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Abstract. The paper relates several generalized eigenfunction expansions to classical spec-

tral decomposition properties. From this perspective one explains some recent results concerning

the classes of decomposable and generalized scalar operators. In particular a universal dilation

theory and two different functional models for related classes of operators are presented.

1. Introduction. The subject of eigenfunction expansions is as old as operator theory.

The completeness of classical systems of eigenfunction expansions was originally related

to mechanical problems and boundary value problems for differential operators. Later

the study of eigenfunctions expansions has gained an independent and abstract status.

From this perspective, the present paper has a very limited purpose. We will focus only

on a few classes of abstract operators with rich spectral decompositions and some natural

eigenfunction expansions related to them. The progress made in the last two decades in

the theory of decomposable operators and some related classes of operators can at this

moment be interpreted from the point of view of eigenfunction expansions. This approach

has recently led to a new insight into several problems of abstract spectral theory and it

produced a series of quite unexpected applications. It is the aim of the present paper to

report a few results along this line.

First we review some classical spectral decomposition theories, and based on them,

we discuss several natural classes of generalized eigenfunctions. To be more precise we

distinguish four classes of proper vectors: the usual eigenvectors, generalized eigenvectors

in the sense of measure theory, eigendistributions and generalized eigenvectors in the

sense of analytic functionals. The general picture which will be made precise in Section

3 is the following: if a Banach space operator T has a complete system of generalized

eigenvectors in one of the above classes, then its topological adjoint admits sufficiently
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266 M. PUTINAR

invariant subspaces to be spectrally localized. In such a way the classes of subscalar or

subdecomposable operators appear naturally related to the completion of certain systems

of eigenfunctions. Moreover, if both the operator and its dual have complete systems of

generalized eigenvectors, then the respective operator can be even spectrally decomposed.

Section 4 will contain various conditions on the resolvent of a Banach space operator which

insure the completeness of a prescribed system of generalized eigenvectors. Among these

conditions the so-called Bishop’s property (β) has a distinguished place. Section 5 sketches

a general dilation theory for arbitrary operators which puts into a geometrical form the

relation between a given operator and the classes of scalar or decomposable operators.

In Section 6 the sheaf model for subdecomposable operators is briefly recalled on the

basis of a few examples. Finally, in Section 7 we present without entering into details

the multivariable analogues of the results mentioned in the previous sections. These

aspects of multivariable spectral theory will be developed in a forthcoming monograph,

see Eschmeier and Putinar (1996).

The main results to be presented below have been obtained in the last decade by

methods of homological algebra and sheaf theory. Although these tools are essentially

needed only in the multivariable case of commuting n-tuple of operators, they enlighten

even the single operator situation. We will try to avoid in the sequel any reference to

resolutions, tensor products or derived functors; however, we would like to stress that

the homological framework has suggested most of the constructions which are apparently

new in the theory of abstract spectral decompositions. Each section below will contain

precise references in this direction.

This article represents an expanded version of a conference given at Indiana University

-Bloomington in honor of Professor Ciprian Foiaş sixtieth birthday. Most of the material

discussed below is directly related to his early contributions to spectral theory. I dedi-

cate the following pages to Ciprian Foiaş, with respect and admiration for his work and

mathematical intuition.

2. Classical spectral decompositions. It is the aim of the present section to

recall and review some well known examples of single operators which admit remarkable

spectral decompositions. The general reference for this subject is the monograph Dunford

and Schwartz (1958), (1963), (1971). For more special spectral decompositions the reader

is referred to Colojoarǎ and Foiaş (1968) and Berezanskĭı (1968).

The best understood example of a spectral decomposition is the Jordan form of a linear

operator acting on a finite-dimensional space. Let V be a finite-dimensional complex

vector space and let T be a linear transformation of V . Then it is well known that there

is a basis of V with respect to which T can be represented as a matrix with diagonal

blocks of the form:

λIk +Nk,

where Ik is the identity matrix of order k and Nk is the nilpotent matrix of order k with

1 over the principal diagonal and zero elsewhere. The complex numbers λ, . . . which

appear in this representation form the spectrum of T , denoted in what follows by σ(T ).
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The usual definition of the spectrum is

σ(T ) = {λ ∈ C;T − λ is not invertible}.

A basis of the space V cannot in general be obtained from the solutions of the equation

(T −λ)ξ = 0, known as the eigenvectors of T , but instead the generalized eigenvectors of

T span V . These are the vectors ξ of V which satisfy the equation

(1) (T − λ)pξ = 0

for some natural number p.

The Jordan block structure of the matrix associated to T is unique up to order

arrangements. More precisely the spectrum of T and the collection of the orders of the

Jordan blocks coresponding to a fixed point of the spectrum form a complete system of

invariants for the transformation T (up to similarity).

On infinite-dimensional topological spaces, the structure and classification of linear

continuous operators is much more subtle. To fix ideas we will consider only bounded

linear operators acting on a complex, infinite-dimensional Hilbert space H .

It is known for instance that if T : H→H is a compact operator, then its spectrum is

discrete with 0 the single accumulation point and there is a finite-dimensional subspace

of H which carries the whole spectral information in neighbourhoods of a non-zero point

of the spectrum. However, whether these spaces span H , even up to completion in the

uniform norm is a delicate question. (See Dunford and Schwartz (1958) and Gohberg and

Krein (1969).) Moreover, the structure of the compact operator T in the neighbourhood

of 0 is hardly classifiable.

The richest spectral theory developed and used so far in applications concerns another

class of Hilbert space operators, namely the self-adjoint operators. The classical theory of

Hahn and Hellinger represents any bounded self-adjoint operator A as the multiplication

with the real variable x on the Hilbert space:

H =

N⊕

a=1

L2(R, µa)

whereN is a natural integer or infinity and µa are positive measures with compact support

in R. Moreover, there is a spectral multiplicity function which classifies the operator A

and which counts roughly how many of the above measures have a given point in their

support.

Let us consider a simple example. Let M denote the multiplication with the variable

x on L2[0, 1], the latter space being considered with the usual Lebesgue measure. Then

it is obvious that for any fixed point λ ∈ R the equation (1) has no solutions in L2[0, 1].

Consequently the operator M has no generalized eigenvectors and there is no hope to

realize it in a Jordan form. It was Dirac who remarked that there are however vector

valued measures which satisfy the eigenvector equation, and they are enough to span the

whole underlying Hilbert space. (See Dirac (1930).) In modern terms this assertion can

be translated as follows. The measure

u(x, y) = f(y)δ(x − y) ∈ M(R) ⊗̂ L2[0, 1]
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satisfies the equation

(2) (M − x)u(x, y) = 0

for any continuous function f on [0, 1]. Moreover, the space L2[0, 1] contains as a dense

linear subspace the elements of the form\
u(x, y) dy = f(x).

