = (1− ̺)r(z).

Thus,

‖r(z)‖ = (1 − |z|)−1‖α(z)‖, ∀|z| < 1,

provided the above series converge for the given sequence.
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Condition [R] is clearly equivalent to ‖α(z)‖ ≤ c. It is well known that Abel means

are related to Cesàro means (cf. [1], [65], or [72] (2)), and this leads naturally to the con-

sideration of the kth Cesàro means of the sequence {an}
∞
n=0. Cesàro means are important

in ergodic theory (cf. [15, ch. 5]); however, there appears to be no direct relation between

that theory and the results discussed here. Most of the results in this section are in [58],

although some of the proofs here are simpler.

For k ∈ N and any sequence {an}
∞
n=0 ⊂ B, we define the kth Cesàro means by the

following procedure:

σ0({a·}, n) := an,

and

σk+1({a·}, n) :=

( n∑

ν=0

(
ν + k

k

)
σk({a·}, ν)

)/(
n+ k + 1

k + 1

)
.

We will write σk(n) for σk({a·}, n) when it is understood which sequence is being used.

Explicit formulas for σ1 and σ2 are

σ1(n) =
1

n+ 1

n∑

ν=0

aν and σ2(n) =
2

(n+ 1)(n+ 2)

n∑

ν=0

(n+ 1− ν)aν .

For any k ∈ N it is easy to verify directly from the definition that

‖σk+1(n)‖ ≤ sup
0≤ν≤n

{‖σk(ν)‖}.

In particular, if ‖an‖ ≤ c for all n ∈ N, then also ‖σk(n)‖ ≤ c for all n ∈ N (and each

k ∈ N). The converse does not hold.

An important relationship exists between the function r(z) and the higher Cesàro

means. With z = ̺eiφ and ̺ < 1, we find for the sequence {ane
inφ}∞n=0 that

r(z) =

∞∑

n=0

ane
inφ̺n =

∞∑

n=0

ane
inφ

(
(1− ̺)

∞∑

ν=n

̺ν
)

(6.1)

= (1− ̺)
∞∑

ν=0

̺ν
( ν∑

n=0

ane
inφ

)
= (1 − ̺)

∞∑

ν=0

(ν + 1)σ1(ν)̺
ν

the interchange being justified if one side converges (cf. [72, p. 78]), or if there is absolute

convergence of the double sum (cf. [65]). For instance, absolute convergence clearly holds

if the an satisfy (4.1).

Applying this technique again gives

(6.2) r(z) = (1− ̺)2
∞∑

ν=0

(
ν + 2

2

)
σ2(ν)̺

ν .

In general then, for any k ∈ N, we obtain

(6.3) r(z) = (1− ̺)k
∞∑

n=0

(
n+ k

k

)
σk(n)̺

n,

(2) Editorial note: See also J. J. Grobler, and C. B. Huijsmans, Doubly Abel bounded

operators with single spectrum, Quaestiones Math. 18 (1995), 397–406.
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provided only that one of the series converges, which will be the case in our applications.

A similar result is contained in [33, K.3].

Theorem 6.1. If {an}
∞
n=0 is a sequence in a Banach space, then the following are

equivalent.

[R] There is a constant C such that for all z ∈ C with |z| < 1,

∥∥∥
∞∑

n=0

anz
n
∥∥∥ ≤

C

1− |z|
.

[C2] There exists a constant C > 0 such that
∥∥∥∥

2

(n+ 1)(n+ 2)

n∑

ν=0

(n+ 1− ν)eiνφaν

∥∥∥∥ ≤ C

for all φ ∈ R and n ∈ N.

P r o o f. Condition [C2] implies condition [R] by (6.3).

To prove that condition [R] implies condition [C2] we let z = e−ζ+iφ. Then condition

[R] becomes

‖r(z)‖ =
∥∥∥

∞∑

n=0

ane
inφe−nζ

∥∥∥ ≤
C

1− e−Re ζ

for all ζ with Re ζ > 0. By condition (4.1) the sum is absolutely convergent for Re ζ > 0.

