THE BOUNDARY SPECTRUM OF LINEAR OPERATORS IN FINITE-DIMENSIONAL SPACES

YURI LYUBICH

Department of Mathematics, Technion Haifa 32000, Israel E-mail: lyubich@techunix.technion.ac.il

1. The basic concepts. Let X be an n-dimensional real or complex vector space, $n < \infty$. Let $A : X \to X$ be a linear operator. It is called *power bounded* if the semigroup $\Pi(A) = \{A^k\}_0^\infty$ of its natural powers is bounded. (This property can be defined in terms of any norm: $\sup\{||A^k|| : k \in \mathbb{N}\} < \infty$. The choice of the norm does not matter.) An operator A is called *double power bounded* if A is invertible and A, A^{-1} are both power bounded. (Thus, $\sup\{||A^k|| : k \in \mathbb{Z}\} < \infty$.) We only consider the power bounded operators. Since in this case the spectral radius r(A) does not exceed 1, the spectrum $\sigma(A)$ consists of two parts, the *boundary* (or *peripheral*) *spectrum*

$$\sigma_1(A) = \{\lambda : \lambda \in \sigma(A), |\lambda| = 1\}$$

and the *interior spectrum*

$$\sigma_0(A) = \{ \lambda : \lambda \in \sigma(A), |\lambda| < 1 \}.$$

(Speaking about spectra in the real case we implicitly change A for its natural complex extension $A_{\mathbb{C}}$.) One of these parts of $\sigma(A)$ may be empty; $\sigma_1(A) \neq \emptyset$ iff r(A) = 1, $\sigma_0(A) = \emptyset$ iff A is double power bounded (being power bounded). According to this partition of the spectrum we have the decomposition of the space X into the direct sum

$$(*) X = X_1 + X_0$$

where X_1 and X_0 are invariant subspaces such that

$$\sigma(A|X_1) = \sigma_1(A), \quad \sigma(A|X_0) = \sigma_0(A),$$

the so-called *boundary* and *interior* subspaces. This terminology also applies to the parts of the operator A, $A_1 = A | X_1$ and $A_0 = A | X_0$. The following quite elementary proposition is in fact the starting point of a rather deep theory presented below.

¹⁹⁹¹ Mathematics Subject Classification: Primary 47A10.

The paper is in final form and no version of it will be published elsewhere.

^[217]

PROPOSITION 1.1. The boundary part A_1 is double power bounded. The interior part A_0 is such that $\lim_{k\to\infty} A_0^k = 0$.

To explain a key role of this statement let us note that $\Pi(A)$ is precompact being a bounded subset of L(X) where L(X) is the space of all linear operators in X, dim $L(X) = n^2 < \infty$. The closure $\overline{\Pi(A)}$ is a compact semigroup. In this sense A is an *almost periodic* operator. It is a finite-dimensional version of a general statement regarding operators in a Banach space or elements of a Banach algebra (see for example [11, Chapter 4]). Proposition 1.1 corresponds to the so-called *de Leeuw-Glicksberg decomposition* [6] or, in terms of [11], the *boundary spectrum splitting-off theorem*. There are a lot of interesting applications of the general theory of almost periodic operators to Markov chains (e.g. [3], [10], [19]), dynamical systems (e.g. [7], [8], [12], [13], [16], [22]), harmonic analysis and spectral theory (e.g. [6], [9], [11], [21]). Though this development is rather recent, its roots are in an abstract theory of compact semigroups which arose much earlier. A principal concept in this way is the Sushkevich kernel (S.k.).

2. The Sushkevich kernel. This object can be formally defined as the smallest two-sided ideal of a given semigroup but this may not exist if the semigroup is taken arbitrarily. For example, there is no S.k. in the additive semigroup \mathbb{N} . However, the S.k. does exist in any finite semigroup [20] and even in any compact semigroup [17]. Moreover, it has a lot of remarkable properties, among them:

THEOREM 2.1. For any compact commutative semigroup its S.k. is a compact group (whose unit is an idempotent).