In fact the above argument is valid for an arbitrary self-adjoint operator A ∈ L(H).

A standard way of expressing this fact leads to the spectral measure of A. Indeed, let

us consider a closed set F ⊂ C and the space of all H-valued proper measures for A

supported by F :

MF = {u ∈ M (R) ⊗̂H ; (A− x)u(x) = 0, supp(u) ⊂ F}.

Then the closed subspace HF of H generated by
T
u for all u ∈ MF defines a unique

orthogonal projection E(F ) of H . It turns out that E(·) is a σ-additive, multiplicative

measure with values projections of H , and as one very well knows

(3) A =
\
R

xE(dx).

The measure E is uniquely determined by the self-adjoint operator A and in fact it carries

in a flexible form the spectral data of A, see for details Dunford and Schwartz (1958).

Similarly a commuting system of bounded self-adjoint operators has a joint spectral

measure which diagonalizes them simultaneously. In particular a normal operator admits

a spectral decomposition as (3). The general theory of spectral measures on Banach

spaces was developed by Dunford, see Dunford and Schwartz (1971). The Banach space

operators which admit a representation like (3) are called scalar operators. Moreover,

Dunford extended this concept to unbounded operators and he found important examples

of scalar operators among differential operators.

The Jordan form of a matrix has been successfully generalized to the class of spectral

operators, which are Banach space operators T of the form

T = S +Q,

where S is Dunford scalar and Q is a quasi-nilpotent operator, that is, σ(Q) = {0}. See

for details Dunford and Schwartz (1971).

It was Ciprian Foiaş who, at the end of the fifties, investigated at the same abstract

level operators with sufficiently many eigendistributions rather than only vector valued

measures. From his work (mentioned in the reference list of the monograph Colojoarǎ

and Foiaş (1968)) has emerged the following definition.

A linear bounded operator T acting on the Banach space X is called generalized scalar

if there is a continuous homomorphism of unital algebras

U : E(C) → L(X)

such that T = U(z).

The space of smooth functions on the complex plane is denoted above by E(C), while

z denotes the complex coordinate. In other terms the operator T is generalized scalar if

it admits a continuous functional calculus with smooth functions. If we regard U as an
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element of E′(C) ⊗̂ L(X), then it is obvious from the above definition that the following

equation holds in the sense of distributions:

(z − T )U = 0.

The theory of generalized scalar operators resembles much that of scalar operators. The

monograph Colojoarǎ and Foiaş (1968) is entirely devoted to this class of operators.

A typical example of a generalized scalar operator is the multiplication with a smooth

function on a space of continuously differentiable (up to a given order) functions defined

on a subset of the complex plane.

3. Decomposable operators. Going one step further and studying the eigenvector

equation at the level of analytic functionals we are close to the works of Bishop (1959) and

Foiaş (1963) in the area of operator theory called today local spectral theory. Although

this approach with analytic functionals represents an a posteriori explanation of the early

results in local spectral theory, it has certain advantages which will be outlined in the

sequel.

We assume for simplicity that X is a reflexive Banach space and T ∈ L(X) is a

bounded linear operator on X . The space of X-valued analytic functions on the open set

U ⊂ C is denoted by O(U,X). It is a Fréchet space in the natural topology of uniform

convergence on the compact subsets of X . Its topological dual O(U,X)′ is the space of

analytic functionals supported by the closure of U .

To understand the subsequent constructions let us suppose at the beginning that the

operator T is scalar and admits a spectral measure E. The space of those vectors of X

which are supported by a closed set F of C, relative to the operator T , is, as explained

before, E(F )X . One easily remarks that any element x ∈ E(F )X can be divided outside

F by T − z:

x = (T − z)f(z).

Moreover, one can choose f to be an analytic function on C \ F .

Thus we are naturally led to the following definition, for an arbitrary operator T this

time. Let F be a closed subset of the complex plane and define the map:

JF : X → O(C \ F,X)/(T − z)O(C \ F,X),

by JF (x) = [1⊗x] (i.e. the class of the function identically equal to x in the respective

quotient). A candidate for the spectral space E(F )X proposed by Bishop (1959) would

then be:

M(T, F ) = Ker(JF ).

Actually Bishop considered several similar possible spectral subspaces, but we will focus

here only on the latter one.

A satisfactory spectral decomposition behaviour of T would be to have sufficiently

many subspaces M(F, T ), so that, for a fixed partition of the plane into closed sets they

span X . It was Bishop who discovered that this property is related to a remarkable

condition involving the linear operator-valued analytic function T ′ − z.
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Theorem (Bishop). Let T be a bounded linear operator acting on a reflexive Banach

space X. Suppose that the dual operator T ′ has the property that for each open set U of C

the map T ′−z : O(U,X ′) → O(U,X ′) is one to one with closed range. Then the subspace∑
i∈I M(U i, T ) is dense in X for each finite open covering (Ui)i∈I of the complex plane.

A sketch of a proof, which even yields a stronger result than stated, runs as follows.

Since the sheaf OX
′

of germs of X ′-valued analytic functions has vanishing cohomology

on every open set of the complex plane (exactly as the sheaf O of analytic functions), for

each open covering (Ui)i∈I of C one has an exact augmented Čech complex of alternating

chains:

0 → O(C, X ′) →
∏

i∈I

O(Ui, X
′) →

∏

i,j∈I

O(Ui ∩ Uj , X
′) → . . .

Let us suppose that the operator T ′ satisfies the condition in the statement. Then

the complex obtained from the above complex by taking quotients modulo the range of

T ′ − z remains exact. Its first two terms are:

(4) O(C, X ′)/(T ′ − z)O(C, X ′) →֒
∏

i∈I

O(Ui, X
′)/(T ′ − z)O(Ui, X

′) → . . .

Moreover, a simple computation with power series identifies X ′ with the quotient

O(C, X ′)/(T ′ − z)O(C,X ′) via the map J∅.

Because of the reflexivity of X the space O(U)′ ⊗̂ X can be regarded as the strong

dual of the Fréchet space O(U) ⊗̂X ′ for any open set U . Therefore

Ki = Ker(T − z : O(Ui)
′ ⊗̂X → O(Ui)

′ ⊗̂X)

can be identified, at least algebraically, with the dual space of

Ci = Coker(T ′ − z : O(Ui) ⊗̂X ′ → O(Ui) ⊗̂X ′).