We now consider the integral

CN =
1

2πi

\
ΓN

eNζ

ζ2
r(e−ζ+iφ) dζ

where the curve ΓN is given by Re ζ = 1/N taken in the direction of increasing imaginary

part.

Notice that for k > N we have

1

2πi

\
ΓN

eNζ

ζ2
e−kζ dζ = 0.

Also, for k ≤ N we have

1

2πi

\
ΓN

eNζ

ζ2
e−kζ dζ =

1

2πi

\
ΓN

e(N−k)ζ

ζ2
dζ = N − k

by deforming the contour to circle the origin.

Hence,

CN =

N∑

n=0

(N − n)ane
inφ.

To estimate the norm of CN we have

‖CN‖ ≤
1

2π

\
ΓN

eN Re ζ

|ζ|2
‖r(e−ζ+iφ)‖ |dζ| ≤

Ce

2π(1− e(−1/N))

∞\
−∞

1

N−2 + t2
dt ≤ CeN2

for N sufficiently large. This proves the theorem.
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We now consider the question of when the resolvent condition implies the first Cesàro

mean condition. Let B be any Banach space and {an} be a sequence in B.

Theorem 6.2. If a sequence in a Banach space satisfies condition [R], then

‖σ1({a·e
i·φ}, n)‖ ≤ c log(n+ 2), ∀n ∈ N, φ ∈ R,

where c depends only on the resolvent constant.

The proof is similar in spirit to the result involving the second Cesàro means in

Theorem 6.1 but we work with the variable w = eζ rather than ζ. We consider the

integral

CN =
1

2πi

\
ΓN

wN+1 − 1

w − 1
r(w−1eiφ) dw

where the curve ΓN is the circle |w| = 1+1/N taken in the positive direction. Similar to

the earlier result, we have

CN =

N∑

n=0

ane
inφ.

The estimate of CN is

‖CN‖ ≤
1

2π

\
ΓN

(1 +N−1)N

|w − 1|
‖r(w−1eiφ)‖ |dw|

≤
CeN

2π

π\
−π

1

|(1 +N−1)eiθ − 1|
dθ ≤ CeN logN

for large N. The result follows immediately.

The relationship between condition [R] and the Cesàro means of powers are essentially

the same as for general sequences. However, there is one interesting result that does

depend on the the sequence being powers. Even though the norm of the average σ1 may

be unbounded when condition [R] is satisfied, the squares of σ1(n) are bounded.

Theorem 6.3. If a family of operators in a Banach space satisfies condition [R] of

Theorems 3.1 and 6.1 , then

‖σ1({A
·ei·φ}, n)‖ ≤ c log(n+ 2) and ‖σ1({A

·ei·φ}, n)2‖ ≤ c,

for all n ∈ N and φ ∈ R, where c depends only on the resolvent constant.

The logarithmic growth estimate follows from Theorem 6.2. By elementary manipu-

lation one can easily check that

((n+ 1)σ1(n))
2 =

n∑

j=0

(j + 1)Aj +

2n∑

j=n+1

(2n+ 1− j)Aj ,

=

(
2n+ 2

2

)
σ2(2n)− 2

(
(n− 1) + 2

2

)
σ2(n− 1).
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From this relationship we can conclude that

‖σ1({A
·ei·φ}, n)2‖ ≤ 3 sup

0≤ν≤2n
‖σ2({A

·ei·φ}, ν)‖.

The theorem follows immediately from this relation.

Example. To show that the logarithmic growth in Theorems 6.2 and 6.3 is sharp, we

consider the example of Shields [53] discussed in Section 4. For an = An the first Cesàro

mean is

σ1(N) =
1

N + 1
·
1− zN+1

1− z

and the derivative for z = eiθ is

σ1(N)′ =
1

N + 1

(
−(N + 1)zN

1− z
+

1− zN+1

(1− z)2

)

=
2iei(N−1)θ/2

N + 1

(
(N + 1)eiNθ/2 sin(θ/2)− sin(N + 1)θ/2

−4 sin2 θ/2

)
.

