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1. The basic concepts. Let X be an n-dimensional real or complex vector space,

n < ∞. Let A : X → X be a linear operator. It is called power bounded if the semigroup

Π(A) = {Ak}∞0 of its natural powers is bounded. (This property can be defined in

terms of any norm: sup{‖Ak‖ : k ∈ N} < ∞. The choice of the norm does not matter.)

An operator A is called double power bounded if A is invertible and A,A−1 are both

power bounded. (Thus, sup{‖Ak‖ : k ∈ Z} < ∞.) We only consider the power bounded

operators. Since in this case the spectral radius r(A) does not exceed 1, the spectrum

σ(A) consists of two parts, the boundary (or peripheral) spectrum

σ1(A) = {λ : λ ∈ σ(A), |λ| = 1}

and the interior spectrum

σ0(A) = {λ : λ ∈ σ(A), |λ| < 1}.

(Speaking about spectra in the real case we implicitly change A for its natural complex

extension AC.) One of these parts of σ(A) may be empty; σ1(A) 6= ∅ iff r(A) = 1,

σ0(A) = ∅ iff A is double power bounded (being power bounded). According to this

partition of the spectrum we have the decomposition of the space X into the direct sum

(∗) X = X1 +̇X0

where X1 and X0 are invariant subspaces such that

σ(A|X1) = σ1(A), σ(A|X0) = σ0(A),

the so-called boundary and interior subspaces. This terminology also applies to the parts

of the operator A, A1=A|X1 and A0=A|X0. The following quite elementary proposition

is in fact the starting point of a rather deep theory presented below.
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Proposition 1.1. The boundary part A1 is double power bounded. The interior part

A0 is such that limk→∞ Ak
0 = 0.

To explain a key role of this statement let us note that Π(A) is precompact being a

bounded subset of L(X) where L(X) is the space of all linear operators in X , dimL(X) =

n2 < ∞. The closure Π(A) is a compact semigroup. In this sense A is an almost periodic

operator. It is a finite-dimensional version of a general statement regarding operators

in a Banach space or elements of a Banach algebra (see for example [11, Chapter 4]).

Proposition 1.1 corresponds to the so-called de Leeuw–Glicksberg decomposition [6] or, in

terms of [11], the boundary spectrum splitting-off theorem. There are a lot of interesting

applications of the general theory of almost periodic operators to Markov chains (e.g.

[3], [10], [19]), dynamical systems (e.g. [7], [8], [12], [13], [16], [22]), harmonic analysis

and spectral theory (e.g. [6], [9], [11], [21]). Though this development is rather recent,

its roots are in an abstract theory of compact semigroups which arose much earlier. A

principal concept in this way is the Sushkevich kernel (S.k.).

2. The Sushkevich kernel. This object can be formally defined as the smallest

two-sided ideal of a given semigroup but this may not exist if the semigroup is taken

arbitrarily. For example, there is no S.k. in the additive semigroup N. However, the S.k.

does exist in any finite semigroup [20] and even in any compact semigroup [17]. Moreover,

it has a lot of remarkable properties, among them:

Theorem 2.1. For any compact commutative semigroup its S.k. is a compact group

(whose unit is an idempotent).

Coming back to our case of a power bounded linear operator A in a space X , dimX =

n < ∞, we can introduce the following

Definition 2.2. The S.k. of the semigroup Π(A) is called the S.k. of A.

We denote it by K(A). Let us emphasize that Π(A) is, obviously, commutative, so

Theorem 2.1 is applicable. However, we do not need it because the S.k. K(A) can be

constructed directly in our context (cf. [4]). For this purpose we consider the projection P

connected with the decomposition (∗). We call it the boundary projection of the operator

A and prove

Lemma 2.3. P ∈ Π(A).