Coming back to our case of a power bounded linear operator A in a space X, dim $X = n < \infty$, we can introduce the following

DEFINITION 2.2. The S.k. of the semigroup $\overline{\Pi(A)}$ is called the S.k. of A.

We denote it by K(A). Let us emphasize that $\overline{\Pi(A)}$ is, obviously, commutative, so Theorem 2.1 is applicable. However, we do not need it because the S.k. K(A) can be constructed directly in our context (cf. [4]). For this purpose we consider the projection Pconnected with the decomposition (*). We call it the *boundary projection* of the operator A and prove

LEMMA 2.3. $P \in \overline{\Pi(A)}$.

Proof. Let $\{k_m\}_0^\infty \subset \mathbb{N}$ be such that $k_{m+1}-k_m \to \infty$ and the limit $U = \lim_{m \to \infty} A_1^{k_m}$ exists. Then

$$U^{-1} = \lim_{m \to \infty} A_1^{-k_m}$$
 and $\lim_{m \to \infty} A_1^{k_{m+1}-k_m} = UU^{-1} = \mathrm{id} = P|X_1|$

On the other hand, $\lim A_0^{k_{m+1}-k_m} = 0 = P|X_0$. Thus,

$$(**) P = \lim_{m \to \infty} A^{k_{m+1} - k_m}. \blacksquare$$

LEMMA 2.4. For any operator $B \in \overline{\Pi(A)}$ the smallest ideal containing B is closed. Furthermore, $B\overline{\Pi(A)} = \overline{B\Pi(A)}$. Proof. This ideal is $B\overline{\Pi(A)}$. It is closed since $\overline{\Pi(A)}$ is compact. Obviously, $\overline{B\Pi(A)} \subset B\overline{\Pi(A)}$. On the other hand, if $C \in B\overline{\Pi(A)}$ then

$$C = B(\lim_{m \to \infty} A^{q_m}) = \lim_{m \to \infty} (BA^{q_m})$$

for a sequence $\{q_m\}_0^\infty$. Passing to a convergent subsequence we obtain $C \in B\overline{\Pi(A)}$.

COROLLARY 2.5. Every ideal of the semigroup $\overline{\Pi(A)}$ contains a closed ideal.

Now we can get K(A) in the following way.

THEOREM 2.6. The ideal of the semigroup $\overline{\Pi(A)}$ generated by the boundary projection P is its S.k.

$$K(A) = P\overline{\Pi(A)}$$

It is a compact group with the unit P.

Proof. For every ideal $I \subset \overline{\Pi(A)}$ we have to prove that $P\overline{\Pi(A)} \subset I$. One can assume I to be closed because of Corollary 2.5. Let $B \in I$. Then B is a power bounded operator with the same decomposition (*). By Lemma 2.3, $P \in \overline{\Pi(B)} \subset I$. Hence $P\overline{\Pi(A)} \subset I$. Thus, $P\overline{\Pi(A)}$ is the S.k. of $\overline{\Pi(A)}$, $K(A) = P\overline{\Pi(A)}$.

By Lemma 2.4, K(A) is closed. It is a semigroup being an ideal. The boundary projection P is its unit since $P = P^2 \in P\overline{\Pi(A)}$ by Lemma 2.3, and if $B \in K(A)$ then B = PC with $C \in \overline{\Pi(A)}$, hence PB = PC = B. Let

$$B = P(\lim_{m \to \infty} A^{l_m})$$

for a sequence $\{l_m\}_0^\infty$. Coming back to (**) one can assume that $k_{m+1} - k_m - l_m \to \infty$ and the limit

$$\widehat{B} = \lim_{m \to \infty} A^{k_{m+1} - k_m - l_m}$$

exists. Then $B\widehat{B} = P^2 = P$. Thus, K(A) is a group.