Let us denote by σ :
⊕

i∈I Ki → X the adjoint of the operator j : X ′ →
∏

i∈I Ci. By

general duality theory the operator σ is onto if and only if j is injective with closed range.

But each element ui ∈ Ki ⊂ O(Ui)
′ ⊗̂X is an X-valued analytic functional supported by

the closure of Ui, which in addition is proper with respect to T :

(T − z)ui = 0.

Moreover,

ui(1) = (T − w)ui(1/(z − w))

for any w ∈ C \ U i, so that ui(1) ∈ M(U i, T ). Hence the observation that

σ((ui)i∈I) =
∑

i∈I

ui(1)

implies that X =
∑

i M(U i, T ) under the stated conditions.

In fact Bishop also proved a reciprocal of the above theorem and he distinguished four

degrees of “spectral dualities”, each similar to the conclusion of the theorem. For later

use we isolate from the preceding discussion the following definition.
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Definition 1. An operator T ∈ L(X) is said to have property (β) if for any open set

U of C the map T − z is one-to-one with closed range on the space O(U,X) of X-valued

analytic functions defined on U .

Remark that, by the Maximum Principle for analytic functions, condition (β) is triv-

ially satisfied whenever U ⊃ σ(T ).

We will see later that (β) is a central property in spectral theory, at least at this

abstract level.

The most flexible class of operators which behave as in the statement of Bishop’s theo-

rem was introduced by Foiaş in 1963 and since then these operators have been constantly

investigated from different perspectives. Thus we recall from Foiaş (1963) the following

definition. (The original definition was in fact more sophisticated and less intrinsic; for

the evolution towards the present definition see Vasilescu (1982)).

Definition 2. An operator T ∈ L(X) is called decomposable if for every finite open

covering (Ui)i∈I of the complex plane there are closed invariant subspaces (Xi)i∈I of T

with the properties

(5) X =
∑

i∈I

Xi, σ(T |Xi) ⊂ Ui, i ∈ I.

One easily remarks that all self-adjoint, scalar, generalized scalar or quasi-nilpotent

operators are decomposable. However, this class of operators is much larger and it may

contain very patological examples, see Albrecht (1978). There are at present several

simplifications of the above definition of a decomposable operator; for instance one can

require that the set I has exactly two elements. A comprehensive reference, with ample

hystorical remarks concerning the class of decomposable operators is Vasilescu (1982).

Another very useful survey about decomposable operators is Radjabalipour (1978).

It is known that a decomposable operator satisfies condition (β). On the other hand,

it is clear that property (β) is inherited from an operator to its restriction to a closed

invariant subspace. In fact, the reciprocal is true, and moreover a characterization of

decomposability in terms of (β) is possible. The next theorem makes precise these state-

ments. Its proof, although a variation of Bishop’s ideas, was found only recently. (See

Lange (1981), Albrecht and Eschmeier (1987) and Eschmeier and Putinar (1984).)

Theorem 1. Let T be a linear bounded operator acting on a not necessarily reflexive

Banach space. Then:

(a) The operator T is decomposable if and only if T and T ′ have property (β);

(b) The operator T is subdecomposable if and only if T has property (β).

Corollary. A Banach space operator is decomposable if and only if its topological

adjoint is decomposable.

This statement, for non-reflexive Banach spaces, has circulated a long period of time

as an open question, see Radjabalipour (1978) and Vasilescu (1982).

More about the preceding theorem and similar phenomena will appear in the next

section. Now we conclude with a few more definitions.
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An operator is called subdecomposable, for short SD, if it is similar to the restriction of

a decomposable operator to a closed invariant subspace. Similarly one defines a subgen-

eralized scalar operator, for short SGS. Dually, a quotient of a decomposable operator,

for short QD, is an operator which is similar to the quotient of a decomposable operator

modulo a closed invariant subspace. Similarly there is a notion of quotient of a generalized

scalar operator, for short QGS.

To conclude this section, we remark in view of Bishop’s Theorem that the completeness

of the system of proper analytic functionals with arbitrary small support of an operator T

is related by duality to property (β) for the adjoint operator. This relationship explains in

fact the majority of the known results about decomposable or related classes of operators.

4. Conditions involving the resolvent. Traditionally the resolvent of an operator

is the first object to look at when the spectral properties of the operator are needed. Again

the case of a self-adjoint operator is best understood. Not far from this example Colojoarǎ

and Foiaş studied a series of growth conditions on the resolvent of an operator which

imply the latter to be generalized scalar, see Colojoarǎ and Foiaş (1963). Analogously,

Lyubich and Matsaev (1962) exhibited a growth condition of the resolvent of an operator

which implies its decomposability. To be more precise we recall a typical case of resolvent

analysis.

Let T be a bounded linear operator acting on the Banach space X . Assume that the

spectrum of T is contained in the unit torus T = {z ∈ C; |z| = 1} and assume that the

following condition holds:

(6) ‖(T − z)−1‖ ≤ C||z| − 1|−α, |z| 6= 1,

where C is a positive constant and α ≥ 1. Under that condition Colojoarǎ and Foiaş

(1968) prove that one can replace T in the Fourier series development of a function

f ∈ Cm(T), for m > α + 1. Thus one proves that T is a generalized scalar operator. A

good exercise for the reader is to use Theorem 1 above for proving that T is decomposable

by checking property (β) for T and T ′.

There is at present an explanation of results like the latter one, without involving

the Fourier transform or any group structure on the support of the spectrum. Namely

Dynkin (1972) discovered a functional calculus based on the Cauchy–Pompeiu formula

with Whitney jets of analytic functions defined only on the spectrum, whenever the

resolvent grows towards the spectrum not faster than a negative power of the distance

to the spectrum.

Bishop’s Theorem recalled in the preceding section suggests that some non-pointwise

conditions on the resolvent of an operator T , or rather on T−z, would be more appropriate

in the study of various spectral decomposition properties of T . This is indeed true, as

will follow from the next theorem. First we need some more notation and terminology.

Definition 3. An operator T ∈ L(X) is said to have property (βE) if T − z is

one-to-one with closed range on the space E(C, X) of X-valued smooth functions on the

complex plane.
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We remark that, by duality, if T satisfies condition (βE), then, at the level of distri-

butions the following map is onto:

T ′ − z : E(C) ⊗̂X ′ → E(C) ⊗̂X ′.

In fact, if the space X is reflexive this condition also implies βE . In that case we will

simply say that T ′ − z divides all X ′-valued distributions.