P r o o f. Let {km}∞0 ⊂ N be such that km+1−km→∞ and the limit U = limm→∞ Akm

1

exists. Then

U−1 = lim
m→∞

A−km

1 and lim
m→∞

A
km+1−km

1 = UU−1 = id = P |X1.

On the other hand, limA
km+1−km

0 = 0 = P |X0. Thus,

(∗∗) P = lim
m→∞

Akm+1−km .

Lemma 2.4. For any operator B ∈ Π(A) the smallest ideal containing B is closed.

Furthermore, BΠ(A) = BΠ(A).
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P r o o f. This ideal is BΠ(A). It is closed since Π(A) is compact. Obviously,

BΠ(A) ⊂ BΠ(A). On the other hand, if C ∈ BΠ(A) then

C = B( lim
m→∞

Aqm) = lim
m→∞

(BAqm)

for a sequence {qm}∞0 . Passing to a convergent subsequence we obtain C ∈ BΠ(A).

Corollary 2.5. Every ideal of the semigroup Π(A) contains a closed ideal.

Now we can get K(A) in the following way.

Theorem 2.6. The ideal of the semigroup Π(A) generated by the boundary projection

P is its S.k.

K(A) = PΠ(A).

It is a compact group with the unit P.

P r o o f. For every ideal I ⊂ Π(A) we have to prove that PΠ(A) ⊂ I. One can assume

I to be closed because of Corollary 2.5. Let B ∈ I. Then B is a power bounded operator

with the same decomposition (∗). By Lemma 2.3, P ∈ Π(B) ⊂ I. Hence PΠ(A) ⊂ I.

Thus, PΠ(A) is the S.k. of Π(A), K(A) = PΠ(A).

By Lemma 2.4, K(A) is closed. It is a semigroup being an ideal. The boundary

projection P is its unit since P = P 2 ∈ PΠ(A) by Lemma 2.3, and if B ∈ K(A) then

B = PC with C ∈ Π(A), hence PB = PC = B. Let

B = P ( lim
m→∞

Alm)

for a sequence {lm}∞0 . Coming back to (∗∗) one can assume that km+1 − km − lm → ∞

and the limit

B̂ = lim
m→∞

Akm+1−km−lm

exists. Then BB̂ = P 2 = P. Thus, K(A) is a group.

Corollary 2.7. If A is double power bounded then K(A) = Π(A).

We have describedK(A) algebraically. The next result yields a dynamical description.

Theorem 2.8. The S.k. K(A) coincides with the Ω-limit set Ω(A) of the semigroup

Π(A).

P r o o f. First, K(A) ⊂ Ω(A) since Ω(A) is an ideal in Π(A). Indeed, Ω(A) is

nonempty and Ω(A)Ak ⊂ Ω(A) for all k ∈ N. Since Ω(A) is closed, we get Ω(A)Π(A) ⊂

Ω(A). To establish the converse inclusion Ω(A) ⊂ K(A) we take B ∈ Ω(A), i.e.

B = lim
m→∞

Alm

with a sequence {lm}∞0 , lm → ∞. Then B|X0 = 0 hence, B = PB ∈ PΠ(A) = K(A).

The intrinsic structure of the group K(A) is completely determined by the boundary

spectrum σ1(A). Let σ1(A) = {λ1, . . . , λs}. Since all the eigenvalues lie on the unit

circle T, one can consider the ordered set σ1(A) as a point a1 on the s-dimensional torus

Ts which is a compact group (due to the standard group structure on T).
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Theorem 2.9 ([4], Ch. 1, Th. 2.4). There exists a unique continuous monomorphism

h : K(A) → Ts such that h(A1) = a1 where A1 is the boundary part of A.

P r o o f. Let

A1 =

s∑

j=1

λjPj

be the spectral decomposition, so Pj are projections in X1 whose images are the corre-

sponding eigenspaces. Moreover,
s∑

j=1

Pj = id, Pj1Pj2 = 0 (j1 6= j2).

Then

Al
1 =

s∑

j=1

λl
jPj , l ∈ N.