COROLLARY 2.7. If A is double power bounded then $K(A) = \overline{\Pi(A)}$.

We have described K(A) algebraically. The next result yields a dynamical description.

THEOREM 2.8. The S.k. K(A) coincides with the Ω -limit set $\Omega(A)$ of the semigroup $\Pi(A)$.

Proof. First, $K(A) \subset \Omega(A)$ since $\Omega(A)$ is an ideal in $\overline{\Pi}(A)$. Indeed, $\Omega(A)$ is nonempty and $\Omega(A)A^k \subset \Omega(A)$ for all $k \in \mathbb{N}$. Since $\Omega(A)$ is closed, we get $\Omega(A)\overline{\Pi(A)} \subset \Omega(A)$. To establish the converse inclusion $\Omega(A) \subset K(A)$ we take $B \in \Omega(A)$, i.e.

$$B = \lim_{m \to \infty} A^{l_m}$$

with a sequence $\{l_m\}_0^\infty, l_m \to \infty$. Then $B|X_0 = 0$ hence, $B = PB \in P\overline{\Pi(A)} = K(A)$.

The intrinsic structure of the group K(A) is completely determined by the boundary spectrum $\sigma_1(A)$. Let $\sigma_1(A) = \{\lambda_1, \ldots, \lambda_s\}$. Since all the eigenvalues lie on the unit circle \mathbb{T} , one can consider the ordered set $\sigma_1(A)$ as a point a_1 on the s-dimensional torus \mathbb{T}^s which is a compact group (due to the standard group structure on \mathbb{T}).

Y. LYUBICH

THEOREM 2.9 ([4], Ch. 1, Th. 2.4). There exists a unique continuous monomorphism $h: K(A) \to \mathbb{T}^s$ such that $h(A_1) = a_1$ where A_1 is the boundary part of A.

Proof. Let

$$A_1 = \sum_{j=1}^s \lambda_j P_j$$

be the spectral decomposition, so P_j are projections in X_1 whose images are the corresponding eigenspaces. Moreover,

$$\sum_{j=1}^{3} P_j = \text{id}, \quad P_{j_1} P_{j_2} = 0 \quad (j_1 \neq j_2).$$

Then

$$A_1^l = \sum_{j=1}^s \lambda_j^l P_j, \quad l \in \mathbb{N}.$$

If now $B \in K(A)$ then by Theorem 2.8,

$$B = \lim_{m \to \infty} A^{l_m} = \lim_{m \to \infty} A^{l_m}_1 P$$

for a sequence $\{l_m\}_0^\infty$, $l_m \to \infty$. Hence,

$$B = \sum_{j=1}^{\infty} \lambda_j(B) P_j P \quad \text{where} \quad \lambda_j(B) = \lim_{m \to \infty} \lambda_j^{l_m}, \ 1 \le j \le s.$$

(These limits do not depend on the choice of the sequence because $\lambda_j(B)$ is the unique eigenvalue of B in the subspace $\operatorname{Im} P_j$.) Letting $h(B) = (\lambda_1(B), \ldots, \lambda_s(B))$ we obtain the desired homomorphism. The uniqueness statement is obvious.

COROLLARY 2.10. The S.k. K(A) is topologically isomorphic to a closed subgroup of the torus \mathbb{T}^s where $s = \operatorname{card}[\sigma_1(A)]$. This subgroup coincides with the semigroup of \mathbb{T}^s topologically generated by the point $a_1 = \sigma_1(A)$.

We denote this subgroup by $\langle a_1 \rangle$. Every closed subgroup $G \subset \mathbb{T}^s$ is of the form $\mathbb{T}^{\rho} \times F$ where $0 \leq \rho \leq s$ and F is a finite group. Indeed, the dual group G^* is isomorphic to a factor group of $(\mathbb{T}^s)^* \approx \mathbb{Z}^s$ so G^* is a commutative group generated by some s elements. Therefore $G^* \approx \mathbb{Z}^{\rho} \times F$, thus $G \approx G^{**} \approx \mathbb{T}^{\rho} \times F$.