Similarly, property (β) for T is equivalent on reflexive spaces to the divisibility of all

X ′-valued analytic functionals by T ′ − z, this time with arbitrarily small support.

We can summarize the main results in this area in the following theorem.

Theorem 2. Let T be a linear bounded operator acting on a reflexive Banach space

X. Then each column of the following table characterizes the respective class of operators.

T property divisibility complete system of eigen.

SD (β) (T ′ − z) | an. funct. an. funct. for T ′

QD (β)′ (T − z) | an. funct. an. funct. for T

D (β), (β)′ (T − z), (T ′ − z) | an. funct. an. funct. for T , T ′

SGS (β)E (T ′ − z) |distrib. distrib. for T ′

QGS (β)′
E

(T − z) |distrib. distrib. for T

Looking at the above table, it is expected that the juxtaposition of the last two lines

would characterize the generalized scalar operators. Unfortunately, this fact is not true,

see Eschmeier and Putinar (1989) for an example.

Theorem 2 remains valid on arbitrary Banach space, with the only modification that

the surjectivity of T − z or T ′ − z on the respective spaces of distributions must be

changed into surjectivity plus the lifting property of bounded sets. For a complete proof

see Eschmeier and Putinar (1996). Theorem 2 has a series of applications to the division

of distributions by analytic functions. Some of these applications are also contained in

Eschmeier and Putinar (1989).

Some of the above conditions may seem artificial and difficult to be verified. However,

some quantitative versions are available, with quite unexpected applications. Next we

mention only one such example.

Proposition 1. Let T be a bounded linear operator acting on the Banach space X

and let D ⊂ D ⊂ G be two open sets which contain the spectrum of T. Then each of the

following conditions implies property (β)E for T .

(a) There is a natural number k and a positive constant c such that

c‖f‖2,D ≤ ‖(T − z)f‖2,G + ‖(T − z)∂kf‖2,G

for every smooth function f ∈ E(G).

(b) There is a linear bounded operator on X such that

‖(S − z)x‖ ≤ ‖(T − z)x‖

for any complex number z in a neighbourhood of the spectrum of T and x ∈ X.

P r o o f. (a) We have to prove that the operator T − z is one-to-one with closed range

on the space E(C). Let fn be a sequence in E(C) with the property that (T − z)fn
converges to zero. Since T − z is invertible on C \ D, we can assume, after a partition
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of unity, that Supp(fn) ⊂ G for any n. Then condition (a) in the statement implies that

‖∂Nfn‖ tends to zero for every positive integer N . Hence ‖fn‖ converges to zero in the

norm of E(D) which certainly is enough to complete the proof of property (βE).

(b) This part is an application of (a), via the following observation. Let f be a smooth

function with compact support in D. Let g denote the function

∂(f − (z − S)∂f) = −(z − S)∂2f.

If χ is a smooth function with compact support in C, equal to 1 on D − D, then h =

π−1 χ
z
∈ L1(C) satisfies by the Cauchy–Pompeiu formula the following identity:

f(z)− (z − S)∂f(z) = g ∗ h(z), z ∈ D.

Hence the assertion follows in virtue of the hypothesis and (a).

Corollary. Every M -hyponormal operator is subgeneralized scalar.

By definition an M -hyponormal operator is a Hilbert space operator T which satisfies

the inequality

‖(T − z)∗ξ‖ ≤ M‖(T − z)ξ‖

for a fixed positive constant M , every complex number z and every vector ξ. Thus the

corollary follows from Theorem 2 and the preceding Proposition. This was proved in

Putinar (1984); in fact, the motivation for studying condition (β)E and its connection

with subscalar operators comes from this result.

We continue this section with a remark concerning the quotients of generalized scalar

operators. Namely, let T ∈ L(X) be such an operator. Then we know from Theorem 2

that the map T − z is onto on the space of vector valued distributions with values in X .

In particular, for every x ∈ X there is a distribution u ∈ D′(C) ⊗̂X with the property

(T − z)u(z) = x, z ∈ C, and u(1) = x.

Hence Supp(u) is contained in the spectrum of T and therefore we can form the convo-

lution in the sense of distributions U = u ⋆ −1
πz

, so that ∂U = u. Moreover, the usual

development in series of 1
w−z

yields for large values of |z|:

U(z) = π−1
∞∑

n=0

u(wn)z−n−1.

Since the distribution (T − z)U(z) is annihilated by ∂ it is an analytic function bounded

at infinity. More exactly, the preceding series shows that limz→∞ zU(z) = π−1x, hence

by the Liouville Theorem

(T − z)U(z) ≡ −π−1x.

Thus we have proved the following result.

Proposition 2. Let T ∈ L(X) be a quotient of a generalized scalar operator. Then

for every x ∈ X the resolvent (T − z)−1x extends across the spectrum σ(T ) in the sense

of X-valued distributions.

For some classes of self-adjoint operators this conclusion is well known and it was

exploited since the classical period of operator theory, see Berezanskĭı (1968). Also, hy-
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ponormal operators have some distinguished extensions of their resolvent evaluated at

special vectors. Whenever such extensions exist, a functional model based on a distribu-

tion kernel obtained by putting together the extended resolvents is at hand. For a special

case, see Martin and Putinar (1989).

A typical application of Theorem 2, more exactly of the characterization of quotients

of generalized scalar operators is given by a new proof of the following classical result.

Theorem (L. Schwartz). Let U be an open connected subset of Cn and let f be an

analytic function in U which is not identically zero. Then the multiplication by f on the

space of distributions D′(U) is surjective.

The principal steps of a proof are the following. The problem is local, so we will work

in neighbourhoods of a point, say 0 ∈ Cn. By, Weierstrass Preparation Lemma we can

change the complex coordinates so that in a neighbourhood of 0 the function f has, up

to an invertible factor, the form of a distinguished polynomial:

f(t, s) = tk + a1(s)t
k−1 + . . .+ an(s),

where t ∈ T, s ∈ S, and T ⊂ C, S ⊂ Cn−1 are balls centered at zero.

Let u ∈ E(T × S) be a distribution supported by the product of the two small

balls. Then we can write u as a sum of distributions of the form (∂/∂si1) . . . (∂/∂sip)v,

(1 ≤ i1 ≤ i2 ≤ . . . ≤ ip ≤ n− 1) and v ∈ E′(T ) ⊗̂ L2(S).

But the Weierstrass polynomial f can be factored into linear terms:

f(t, s) = (t− α1(s)) . . . (t− αk(s)),

with measurable, essentially bounded coefficients, αi ∈ L∞(S), 1 ≤ i ≤ k. Since the

multiplication by each αi is a generalized scalar operator on L2(S), t − αi divides by

Theorem 2 the distribution v (1 ≤ i ≤ k). Thus f divides v, and being analytic it

commutes with the ∂-operators. In conclusion f divides the distribution u.