If now B ∈ K(A) then by Theorem 2.8,

B = lim
m→∞

Alm = lim
m→∞

Alm
1 P

for a sequence {lm}∞0 , lm → ∞. Hence,

B =

s∑

j=1

λj(B)PjP where λj(B) = lim
m→∞

λlm
j , 1 ≤ j ≤ s.

(These limits do not depend on the choice of the sequence because λj(B) is the unique

eigenvalue of B in the subspace ImPj .) Letting h(B) = (λ1(B), . . . , λs(B)) we obtain the

desired homomorphism. The uniqueness statement is obvious.

Corollary 2.10. The S.k. K(A) is topologically isomorphic to a closed subgroup of

the torus Ts where s = card[σ1(A)]. This subgroup coincides with the semigroup of Ts

topologically generated by the point a1 = σ1(A).

We denote this subgroup by 〈a1〉. Every closed subgroup G ⊂ Ts is of the form Tρ×F

where 0 ≤ ρ ≤ s and F is a finite group. Indeed, the dual group G∗ is isomorphic to a

factor group of (Ts)∗ ≈ Zs so G∗ is a commutative group generated by some s elements.

Therefore G∗ ≈ Zρ × F , thus G ≈ G∗∗ ≈ Tρ × F .

If G is monothetic then F is cyclic. In particular, we have this information about

K(A) in virtue of Corollary 2.10. Now we can describe the parameters ρ and ord(F ) in

arithmetical terms concerning the boundary spectrum σ1(A).

Let λj = exp(2πiθj), 0 ≤ θj < 2π, 1 ≤ j ≤ s. These numbers can be treated as

vectors from the space R over the rational field Q. Let

ρ = rankQ{θ0, θ1, . . . , θs} − 1,

where θ0 = 1. Let {θ0, . . . , θρ} be a maximal linearly independent subsystem of the system

{θ0, θ1, . . . , θs}. Then for every θj , j > ρ, there exists an integer mj ≥ 1 such that mjθj
is a linear combination of θ0, . . . , θρ with some integer coefficients. Let mj be minimal

possible and let m be the least common multiple of mρ+1, . . . ,ms. (In the case ρ = s we

set m = 1.)
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Theorem 2.11. The S.k. K(A) is topologically isomorphic to Tρ × F where F is a

cyclic group whose order is a divisor of m.

P r o o f. The point a1 = (λ1, . . . , λρ, . . . , λs) ∈ Ts satisfies some conditions

λ
mj

j =

ρ∏

q=1

λωqj
q , ρ+ 1 ≤ j ≤ s,

with integer ωqj. The same conditions hold for all points b ∈ 〈a1〉. Consider the canonical

projection r : Ts → Tρ keeping the coordinates with numbers 1, . . . , ρ; we get Tρ =

Im(r|〈a1〉) by the well-known Kronecker theorem. On the other hand, all points b =

(β1, . . . , βρ, . . . , βs) from Γ = ker(r|〈a1〉) satisfy the conditions

β1 = . . . = βρ = 1, β
mj

j = 1 (ρ+ 1 ≤ j ≤ s).

Therefore Γ is finite and bm = e (e is the unit of Ts) for all b ∈ Γ .

We have 〈a1〉/Γ ≈ Tρ and we know that 〈a1〉 is a direct product of a torus and a

cyclic group F . Then this torus must be Tρ (up to topological isomorphism) and F ≈ Γ ,

so ord(F ) is a divisor of m.

The question about the exact value of ord(F ) remains open.

Corollary 2.12. K(A) is infinite if and only if this group contains a subgroup which

is topologically isomorphic to T.

It is just the case ρ ≥ 1. The opposite case ρ = 0 is such that all θj , 1 ≤ j ≤ s, are

rational or, equivalently, all λj , 1 ≤ j ≤ s, are roots of 1. Then we say that the boundary

spectrum is rational.