If G is monothetic then F is cyclic. In particular, we have this information about K(A) in virtue of Corollary 2.10. Now we can describe the parameters ρ and $\operatorname{ord}(F)$ in arithmetical terms concerning the boundary spectrum $\sigma_1(A)$.

Let $\lambda_j = \exp(2\pi i\theta_j)$, $0 \leq \theta_j < 2\pi$, $1 \leq j \leq s$. These numbers can be treated as vectors from the space \mathbb{R} over the rational field \mathbb{Q} . Let

$$\rho = \operatorname{rank}_{\mathbb{Q}} \{\theta_0, \theta_1, \dots, \theta_s\} - 1,$$

where $\theta_0 = 1$. Let $\{\theta_0, \ldots, \theta_{\rho}\}$ be a maximal linearly independent subsystem of the system $\{\theta_0, \theta_1, \ldots, \theta_s\}$. Then for every $\theta_j, j > \rho$, there exists an integer $m_j \ge 1$ such that $m_j \theta_j$ is a linear combination of $\theta_0, \ldots, \theta_{\rho}$ with some integer coefficients. Let m_j be minimal possible and let m be the least common multiple of $m_{\rho+1}, \ldots, m_s$. (In the case $\rho = s$ we set m = 1.)

220

THEOREM 2.11. The S.k. K(A) is topologically isomorphic to $\mathbb{T}^{\rho} \times F$ where F is a cyclic group whose order is a divisor of m.

Proof. The point $a_1 = (\lambda_1, \ldots, \lambda_\rho, \ldots, \lambda_s) \in \mathbb{T}^s$ satisfies some conditions

$$\lambda_j^{m_j} = \prod_{q=1}^{\rho} \lambda_q^{\omega_q j}, \quad \rho + 1 \le j \le s,$$

with integer $\omega_q j$. The same conditions hold for all points $b \in \langle a_1 \rangle$. Consider the canonical projection $r : \mathbb{T}^s \to \mathbb{T}^{\rho}$ keeping the coordinates with numbers $1, \ldots, \rho$; we get $\mathbb{T}^{\rho} = \operatorname{Im}(r|\langle a_1 \rangle)$ by the well-known Kronecker theorem. On the other hand, all points $b = (\beta_1, \ldots, \beta_{\rho}, \ldots, \beta_s)$ from $\Gamma = \ker(r|\langle a_1 \rangle)$ satisfy the conditions

$$\beta_1 = \ldots = \beta_\rho = 1, \quad \beta_j^{m_j} = 1 \quad (\rho + 1 \le j \le s).$$

Therefore Γ is finite and $b^m = e$ (e is the unit of \mathbb{T}^s) for all $b \in \Gamma$.

We have $\langle a_1 \rangle / \Gamma \approx \mathbb{T}^{\rho}$ and we know that $\langle a_1 \rangle$ is a direct product of a torus and a cyclic group F. Then this torus must be \mathbb{T}^{ρ} (up to topological isomorphism) and $F \approx \Gamma$, so $\operatorname{ord}(F)$ is a divisor of m.

The question about the exact value of $\operatorname{ord}(F)$ remains open.

COROLLARY 2.12. K(A) is infinite if and only if this group contains a subgroup which is topologically isomorphic to \mathbb{T} .

It is just the case $\rho \ge 1$. The opposite case $\rho = 0$ is such that all θ_j , $1 \le j \le s$, are rational or, equivalently, all λ_j , $1 \le j \le s$, are roots of 1. Then we say that the boundary spectrum is *rational*.

COROLLARY 2.13. K(A) is finite if and only if the boundary spectrum $\sigma_1(A)$ is rational.