Therefore,

‖σ1(N)′‖ ≥
1

2π

2π\
0

∣∣∣∣σ
′
1(e

iθ)

∣∣∣∣ dθ

=
1

π(N + 1)

2π\
0

∣∣∣∣
(N + 1)eiNθ/2 sin(θ/2)− sin(N + 1)θ/2

sin2 θ/2

∣∣∣∣ dθ

≥
1

π

2π\
0

∣∣∣∣
sin(Nθ/2)

sin θ/2

∣∣∣∣ dθ ≥ C log(N).

7. Proof of the Kreiss Matrix Theorem. We present the complete proof of the

Kreiss Matrix Theorem in a rigorous manner, and we follow the order

[A]⇒[C1]⇒[C2]⇒[R]⇒[B]⇒[S]⇒[H]⇒[N]⇒[Ω]⇒[A].

We give here what we believe to be the best proofs which allow this order of impli-

cations. The following methods of proof are partly derived from the existing literature,

mainly [30], [44]–[46], [49], [52], [57], [61], and [66], except that we have simplified many

aspects. We think that including condition [B] between conditions [R] and [S] simplifies

the details of the proof and includes [B] in the sequence in a more understandable manner.

To prove that [Ω] implies [A], we essentially follow [61], but for the reader’s convenience

we have spelled out all of the tricky details which are not contained in [61], in particular

those from [49]. Our modifications of existing methods are so interspersed in the pages

to follow that it would be too difficult to cite each individual source. Therefore, we omit

most citations in this section, instead leaving to the reader to consult the works listed in

our bibliography.

Several works contain interesting proofs of these results. Miller and Strang [44] give a

novel way to construct the matrix families {S} in condition [S]. Miller [43] has a method

for constructing the matrix family {H} for condition [H] directly from the resolvent

condition [R]. See also Morton and Schechter [46].
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We now begin the proof of Theorem 3.1. The proof that [A]⇒[C1] and that [C1]⇒[C2]

are straightforward using the results of Section 6.

[C2]⇒[R]. Essentially this implication is the identity (6.2) except that some care

must be exercised to be sure the series appearing in the derivation of identity (6.3)

converge. Since we only know that the second Cesàro means are uniformly bounded, we

need to justify the two-step process of switching the summation indices used to derive

that identity. However, condition [C2] immediately implies (take differences σ2(A, n) −

σ2(A, n− 1)) that

‖An‖ ≤ c(n+ 2)(n+ 1),

and the interchange of the summations is justified to prove (6.1). We can then proceed

to apply the same technique again to arrive at (6.2). This gives

‖Rλ(A)‖ ≤ (̺− 1)2̺−3
∞∑

n=0

C

(
n+ 2

2

)
̺−n =

C

̺− 1

and the proof is complete.

[R]⇒[B]. If B ∈ M, then |Bij | ≤ |〈Bei, ej〉| ≤ ‖B‖, where {ei}
m
i=1 are the standard

coordinate unit vectors. Choose any unitary matrix U (via Schur’s lemma) which puts

A into upper triangular form with the main diagonal nested. Note that

‖Rλ(UAU∗)‖ = ‖URλ(A)U
∗‖ = ‖Rλ(A)‖,

so UAU∗ also satisfies the resolvent condition [R] with the same constant. For notational

convenience we denote UAU∗ again by A. From the definition of the resolvent,

(7.1) (λI −A)Rλ(A) = I, |λ| > 1.

This equation implies that, if λ is not an eigenvalue of A and 1 ≤ i ≤ m,

|Rλ(A)ii| = |λ−Aii|
−1

.

Also, by considering (7.1) for i < j, we see that

(7.2) |Aij | ≤ |λ− Ajj |
∑

i≤µ<j

|(λ−A)iµ||Rλ(A)µj |, i < j ≤ m.

The resolvent condition clearly implies the von Neumann condition [B], (i). The con-

clusion [B], (ii) is reached by an inductive argument on the number of upper diagonals.