Corollary 2.13. K(A) is finite if and only if the boundary spectrum σ1(A) is

rational.

This property is of special interest from the dynamical point of view because every tra-

jectory {Akx}∞k=0
, x ∈ X , converges to a limit cycle iff K(A) is finite. By Corollary 2.13

we have a spectral criterion of the cyclic limit behavior: the rationality of the boundary

spectrum.

Note that if σ1(A) is rational, so λ
mj

j = 1, 1 ≤ j ≤ s, and mj are minimal possible as

before then K(A) is a cyclic group of order ϑ = the least common multiple of mj . This

m is the length of the limit cycles of the trajectories {Akx}∞k=0
for almost all x.

Below we investigate the problem of rationality of the boundary spectrum relating to

the space X endowed with an additional geometric structure.

3. Criteria of the rationality of the boundary spectrum. From now on we only

consider the real space X . As a simplest example let us recall the stochastic operators

in Rn. The rationality of boundary spectrum in this case was established already by

Frobenius. There are at least two independent geometrical reasons for that property,

namely, any stochastic operatorA in Rn is: 1) a contraction with respect to the coordinate

sup-norm and 2) monotone with respect to the coordinate ordering. Both of them can

be included in a more general context.
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Let us define a convex structure in X as a pair (X,D) where D ⊂ X is a convex closed

body such that 0 ∈ D. (The term “body” means that IntD 6= ∅.)

A linear operator T : X → X such that TD ⊂ D is called an endomorphism of the

convex structure (or D-endomorphism). If, moreover, T is invertible and T−1 is also

an D -endomorphism then T is called a D-automorphism. The set End(X,D) of all D-

endomorphisms is a semigroup with the usual multiplication of operators. The identity

operator I is the unit of this semigroup. The set Aut(X,D) of all D-automorphisms is just

the multiplicative group of the semigroup End(X,D). Note that Aut(X,D) 6= End(X,D)

since the zero operator belongs to End(X,D).

A convex structure (X,D) is called symmetric if −D = D. It is called completely

nonsymmetric if (−D) ∩D = {0}.

Example 3.1. LetX be a normed space and letD be the unit ball, D = {x : ‖x‖≤1}.

Then (X,D) is a symmetric convex structure. Its endomprhisms are just contractions,

‖A‖ ≤ 1, and its automorphisms are just isometries. An additional property of D in this

example is compactness. Note that End(X,D) and Aut(X,D) are also compact in this

case.

Example 3.2. Let X be an ordered space and let D be the nonnegative cone,

D = {x : x ≥ 0}. If D is solid, i.e. IntD 6= ∅, then (X,D) is a convex structure

but it is completely nonsymmmetric. The semigroup End(X,D) consists of all monotone

operators. It is noncompact because all homotheties λI, λ > 0, are D -endomorphisms.

They are even D -automorphisms, so Aut(X,D) is also noncompact. This is nonclosed

in End(X,D) since λI → 0 as λ → 0 but End(X,D) is obviously closed. As usual,

D -endomorphisms are also called the nonnegative operators in this case.

We say that a subspace Y 6= 0 is admissible if DY = D ∩ Y is a body in Y . In

this case we can define a convex structure (Y,DY ) called a substructure of (X,D). Note

that if 0 ∈ IntD then all subspaces Y 6= 0 are admissible. We call a subspace Y 6= 0

D-complemented if there exists a projection Q ∈ End(X,D) such that ImQ = Y . In

the case of the unit ball D in a normed space X that means ‖Q‖ = 1 and ImQ = Y ;

Q is called an orthoprojection onto Y and Y is orthogonally complemented if such a Q

does exist. In the case of a cone D, we say a positively complemented subspace for a

D-complemented one.

Lemma 3.3. Every D-complemented subspace is admissible.

P r o o f. If Y = ImQ where Q ∈ End(X,D) is a projection, then DY = QD. Hence,

IntY DY 6= ∅ since any projection is an open mapping onto its image.