This property is of special interest from the dynamical point of view because every trajectory $\{A^kx\}_{k=0}^{\infty}$, $x \in X$, converges to a limit cycle iff K(A) is finite. By Corollary 2.13 we have a spectral criterion of the cyclic limit behavior: the rationality of the boundary spectrum.

Note that if $\sigma_1(A)$ is rational, so $\lambda_j^{m_j} = 1, 1 \leq j \leq s$, and m_j are minimal possible as before then K(A) is a cyclic group of order ϑ = the least common multiple of m_j . This m is the length of the limit cycles of the trajectories $\{A^k x\}_{k=0}^{\infty}$ for almost all x.

Below we investigate the problem of rationality of the boundary spectrum relating to the space X endowed with an additional geometric structure.

3. Criteria of the rationality of the boundary spectrum. From now on we only consider the real space X. As a simplest example let us recall the stochastic operators in \mathbb{R}^n . The rationality of boundary spectrum in this case was established already by Frobenius. There are at least two independent geometrical reasons for that property, namely, any stochastic operator A in \mathbb{R}^n is: 1) a contraction with respect to the coordinate sup-norm and 2) monotone with respect to the coordinate ordering. Both of them can be included in a more general context.

Let us define a *convex structure* in X as a pair (X, D) where $D \subset X$ is a convex closed body such that $0 \in D$. (The term "body" means that $\text{Int } D \neq \emptyset$.)

A linear operator $T: X \to X$ such that $TD \subset D$ is called an *endomorphism* of the convex structure (or *D*-endomorphism). If, moreover, *T* is invertible and T^{-1} is also an *D*-endomorphism then *T* is called a *D*-automorphism. The set End(X, D) of all *D*-endomorphisms is a semigroup with the usual multiplication of operators. The identity operator *I* is the unit of this semigroup. The set Aut(X, D) of all *D*-automorphisms is just the multiplicative group of the semigroup End(X, D). Note that $\text{Aut}(X, D) \neq \text{End}(X, D)$ since the zero operator belongs to End(X, D).

A convex structure (X, D) is called *symmetric* if -D = D. It is called *completely* nonsymmetric if $(-D) \cap D = \{0\}$.

EXAMPLE 3.1. Let X be a normed space and let D be the unit ball, $D = \{x : ||x|| \le 1\}$. Then (X, D) is a symmetric convex structure. Its endomprhisms are just contractions, $||A|| \le 1$, and its automorphisms are just isometries. An additional property of D in this example is compactness. Note that $\operatorname{End}(X, D)$ and $\operatorname{Aut}(X, D)$ are also compact in this case.

EXAMPLE 3.2. Let X be an ordered space and let D be the nonnegative cone, $D = \{x : x \ge 0\}$. If D is solid, i.e. $\operatorname{Int} D \ne \emptyset$, then (X, D) is a convex structure but it is completely nonsymmetric. The semigroup $\operatorname{End}(X, D)$ consists of all monotone operators. It is noncompact because all homotheties λI , $\lambda > 0$, are D-endomorphisms. They are even D-automorphisms, so $\operatorname{Aut}(X, D)$ is also noncompact. This is nonclosed in $\operatorname{End}(X, D)$ since $\lambda I \to 0$ as $\lambda \to 0$ but $\operatorname{End}(X, D)$ is obviously closed. As usual, D-endomorphisms are also called the *nonnegative operators* in this case.

We say that a subspace $Y \neq 0$ is admissible if $D_Y = D \cap Y$ is a body in Y. In this case we can define a convex structure (Y, D_Y) called a substructure of (X, D). Note that if $0 \in \text{Int}D$ then all subspaces $Y \neq 0$ are admissible. We call a subspace $Y \neq 0$ D-complemented if there exists a projection $Q \in \text{End}(X, D)$ such that Im Q = Y. In the case of the unit ball D in a normed space X that means ||Q|| = 1 and Im Q = Y; Q is called an orthoprojection onto Y and Y is orthogonally complemented if such a Qdoes exist. In the case of a cone D, we say a positively complemented subspace for a D-complemented one.