The original proof appeared in Schwarz (1955). The preceding proof and similar di-

vision results are detailed in Eschmeier and Putinar (1996).

In general the principal problems concerning the classes of operators mentioned in

this section have been solved, with one intriguing exception.

Open problem. Is the sum or product of two commuting decomposable operators

still decomposable?

For some partial results and different equivalent forms of this question see Eschmeier

(1985).

5. Dilations and functional calculi. The area of operator theory which can be

incorporated under the title of this section is ample and diverse. The celebrated Sz.-

Nagy–Foiaş functional model for Hilbert space contractions is the most notable example

in this direction. We will not discuss below this refined theory of contractions or any of

its numerous ramifications. Instead, we will discuss briefly an idea which has recently

appeared in the study of subdecomposable operators and which is able to produce a

variety of apparently new dilation theorems for much general classes of operators.
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The dictionary between operators and modules over algebras with a single generator

is at this moment assimilated with clear benefits by all operator theorists. A natural

continuation of this relationship, namely the correspondence between dilations of opera-

tors and resolutions of modules, was isolated for the first time in a preprint by Douglas

and Foiaş (1976). Except the school of Hilbert modules led by R. G. Douglas (see the

references in Douglas and Paulsen (1989)), very few mathematicians are nowadays aware

of the potential hidden in this homological approach to dilation theory. It is the aim of

the present section to sketch a framework for studying dilations of arbitrary operators via

resolutions of modules, and then to apply the general construction in a couple of typical

situations.

Let T be an operator acting on the Banach space X . Then one can regard X as a

module over the algebra of entire functions O(C), via the functional calculus map:

(f, x) 7→ f(T )x, x ∈ X, f ∈ O(C).

We know from the previous sections that, in general, one cannot expect this functional

calculus to extend to algebras with partitions of unity. However, changing the initial

module into a dilation of it, that is, into a submodule of a quotient of a larger module,

one can always assume that this dilation admits a rich functional calculus, for instance

with smooth functions. The only problem is to control and shrink as much as possible the

spectrum of the dilated module. First we explain the general construction of a dilation

in a purely algebraic setting.

Let A be a commutative ring with unit and let M be an A-module. Let L. be a free

resolution of M (of course to the left):

(7) . . . → L1 → L0 → M → 0.

Let B denote a commutative unital A-algebra and suppose that A admits a finite

resolution to the right, in the category of A-modules, with B-modules:

(8) 0 → A → N0 → N1 → . . .

Consider the double complex L.⊗AN . and the total complex C. associated to it, that

is,

Cn =
⊕

p−q=n

Lp ⊕N q,

endowed with the natural total differential. Then C. is exact in all degrees, except the

degree zero, and in degree zero its homology is isomorphic to M . Notice that the com-

ponents of C. are B-modules, but its differentials are only A-linear. In the terminology

explained above, C0 is a dilation to a B-module of the A-module M .

The first example we consider is in fact a construction which applies to an arbitrary

operator and it provides some geometric support for the properties (β) and (β)′. Let T

be a linear bounded operator acting on the Banach space X and let U be a bounded

open set which contains the spectrum of T . Then it is well known that the sequence

0 → O(U,X)
T−z
−→ O(U,X) → X → 0

is exact. Moreover, one can replace the space of all analytic functions above with the

space A2(U,X) of X-valued, square summable, analytic functions on U . This exact se-
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quence plays the rôle of the free resolution in the preceding general scheme. For the right

resolution we choose the ∂-complex given by the closed operator ∂ on L2(U,X). More pre-

cisely, denoting by D the domain of this operator (D = {f ∈ L2(U,X); ∂f ∈ L2(U,X)})

we have an exact sequence

0 → A2(U,X) → D
∂

−→ L2(U,X) → 0,

which corresponds to the right resolution with B-modules in the above abstract construc-

tion.

Thus the total complex C. is

0 → D → D ⊕ L2(U,X) → L2(U,X) → 0,

with the boundary operators

d1 = ((T − z)⊕ ∂), d0 = (∂, z − T ).

The homology in the middle is isomorphic, as A = O(C)-modules, toX , and elsewhere

the complex is exact. Note that the components of C. are naturally C1(U)-modules. Let

us denote by D+ the A-module C0/Im(d1) and by D− the A-module Ker(d0), so that X

is canonically a sub-A-module of D+ and a quotient A-module of D−.

Summing up, the multiplication operator S with the complex variable on the space

C0 is generalized scalar of order 1, with spectrum equal to the closure of U ; it defines

by restriction, respectively by quotient, the operators S− = S|D−, respectively S+ =

S/Im d−1. Moreover, S+ is an extension of T and S− is a co-extension of T . With these

notations we have the following remarkable observation.

Theorem 3. Let T be a linear bounded operator acting on the Banach space X and let

U be a bounded open neighbourhood of the spectrum of T . Then with the above notations

there is a C1-scalar dilation S of T , an extension S+ and a co-extension S− of T with

the following properties :

(a) The spectra of S, S± are contained in U ;

(b) T is subdecomposable if and only if S+ is decomposable;

(c) T is q-decomposable if and only if S− is decomposable;

(d) T is decomposable if and only if both S± are decomposable.

The proof is a simple application of Theorem 2 and the fact that, in a short exact

sequence of O(C)-modules, if two modules have property (β) then the third has the same

property. Theorem 3 appeared in different forms in Albrecht and Eschmeier (1987),

Eschmeier and Putinar (1988), and Putinar (1990).

This apparently too general dilation theorem has recently found an important appli-

cation to the invariant subspace problem.

Corollary. A subdecomposable operator with thick spectrum has non-trivial invari-

ant subspaces.

Here by a thick set we mean a compact set σ of the complex plane with the property

that there is an open set G such that the H∞-norm on G is attained on G∩ σ, for every

element of H∞(G). In particular, a set with interior points is thick in this sense. The

proof of the above Corollary is due to Eschmeier and Prunaru (1990) and it exploits
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a method of Scott W. Brown, which in the last decade has produced a series of deep

invariant subspace theorems.

Next we focus on a similar dilation theorem, more precise and more restrictive, which

has the advantage of letting the spectrum of the dilated operator approach the spectrum

of the initial operator.

Theorem 4. Let T be a linear bounded operator acting on the Banach space X and

let U be a bounded set of the complex plane with smooth boundary. Suppose that there

are positive constants C and b, such that :

‖(T − z)−1‖ ≤ C dist(z, ∂U)−b, z ∈ C \ U.