To begin, assume that 1 ≤ i < m and j = i + 1. The freedom of choice of λ will be

exploited to obtain a bound for |Aij | as follows.

Equation (7.2) implies

|Aij | ≤ C|λ− Ajj | · |λ−Aii|(|λ| − 1)−1,

where the resolvent condition and the comment at the beginning of the proof have been

employed to bound the term |Rλ(A)ij | by c(|λ| − 1)−1. If |Ajj | ≤ 1/2 then choose λ := 2

to conclude that

|Aij | ≤ 8c ≤ 16cmax{1− |Aii|, 1− |Ajj |, |Aii −Ajj |}
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Conversely, if 1/2 ≤ |Ajj | ≤ 1 then let λ := tA−1
jj for t > 1. This implies

|Aij | ≤ c
|t− |Ajj |

2| · |t−AjjAii|

|Ajj |(t− |Ajj |)
,

which gives, upon letting t → 1,

|Aij | ≤ c
(1 + |Ajj |)|1− AjjAii|

|Ajj |
≤ 4c|1− |Ajj |

2 +Ajj(Ajj −Aii)|

≤ 12cmax{1− |Aii|, 1− |Ajj |, |Aii −Ajj |}.

Combining these two cases yields

(7.3) |Aij | ≤ 16cmax{1− |Aii|, 1− |Ajj |, |Aii −Ajj |},

which is [B], (ii) for the case j = i + 1.

For induction, assume that [B], (ii) holds with constant c1 for all 1 ≤ i ≤ m− µ + 1

and j − i < µ, where µ is some integer 2 ≤ µ < m. Equation (7.2) for j = i + µ and

1 ≤ i ≤ m− µ, plus the resolvent condition, implies

|Aij | ≤ c(|λ| − 1)−1|λ−Ajj |
∑

i≤ν<j

|(λI −A)iν |.

Note that 1 − |Aνν | ≤ 1 − |Ajj | + |Aνν − Ajj |, which is bounded above by 2max{1 −

|Ajj |, |Aνν −Ajj |}. The inductive hypothesis and the nesting property can now be used

to conclude that

|Aij | ≤ c|λ−Ajj |(|λ|−1)−1
(
|λ−Aii|+c12

m+1
∑

i<ν<j

max{1−|Aii|, 1−|Ajj |, |Aii−Ajj |}
)
.

This implies

|Aij | ≤
c|λ−Aii| · |λ−Ajj |

|λ| − 1
(7.4)

+
cc1m2m+1|λ−Ajj |max{1− |Aii|, 1− |Ajj |, |Aii −Ajj |}

|λ| − 1
.

If |Ajj | ≤ 1/2, then choosing λ := 2 gives

(7.5) |Aij | ≤ (16c+ 5cc1m2m)max{1− |Aii|, 1− |Ajj |, |Aii −Ajj |}.

Conversely, if 1/2 ≤ |Ajj | ≤ 1 then choose λ := tA
−1

jj , t > 1. By the same reasoning

as that used to conclude inequality (7.3), as t → 1, (7.4) yields

(7.6) |Aij | ≤ (12c+ cc1m2m+2)max{1− |Aii|, 1− |Ajj |, |Aii −Ajj |}.

Combining the two bounds (7.5) and (7.6) finishes the induction and therefore yields

condition [B], (ii).

[B]⇒[S]. Assume, without loss of generality, that A is in upper triangular form with

diagonal elements nested and satisfies [S], i. To prove [S], we construct the matrix S as a

product of special matrices. For 1 ≤ i < j ≤ m define a matrix P (i,j) by

P (i,j)
µν :=





Iµν + δiµδjνAij

Aii −Ajj
if min{1− |Aii|, 1− |Ajj |} < |Aii −Ajj |,

Iµν else,
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where δ·· is the Kronecker delta and 1 ≤ µ, ν ≤ m. (The essence of this matrix is really

2× 2 in nature.)

Now it is possible to define the matrix S; it is defined in two stages. For 1 ≤ ν ≤ m−1

we let

Sν :=
∏

1≤i≤m−ν
j−i=ν

P (i,j),

and define

S := Sm−1Sm−2 · · · S1.