LEMMA 3.3. Every D-complemented subspace is admissible.

Proof. If Y = Im Q where $Q \in \text{End}(X, D)$ is a projection, then $D_Y = QD$. Hence, Int_Y $D_Y \neq \emptyset$ since any projection is an open mapping onto its image.

We are especially interested in power bounded *D*-endomorphisms. They form a semigroup denoted by $\operatorname{End}_{\infty}(X, D)$. Accordingly, $\operatorname{Aut}_{\infty}(X, D)$ is a group of double power bounded *D*-automorphisms.

LEMMA 3.4. Let $A \in \operatorname{End}_{\infty}(X, D)$ and let P be the boundary projection of A. Then $P \in \operatorname{End}(X, D)$.

Proof. $\overline{\Pi(A)} \subset \operatorname{End}(X, D)$ and $P \in \overline{\Pi(A)}$ by Lemma 2.3.

COROLLARY 3.5. If $A \in \operatorname{End}_{\infty}(X, D)$ then its boundary subspace X_1 is D-complemented.

By Lemma 3.3 it is admissible. Now we consider the boundary part $A_1 = A|X_1$ in the substructure (X_1, D_1) , where $D_1 = D \cap X_1$.

LEMMA 3.6. If $A \in \operatorname{End}_{\infty}(X, D)$ then $K(A_1) \subset \operatorname{Aut}_{\infty}(X_1, D_1)$. In particular, $A_1 \in \operatorname{Aut}(X_1, D_1)$.

Proof. First, A_1 is a double power bounded operator. Obviously, $\overline{\Pi(A_1)} \subset \operatorname{End}(X_1, D_1)$. By Corollary 2.7, $K(A_1) \subset \operatorname{End}(X_1, D_1)$.

Everything is prepared to prove the following basic result.

THEOREM 3.7. For a convex structure (X, D) the following properties are equivalent.

1) The boundary spectrum of every power bounded D-endomorphism is rational.

2) For every D-complemented subspace Y the group of D_Y -automorphisms does not contain any infinite compact subgroup.

3) For every D-complemented subspace Y the group of D_Y -automorphisms does not contain a subgroup which is topologically isomorphic to \mathbb{T} .

Proof. 1)⇒2). Let $\Gamma \subset \operatorname{Aut}(Y, D_Y)$ be a compact subgroup and let Q be a projection onto $Y, Q \in \operatorname{Aut}(X, D_X)$. We consider the subset of \mathbb{T} defined as

$$\sigma(\Gamma) = \bigcup_{V \in \Gamma} \sigma(V).$$

First of all, this "united spectrum" is rational because for every $V \in \Gamma$ we have $VQ \in$ End_{∞}(X, D) and $\sigma(V) = \sigma_1(VQ)$.

Secondly, $\lambda \in \sigma(\Gamma) \Rightarrow \lambda^k \in \sigma(\Gamma)$ for all integers k because of $V \in \Gamma \Rightarrow V^k \in \Gamma$. Finally, the set $\sigma(\Gamma)$ is closed because Γ is compact.

With these properties the subset $\sigma(\Gamma) \subset \mathbb{T}$ must be finite. Hence, there exists an integer $q \geq 1$ such that $\lambda^q = 1$ for all $\lambda \in \sigma(\Gamma)$. Then $V^q = \text{id}$ for all $V \in \Gamma$. Letting R = V - id we obtain

$$\sum_{j=1}^{q} \binom{q}{j} R^{j} = 0,$$

which implies R = 0 if R is small enough. Thus, the unit element is isolated in Γ , which means that Γ is discrete. Being compact, the group Γ is finite.

 $2) \Rightarrow 3)$ trivially.