Then T admits a dilation to a Lipa(U)-generalized scalar operator , where a is any non-

integer greater than b+ 2.

P r o o f. Above Lipa denotes the Lipschitz space of order a of differentiable functions.

The proof repeats the construction oultined before, this time with Lipschitz spaces instead

of Lebesgue spaces.

We can assume that the constant b in the statement is non-integral. (Otherwise we re-

place it with a slightly larger constant). Let Aa(U) denote the space of analytic functions

in U which have an extension to Lipa(U). Under the conditions in the statement, there

is an extension of the usual analytic functional calculus of T to an Aa+1(U)-functional

calculus. (See Dynkin (1972) for the construction of this generalized functional calcu-

lus.) Thus the analytic module X has a topologically free resolution to the left, given for

instance by the topological analogue of the classical Bar complex:

B.A(A,X) → X → 0,

where we put for simplicity A = Aa+1(U). (The Bar complex is the complex which defines

the Hochschild cohomology of modules, see MacLane (1963). Its topological version

appears in the cohomology theories of topological modules over topological algebras.

Here we follow Taylor (1972a) in all definitions concerning topological and homological

concepts.)

On the other hand, the boundary values of the Cauchy integral are linear bounded

operators on any non-integral Lipschitz norm on the boundary of U (see for instance

Henkin and Leiterer (1984)), whence the complex

0 → A → D
∂

−→ Lipa+1(U) → 0

is exact. As before D stands for the domain of ∂ in the latter Lipschitz space. Moreover,

the Cauchy integral gives a continuous C-splitting of this complex. Thus each component

of the Bar complex can be replaced by a two term exact complex and finally we obtain

a double complex

B.A(D,X) → B.A(Lipa+1(U), X)

whose total complex is the abstract C. above. To finish the sketch of the proof it remains

to remark that the components of C. are Lipa+2(U)-modules.
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The universal extension and co-extension S± of T still exist inside C0 and the con-

clusion of Theorem 3 remains valid in this case, too. It is worth remarking that in the

statement of Theorem 4 the spectrum of T may intersect the boundary of the set U .

With the above proofs as a model, the reader can easily find other canonical dilations,

starting with different refined functional calculi.

The same algebraic setting for a universal dilation of an operator explains with minor

modifications the classical dilation theory of Sz.-Nagy and Foiaş, see Douglas and Paulsen

(1989) for details. However, it is not expected that the principal analytic difficulties in this

field, mainly related to the concept of spectral set and uniform estimates for functional

calculi, will be solved by this homological approach. An instructive example of a positive

solution to a difficult analytic question in dilation theory is Agler (1985).

An important open question related to the above mentiond work of Agler is to deter-

mine the Hilbert space operators which admit a normal dilation with spectrum contained

in a prescribed closed set. So far only for the disk and an anulus there is a satisfactory

solution.

6. The sheaf model. We have encountered so far a few examples of spectral

theories with data arranged in a discrete table (the Jordan form), a vector valued mea-

sure (self-adjoint and scalar operators) or a vector valued distribution (generalized scalar

operators). A common feature of all these examples is the fact that the data are ar-

ranged into objects which carry certain multiplicities over the spectrum of the original

operator. Thus it is not unexpected to put the same or similar data into a bundle or

sheaf supported by the spectrum. As a matter of fact the decomposable and related

families of operators are well fitted for such an approach. Although the correspond-

ing sheaf model has originally appeared as a technical tool in the multivariable the-

ory (of commuting systems of operators), it is a posteriori relevant even for a single

operator.

To give a simple motivation for what follows we consider again a linear operator

acting on a finite-dimensional space V . Regarded as an O(C)-module, V is isomorphic

to Coker((T − z) : O(C, V ) → O(C, V )). Obviously the latter module decomposes into

its local factors Coker((T − z) : OV
α → OV

α), where α is a point of the spectrum of T

and OV
α represents the module of germs at α of all V -valued analytic functions. Since

each of these modules is of finite complex dimension, it is of the form (Oα/mα
k1)⊕ . . .⊕

(Oα/mα
kp), where mα is the maximal ideal of the local ring Oα. Thus another form of

the Jordan decomposition of the operator T is to represent the analytic module V as

follows:

V ∼=
⊕

α∈σ(T )

[(Oα/mα
k1)⊕ . . .⊕ (Oα/mα

kp(α) ].

By replacing the local rings of analytic functions with the sheaves of analytic functions on

the complex plane one finds a so-called “sky-scraper sheaf” which is supported on σ(T )

and which localizes the space V with respect to the action of its linear endomorphism

T . A similar construction holds for operators with property (β); in fact, it has already

appeared in the proof of Bishop’s Theorem discussed above in this paper.
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Definition 4. Let T be a linear bounded operator acting on the Banach space X .

Suppose that T satisfies condition (β). The sheaf model of T is the sheaf associated to

the presheaf

FT (U) = Coker((T − z) : O(U,X) → O(U,X)),

where U is an open subset of C.

One easily finds that the preceding presheaf is actually a sheaf of Fréchet O-modules.

Moreover, by its very definition we have a topologically free resolution of this sheaf on C:

(9) 0 → OX T−z
−→ OX → FT → 0.

For that reason the sheaf model of the operator T has vanishing Čech cohomology on any

open subset of the complex plane. Moreover, it is obvious that this sheaf is supported by

the spectrum of T . According to (9), the space X can be realized as

X ∼= FT (V ),

whenever the open set V contains the spectrum of T . In this isomorphism T corresponds

to the action of the complex coordinate on the sections of FT . This remark explains

the name of sheaf model, as a parallel to various functional models of operators. The

properties of the sheaf FT reflect faithfully those of the original operator T . We mention

below a few examples.

Proposition 3. Let T be a linear bounded operator with property (β) and let FT be

its sheaf model. Then:

(a) Supp(FT ) = σ(T );

(b) M(T,A) = {s ∈ FT (C); supp(s) ⊂ A} for every closed set A of C;

(c) The operator T is Fredholm if and only if FT is a coherent analytic sheaf in a

neighbourhood of 0. In that case ind(T ) = −rk0FT ;

(d) Two operators as in the statement are similar if and only if their sheaf models are

isomorphic as Fréchet O-modules.

For a proof of these facts see Putinar (1983), (1986).