The inverse of P (i,j) is easily computed to be

P (i,j)−1
µν =





Iµν − δiµδjνAij

Aii −Ajj
if min{1− |Aii|, 1− |Ajj |}|Aii −Ajj |,

Iµν else.

Since

max{1− |Aii|, 1− |Ajj |, |Aii −Ajj |} ≤ 2max{min{1− |Aii|, 1− |Ajj |}, |Aii −Ajj |},

it is easy to see that

‖S‖, ‖S−1‖ ≤ (1 + 2c)m
2

.

Condition [S], (i) is a consequence of the fact that SAS−1 has the same main diagonal

as A. It only remains to show that if Â := SAS−1 then

(7.7) |Âij | ≤ c1 min{1− |Âii|, 1− |Âjj |} if i < j.

Consider the action of P (i,j) · P (i,j)−1 for 1 ≤ i < m and i < j ≤ m. By explicit

calculation using the upper triangularity of the three matrices involved, if 1 ≤ µ ≤ ν ≤ m

then

(7.8) (P (i,j)AP (i,j)−1)µν =
∑

µ≤k≤ν

∑

k≤l≤ν

P
(i,j)
µk AklP

(i,j)−1
lν .

After using the definition of the P (i,j) to analyze (7.8) the following statements become

clear. If either ν−µ = j− i and µ 6= i or ν−µ < j− i then equation (7.8) equals Aµν . If

µ = i and ν = j and min{1−|Aii|, 1−|Ajj |} ≥ |Aii−Ajj |, then (7.8) equals Aµν because

P (i,j) = I. If µ = i and ν = j and min{1 − |Aii|, 1 − |Ajj |} < |Aii − Ajj | then a simple

calculation using the definition of P (i,j) shows that (7.8) equals zero. The elements of

P (i,j)AP (i,j)−1 which are on diagonals above the (j− i)th are changed, but in a bounded

way; equation (7.8) shows why this is true. By the nested property of the main diagonal

it is easy to verify that the following holds for S1:

|(S1AS
−1
1 )ij | ≤





cmin{1− |Aii|, 1− |Ajj |}, j = i+ 1,
cm max{1− |Aii|, 1− |Ajj |, |Aii −Ajj |}, j > i+ 1,
|Aii|, j = i,
0, j < i,

where cm := 2m+1m2(1 + 2c)m
2

.

The matrix S is constructed out of an ordered product of the m−1 matrices {Sν}
m−1
ν=1 .

These give similar estimates at each successive step in the matrix transformation Sm−1 ·

· · S1AS
−1
1 · · · S−1

m−1. Now it is clear that after continuing up to SAS−1 this process
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implies that equation (7.7) holds for some constant c1 depending only on m and c. This

completes the proof that condition [B] implies [S].

[S]⇒[H]. Define the diagonal matrix Dε for 0 < ε < 1 by Dεij := δijε
m−i. Given

A ∈ F , and S ∈ M satisfying condition [S], our goal is to prove that

(7.9) (SAS−1)∗D2
ε0(SAS

−1) ≤ D2
ε0

for some ε0 depending only on c1 and m. This would imply

A∗(S∗D2
ε0S)A ≤ S∗D2

ε0S.

Condition [H] would then follow from this inequality if H := S∗D2
ε0S since in this case

H is hermitian and for x ∈ Cm,

ε
2(m−1)
0 〈Sx, Sx〉 ≤ 〈S∗D2

ε0Sx, x〉 ≤ 〈Sx, Sx〉,

ε
2(m−1)
0 c−2

0 〈x, x〉 ≤ 〈S∗D2
ε0Sx, x〉 ≤ c20〈x, x〉.

It is therefore only necessary to show that (7.9) holds. Equation (7.9) is equivalent to

(7.10) (Dε0ÂD
−1
ε0 )∗(Dε0ÂD

−1
ε0 ) ≤ I,

where Â := SAS−1 is upper triangular. Defining Bε0 to be Dε0ÂD−1
ε0 , it is easy to check

that (Bε0)ij = εj−i
0 Âij for i ≤ j. Equation (7.10) is now equivalent to

(7.11) B∗
ε0Bε0 ≤ I.