We are especially interested in power bounded D -endomorphisms. They form a semi-

group denoted by End∞(X,D). Accordingly, Aut∞(X,D) is a group of double power

bounded D -automorphisms.

Lemma 3.4. Let A ∈ End∞(X,D) and let P be the boundary projection of A. Then

P ∈ End(X,D).

P r o o f. Π(A) ⊂ End(X,D) and P ∈ Π(A) by Lemma 2.3.
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Corollary 3.5. If A ∈ End∞(X,D) then its boundary subspace X1 is D-complemen-

ted.

By Lemma 3.3 it is admissible. Now we consider the boundary part A1 = A|X1 in

the substructure (X1, D1), where D1 = D ∩X1.

Lemma 3.6. If A ∈ End∞(X,D) then K(A1) ⊂ Aut∞(X1, D1). In particular , A1 ∈

Aut(X1, D1).

P r o o f. First, A1 is a double power bounded operator. Obviously, Π(A1) ⊂

End(X1, D1). By Corollary 2.7, K(A1) ⊂ End(X1, D1).

Everything is prepared to prove the following basic result.

Theorem 3.7. For a convex structure (X,D) the following properties are equivalent.

1) The boundary spectrum of every power bounded D-endomorphism is rational.

2) For every D-complemented subspace Y the group of DY -automorphisms does not

contain any infinite compact subgroup.

3) For every D-complemented subspace Y the group of DY -automorphisms does not

contain a subgroup which is topologically isomorphic to T.

P r o o f. 1)⇒2). Let Γ ⊂ Aut(Y,DY ) be a compact subgroup and letQ be a projection

onto Y , Q ∈ Aut(X,DX). We consider the subset of T defined as

σ(Γ ) =
⋃

V ∈Γ

σ(V ).

First of all, this “united spectrum” is rational because for every V ∈ Γ we have V Q ∈

End∞(X,D) and σ(V ) = σ1(V Q).

Secondly, λ ∈ σ(Γ ) ⇒ λk ∈ σ(Γ ) for all integers k because of V ∈ Γ ⇒ V k ∈ Γ .

Finally, the set σ(Γ ) is closed because Γ is compact.

With these properties the subset σ(Γ ) ⊂ T must be finite. Hence, there exists an

integer q ≥ 1 such that λq = 1 for all λ ∈ σ(Γ ). Then V q = id for all V ∈ Γ . Letting

R = V − id we obtain
q∑

j=1

(
q

j

)
Rj = 0,

which implies R = 0 if R is small enough. Thus, the unit element is isolated in Γ , which

means that Γ is discrete. Being compact, the group Γ is finite.

2)⇒3) trivially.

3)⇒1). Let A ∈ End∞(X,D) and let X1 be its boundary subspace, D1 = D ∩ X1

and A1 = A|X1 as usual. By Corollary 3.5, X1 is D-complemented. By Lemma 3.6 and

Corollary 2.12 condition 3) implies that K(A1) is finite. Therefore σ(A1) = σ1(A) is

rational.

For the unit balls the equivalence 1)⇔2) was obtained in [9] in the same way as

above. For the cones it was done in [21]. In the first of those cases the group Aut(Y,DY ) is

automatically compact, so 2) only means that this group is finite as stated in [9]. However,

the main results of those papers are some purely geometric criteria of rationality of the

boundary spectrum.
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Theorem 3.8 [9]. Let X be a normed space. Then the boundary spectrum of ev-

ery contraction in X is rational if and only if there is no orthogonally complemented

2-dimensional subspace Y ⊂ X such that the disk DY is Euclidean.

The last property means that there exists an inner product ( , ) in Y such that

DY = {y : y ∈ Y, (y, y) ≤ 1}.

One can say that Y is a Euclidean plane.