A direct application of assertions (c) and (d) of the latter proposition concerns quasi-

similar operators. We recall that the Banach space operators T ∈ L(X) and S ∈ L(Y )

are said to be quasi-similar if there are bounded one-to-one operators A : X → Y and

B : Y → X both with dense range such that SA = AT and BS = TB. This is an equiva-

lence relation which is more flexible than the similarity relation and it still preserves part

of the properties of the operators T and S. In this direction we have the following result.

Corollary. Let T and S be Banach space operators with property (β). If T and S

are quasi-similar , then their spectra and essential spectra coincide.

In the particular case of hyponormal operators the latter result has circulated as an

open question for more than a decade. The complete proof of the corollary appears in

Putinar (1992).

Thus, even if the partition of unity is missing from a functional calculus of the operator

T , whenever property (β) is satisfied there is a satisfactory localization of the space,

and the original operator, at the level of sheaves. Moreover, once we know that the
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corresponding module can be localized by a Fréchet analytic sheaf, there are simple

criteria to verify that this is exactly the sheaf model, in the above sense. A typical example

is contained in the following result. Next we adopt for convenience the equivalent language

of modules instead of operators.

Theorem 5. A Banach O(C)-module X is decomposable if and only if there is an

analytic Fréchet soft sheaf on C with the global sections space isomorphic to X as a

Banach O(C)-module.

In other words, if we know that an operator has a Fréchet soft sheaf model, then and

only then it is decomposable. This implies in particular that any Fréchet soft sheaf model

of an operator is unique, if it exists. The proof of Theorem 5 is also contained in Putinar

(1983).

Thus the spectral subspaces M(T, F ) of a decomposable operator T can be arranged

into a soft sheaf. This approach explains for instance the duality theory between these

spaces (duality inherited from T and T ′). It turns out that the sheaf models of T and T ′

reproduce formally the relation between the sheaves of test functions and distributions.

This remark was the key in proving Theorem 2 and its main consequences.

Let us compute the sheaf models of a couple of operators which have appeared in the

previous sections. Consider for instance the multiplication by z on the space Lipα(A),

where A is a compact subset of C. This analytic module is obviously decomposable. Its

sheaf model is

F(U) = {f ∈ Lipα(K ∩ A);K ⋐ U},

that is, the local Lipschitz space of the same order, supported by A. Analogously the

Bergman space A2(Ω) of a bounded domain Ω of the complex plane is a subdecomposable

analytic module, hence it can be localized. The corresponding sheaf model is

G(U) = {f ∈ O(U ∩Ω); f ∈ A2(V ∩Ω), V ⋐ U}.

There are problems in function theory which require exactly such a localization ap-

proach. A simple example is discussed in the rest of this section.

Let Ω be a bounded domain of the complex plane. A system f1, . . . , fn of bounded

analytic functions on Ω satisfies the assumption of the Corona Problem if

inf
z∈Ω

(|f1(z)|+ . . .+ |fn(z)|) > 0.

In that case the Corona Problem asks whether (f1, . . . , fn) generateH
∞(Ω) as an algebra.

A classical result of Carleson answers this question in the affirmative for the unit disk,

and hence on any simply connected domain different from the entire plane. The problem

is solvable on a series of other planar domains, but whether the Corona Problem has a

positive solution on any domain of the complex plane is still an open question. For a

comprehensive reference see Garnett (1981).

Theorem (Gamelin). Let Ω be a bounded , locally simply connected planar domain.

Then the Corona Problem is solvable on Ω.

A sketch of the proof, based on the sheaf model described in this section, runs as

follows. Let fi ∈ H∞(Ω), 1 ≤ i ≤ n, be the data of the Corona Problem on Ω. We have
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to prove that the Koszul complexK.(f,H∞) is exact, where f = (f1, . . . , fn). The Banach

O(C)-module H∞(Ω) is subdecomposable as a submodule of L∞(Ω), whence it can be

localized by an analytic Fréchet sheaf F . Since this sheaf has vanishing cohomology on C,

it suffices to prove that the complex of sheaves K.(f,F) is exact. But on neighbourhoods

of a boundary point of Ω, F is isomorphic to the sheaf model of the H∞-space of the unit

disk. Therefore the above complex of sheaves is (locally) exact by Carleson’s Theorem.

The original proof of Theorem 6 is contained in Gamelin (1970).

7. Multivariable spectral theory. With inherent but standard modifications the

principal results outlined in the previous sections have an analogue for commutative

systems of Banach space operators. The seminal ideas of J. L. Taylor (1969), (1972a),

(1972b) have made this generalization possible. Next we focus only on the multivariable

analogues of the notions of subdecomposable and subscalar operators. The catalyst at

this abstract level of spectral theory is the concept of quasi-coherent analytic sheaf. It

replaces the operators with property (β) and on the other hand it brings into the area the

geometric intuition and some techniques proper to complex analytic geometry. Besides

the expected operator theory statements which parallel those presented above, there are a

few external applications of the multivariable spectral theory which we simply enumerate.

First some division and interpolation problems in spaces of analytic functions depending

on several complex variables are direct consequences of joint spectra computations. Then

the index theory for commutative systems of operators is for instance used as a main

ingredient in a proof the Riemann–Roch Theorem on complex spaces with singularities,

cf. Levy (1987). Finally, the spectral localization, in the sense of the previous sections,

explains the recent efforts in classifying the analytic invariant subspaces of a Bergman

space of a domain in C
n. These topics, including the essential prerequisite material,

constitute the body of a forthcoming monograph Eschmeier and Putinar (1996). (In fact,

the present paper is partially a preview of this book).

The multivariable analogue of Bishop’s property (β) was discovered by Frunzǎ: The

commutative n-tuple T of bounded linear operators acting on the Banach spaceX satisfies

by definition condition (β) if the Koszul complex K.(T − z,O(U,X)) is exact in positive

degree and has Hausdorff homology in degree zero for any open polydisk U of Cn, see

Frunzǎ (1975). Above z denotes the n-tuple of complex coordinates on Cn. In fact, the

latter definition has a coordinateless expression as follows: the Fréchet O(Cn)-modules X

and O(U) are topologically transversal for every open polydisc U . That means, following

Taylor (1972b), that the topological tensor product O(U)⊗̂O(Cn)X is Hausdorff in the

natural quotient topology and its derived functors vanish. The joint spectrum of the

system T is defined as the set on whose complement the same transversality occurs and

in addition the above tensor product vanishes, see Taylor (1972a).

Let X be a Banach O(Cn)-module with property (β). Then its associated sheaf model

is, similarly to the single variable case

F(U) = O(U) ⊗̂O(Cn) X = O(U,X)/
( n∑

i=1

(Ti − zi)O(U,X)
)
,

for every open polydisk U . This sheaf has a remarkable topologically free resolution given
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by the Koszul complex

K.(T − z,OX) → F → 0.