Given x ∈ Cm, ‖Bε0x‖
2 =

∑
1≤i≤m |

∑
i≤j≤m εj−i

0 Âijxj |
2. The Cauchy–Schwarz in-

equality implies that

‖Bε0x‖
2 ≤

∑

1≤i≤m

(( ∑

i≤j≤m

εj−i
0 |Âij |

)( ∑

i≤j≤m

εj−i
0 |Âij | · |xj |

2
))

.

The condition [S], (ii) implies, if ε0 ≤ (cm)−1,

‖Bε0x‖
2 ≤

∑

1≤i≤m

((
|Âii|+

∑

i<j≤m

εj−i
0 c(1 − |Âii|)

)( ∑

i≤j≤m

εj−i
0 |Âij | · |xj |

2
))

≤
∑

1≤i≤m

((
|Âii|+ 1− |Âii|

)( ∑

i≤j≤m

εj−i
0 |Âij | · |xj |

2
))

=
∑

1≤j≤m

∑

1≤i≤j

εj−i
0 |Âij | · |xj |

2

≤
∑

1≤j≤m

(
|Âjj |

2 · |xj |
2 + |xj |

2
∑

1≤i<j

εj−i
0 c(1− |Âjj |)

)

≤
∑

1≤j≤m

(|Âjj |+ 1− |Âjj |)|xj |
2 ≤ ‖x‖

2
.

This proves inequality (7.11), which implies condition [H] via inequalities (7.9) and

(7.10).

[H]⇒[N] and [N]⇒[Ω] have been proved in Section 5.
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[Ω]⇒[A]. To begin this implication, we define {ζk}
n
k=1 to be the nth roots of unity,

where n ∈ N. The following relationships hold for all complex numbers z (see [49]):

(a) 1− zn =
∏

1≤k≤n

(1 − ζkz),

(b) 1 =
1

n

∑

1≤j≤n

∏

k 6=j
1≤k≤n

(1− ζkz).

It is clear that the same identities hold with z replaced by λA, where λ ∈ C, |λ| = 1

and A ∈ F . This is true because (a) and (b) are simply algebraic relationships between

the various coefficients involving the nth roots of unity. The same coefficients are obtained

in the matrix equation.

Assume now that condition [Ω] holds. For x ∈ Cm, define

xj :=
∏

k 6=j
1≤k≤n

(I − ζkλA)x.

Condition [N] implies that, since |ζjλ| = 1,

0 ≤
1

n

∑

1≤j≤n

Re〈Ω(I − ζjλA)xj , xj〉

=
1

n

∑

1≤j≤n

Re〈Ω(I − ζjλA)
∏

k 6=j
1≤k≤n

(I − ζkλA)x, xj〉 = Re
1

n

∑

1≤j≤n

〈Ω(I − λnAn)x, xj〉

= Re

〈
Ω(I − λnAn)x,

1

n

∑

1≤j≤n

xj

〉
= Re〈Ω(I − λnAn)x, x〉.

Hence, upon choosing λ such that Reλ
n
〈ΩAnx, x〉 = |〈ΩAnx, x〉|, we get |〈ΩAnx, x〉|

≤ 〈Ωx, x〉. Thus rΩ(A
n) ≤ 1.

Since the matrix Ω is positive definite and hermitian, it has a nonsingular square root,

T . This means that, for n ∈ N,

‖An‖ ≤ ‖T ‖ · ‖T−1‖ · ‖TAnT−1‖ ≤ 2‖T ‖ · ‖T−1‖ rI(TA
nT−1).

Since ‖T ‖ and ‖T−1‖ are bounded by ‖Ω‖1/2 and ‖Ω‖−1/2, respectively, this yields

‖An‖ ≤ 2crΩ(A
n) ≤ 2c,

which is condition [A].
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