Corollary 3.9 [9]. The boundary spectrum of every contraction in lnp , 1 ≤ p ≤ ∞,

p 6= 2 is rational.

The point is that there are no Euclidean planes in lnp except for p which are even

integers. In the last case a Euclidean plane may exist. This depends on n, the criterion of

existence is n ≥ p/2 [15, 18], so the simplest example is l34 (given in [9]). However, there

are no orthogonally complemented Euclidean planes in lnp for any p 6= 2 and an n [9].

As a sufficient condition the absence of Euclidean planes was first established in [5].

This yields Corollary 3.9 except for p = 4, 6, . . . Moreover, this also provides

Corollary 3.10. If X is a polyhedral normed space then the boundary spectrum of

every contraction in X is rational.

A similar theory can be developed for cones [1], [5], [21]. A final result is the following.

Theorem 3.11 [21]. Let X be ordered by a solid cone D. Then the boundary spectrum

of every power bounded nonnegative operator in X is rational if and only if there is no

positively complemented 3-dimensional subspace Y such that the cone DY is Euclidean.

The last property means that there exists a direct decomposition

Y = Y1 +̇ Y2, dimY1 = 1, dim Y2 = 2,

such that

DY = {y : y = y1 + y2, y1 ∈ Y1, y2 = Y2, y1 ≥
√
(y2, y2)}

where Y1 is identified with R and ( , ) is an inner product in Y2. (Another name for such

a cone is “Lorentzian”.)

Corollary 3.12. Let X be ordered by a solid polyhedral cone. Then the boundary

spectrum of every power bounded nonnegative operator in X is rational.

The Euclidean cone construction can be generalized in the following way (cf. [2], [14]).

Let Z be normed space and let X = R⊕ Z be the outer direct sum, so

X =

{
x : x =

(
ξ

z

)
, ξ ∈ R, z ∈ Z

}
.

A natural cone in this 1-dimensional extension can be introduced as

D =

{(
ξ

z

)
: ξ ≥ ‖z‖

}
.

We call it the hyperbolic cone over the space Z. (The reason for this name comes from

the Euclidean case, because if ‖z‖2 = (z, z) then the inequality ξ ≥ ‖z‖ is equivalent to

ξ2 − (z, z) ≥ 0 (with the restriction ξ ≥ 0) and this quadratic form is hyperbolic.)
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Corollary 3.13 [21]. Let the space X = R ⊕ ln−1
p , 1 ≤ p ≤ ∞, p 6= 2, be provided

with the hyperbolic cone. Then the boundary spectrum of every power bounded nonnegative

operator in X is rational.

It is interesting to extend the previous theory to general convex structures. At present

the author has the following preliminary results.

Theorem 3.14. Let (X,D) be a convex structure such that 0 ∈ IntD. If there are

no 2-dimensional Euclidean substructures of this structure then the boundary spectrum of

every power bounded D-endomorphism is rational.

We say that an admissible 3-dimensional subspace Y is semi-Euclidean if DY is a

rotation body which means that Y = Y1 + Y2, dimY1 = 1, dimY2 = 2 and DY is the set

of y = y1 + y2 with y1 ∈ Y1, y2 ∈ Y2 satisfying the inequality
√
(y2, y2) ≤ d(y1)

where d is a concave nonnegative function on a closed finite or infinite interval of Y1 ≡ R.

In some extreme cases this function may take the value +∞ which yields the space Y or

some of its half-spaces or a layer in Y as extreme examples. If the domain of d is the

whole axis R then d is constant and DY is a cylinder.

Theorem 3.15. Let (X,D) be a convex structure such that 0 ∈ ∂D. If there is no

3-dimensional semi-Euclidean substructure of this structure then the boundary spectrum

of every power bounded D-endomorphism is rational.

In conclusion let us formulate the following

Problem. Let the boundary spectrum of a D-endomorphism A be rational. How can

one characterize the order of the group K(A) in geometrical terms?
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