Thus F is a so-called Fréchet quasi-coherent analytic module. (The existence of a topo-

logically free resolution for a Fréchet analytic sheaf is a possible definition of the quasi-

coherence property; the original, equivalent, definition is explained in Putinar (1986).)

Under the assumption (β) the conclusions of Proposition 3 remain all valid and in this

way the sheaf F reflects the properties of the n-tuple of multiplication with the coordinate

functions on the Banach module X .

In the multivariable setting the multivariable generalization of a decomposable oper-

ator is suggested by Theorem 5. Once this definition is accepted (i.e. a decomposable

n-tuple is characterized by the existence of a Fréchet soft sheaf model) all properties of

the decomposable operators extend to the case of commutative tuples of operators. (See

for full details Eschmeier and Putinar (1996).)

Theorem 2 has in its turn some interesting analogues in several variables. It is the aim

of the rest of this section to state a few results in this direction. First the construction

from Section 5 of a universal dilation of an operator has the following straightforward

generalization.

Let X be a Banach O(Cn)-module and let U be a Stein open set of Cn which contains

the joint spectrum of X . Then the augmented Koszul complex

K.(T − z,O(U,X)) → X → 0

is exact (see Taylor (1969)). Moreover, the augmented Dolbeault complex

0 → O(U,X) → E(0,0)(U,X) → . . . → E(0,n)(U,X) → 0

is exact. So, following Section 5 the total complex C. attached to the double complex

K.(T − z, (E(0,.)(U,X), ∂
(0,.)

))

is exact except in zero degree, where its homology is isomorphic to X . In particular, as

in Theorem 3, there is a resolution to the right of the module X :

0 → X → S+ → D1 → . . . → Dn → 0,

whereDi (1 ≤ i ≤ n) are E-modules, hence decomposable modules in the above terminol-

ogy. Moreover, one can change the Fréchet spaces appearing in this resolution to Hilbert

spaces (of corresponding square summable functions). By repeating the proof of Theorem

3 in that case one obtains the equivalence of property (β) for X and the decomposability

of the module S+. See for details Putinar (1990).

The latter remarks allow us to follow Section 5 in constructing universal dilations for

n-tuples of commuting operators. As a matter of fact a more invariant characterization

of property (β) is available as a byproduct of the existence of the universal dilation.

Theorem 6. A Banach module over the algebra of entire functions in n variables has

property (β) if and only if it has a finite resolution to the right with Banach soft modules.

The proof of Theorem 6 is contained in Putinar (1990). A series of applications of

this result appear in Eschmeier and Putinar (1996). At the level of analytic sheaves the

preceding result has the following consequence.
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Corollary. Let F be a Fréchet analytic sheaf on a Stein manifold M . Suppose that

the cohomology of F vanishes on M . Then the following conditions are equivalent :

(a) F is quasi-coherent ;

(b) F admits on M a finite resolution to the right with Fréchet soft analytic modules ;

(c) There is a finite complex of Fréchet E-modules on M which is exact except in a

single degree, where its homology is isomorphic to F .

Thus a subdecomposable operator has an appropriate multidimensional analogue in

an analytic module which admits a resolution to the right with decomposable modules.

Analogously, to the class of subgeneralized scalar operators there corresponds the set of

analytic modules with a right resolution with E-modules. See Putinar (1990) for the

precise statements.

The typical example of an analytic module with property (β) is the Bergman space

of a bounded pseudoconvex domain Ω in Cn. More exactly, in that case the Dolbeault

complex with coefficients square integrable functions on Ω is exact by a well known result

of Hörmander (1965). Thus the Bergman space is localizable by a Fréchet quasi-coherent

analytic sheaf. The investigation of this analytic module explains several known results

of spectral analysis for analytic Toeplitz operators on Bergman spaces. See Eschmeier

and Putinar (1996) for full details; the next results are reproduced from that book and

they illustrate the versatility of the sheaf model approach in spectral analysis problems.

Let Ω be a bounded strictly pseudoconvex domain of Cn with smooth boundary. Let

A2(Ω) denote the corresponding Bergman space, that is the space of analytic functions in

Ω which are square summable with respect to the volume Lebesgue measure in the same

domain. Two general problems of operator theory on that space are the computation of

(joint) spectra of Toeplitz operators and the classification of analytic invariant subspaces.

Although both problems have recently been investigated by various methods, they remain

far from being completely solved. Next we list a few results obtained with the sheaf model

of the Bergman space as a main tool.

1. Let f = (f1, . . . , fm) be an m-tuple of uniformly bounded analytic functions in Ω

and let λ be a point disjoint of f(Ω). Then the Koszul complex K.(f(z) − λ,A2(Ω)) is

exact.

This result is a weak analogue in several complex variables of the Corona Problem

approach mentioned in Section 6. Whether Corona Problem has a positive solution on

classical domains of Cn is not yet known.

2. Let S ⊂ A2(Ω) be a finite-codimensional subspace of the Bergman space which is

invariant under multiplication with bounded analytic functions in Ω. Then there are poly-

nomials P1, . . . , Pk with finitely many common zeroes inside Ω such that S = P1A
2(Ω)+

. . .+ PkA
2(Ω).

3. Let M be a complex submanifold of an open neighbourhood of Ω which intersects

transversally the boundary of Ω. Let f1, . . . , fk be the generators of the radical ideal of M .

If an element F ∈ A2(Ω) vanishes on Ω∩M , then it belongs to f1A
2(Ω)+ . . .+fkA

2(Ω).
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The previous statement is an analogue with L2-estimates of the classical Nullstellen-

satz in complex geometry. In particular the space

V 2(M) = {f ∈ A2(Ω); f |Ω ∩M = 0} = f1A
2(Ω) + . . .+ fkA

2(Ω),

is an analytically invariant closed subspace of the Bergman space.

4. Let I and J be two ideals of analytic functions defined in a neighbourhood of Ω.

Assume that I and J are topologically transversal to the Bergman space A2(Ω) over

the algebra of anaytic functions on Ω and that the zeroes of I and J are analytic sets of

codimension greater than 1 inside Ω. Then the (automatically closed) invariant subspaces

I.A2(Ω) and J.A2(Ω) are isomorphic as analytic Hilbert modules if and only if I = J .

The latter result is a typical rigidity phenomenon in the classification of analytic

invariant subspaces. Details about the origins of this phenomenon and a series of generic

examples can be found in Douglas and Paulsen (1989).
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