3)⇒1). Let $A \in \operatorname{End}_{\infty}(X, D)$ and let X_1 be its boundary subspace, $D_1 = D \cap X_1$ and $A_1 = A | X_1$ as usual. By Corollary 3.5, X_1 is *D*-complemented. By Lemma 3.6 and Corollary 2.12 condition 3) implies that $K(A_1)$ is finite. Therefore $\sigma(A_1) = \sigma_1(A)$ is rational. ■

For the unit balls the equivalence $1 \Leftrightarrow 2$) was obtained in [9] in the same way as above. For the cones it was done in [21]. In the first of those cases the group $\operatorname{Aut}(Y, D_Y)$ is automatically compact, so 2) only means that this group is finite as stated in [9]. However, the main results of those papers are some purely geometric criteria of rationality of the boundary spectrum. Y. LYUBICH

THEOREM 3.8 [9]. Let X be a normed space. Then the boundary spectrum of every contraction in X is rational if and only if there is no orthogonally complemented 2-dimensional subspace $Y \subset X$ such that the disk D_Y is Euclidean.

The last property means that there exists an inner product (,) in Y such that

$$D_Y = \{y : y \in Y, (y, y) \le 1\}.$$

One can say that Y is a *Euclidean plane*.

COROLLARY 3.9 [9]. The boundary spectrum of every contraction in l_p^n , $1 \le p \le \infty$, $p \ne 2$ is rational.

The point is that there are no Euclidean planes in l_p^n except for p which are even integers. In the last case a Euclidean plane may exist. This depends on n, the criterion of existence is $n \ge p/2$ [15, 18], so the simplest example is l_4^3 (given in [9]). However, there are no orthogonally complemented Euclidean planes in l_p^n for any $p \ne 2$ and an n [9].

As a sufficient condition the absence of Euclidean planes was first established in [5]. This yields Corollary 3.9 except for p = 4, 6, ... Moreover, this also provides

COROLLARY 3.10. If X is a polyhedral normed space then the boundary spectrum of every contraction in X is rational.

A similar theory can be developed for cones [1], [5], [21]. A final result is the following.

THEOREM 3.11 [21]. Let X be ordered by a solid cone D. Then the boundary spectrum of every power bounded nonnegative operator in X is rational if and only if there is no positively complemented 3-dimensional subspace Y such that the cone D_Y is Euclidean.

The last property means that there exists a direct decomposition

$$Y = Y_1 + Y_2$$
, $\dim Y_1 = 1$, $\dim Y_2 = 2$,

such that

$$D_Y = \{y: y = y_1 + y_2, y_1 \in Y_1, y_2 = Y_2, y_1 \ge \sqrt{(y_2, y_2)}\}$$

where Y_1 is identified with \mathbb{R} and (,) is an inner product in Y_2 . (Another name for such a cone is "Lorentzian".)

COROLLARY 3.12. Let X be ordered by a solid polyhedral cone. Then the boundary spectrum of every power bounded nonnegative operator in X is rational.

The Euclidean cone construction can be generalized in the following way (cf. [2], [14]). Let Z be normed space and let $X = \mathbb{R} \oplus Z$ be the outer direct sum, so

$$X = \left\{ x : \ x = \begin{pmatrix} \xi \\ z \end{pmatrix}, \ \xi \in \mathbb{R}, \ z \in Z \right\}.$$

A natural cone in this 1-dimensional extension can be introduced as

$$D = \left\{ \begin{pmatrix} \xi \\ z \end{pmatrix} : \ \xi \ge \|z\| \right\}.$$

We call it the hyperbolic cone over the space Z. (The reason for this name comes from the Euclidean case, because if $||z||^2 = (z, z)$ then the inequality $\xi \ge ||z||$ is equivalent to $\xi^2 - (z, z) \ge 0$ (with the restriction $\xi \ge 0$) and this quadratic form is hyperbolic.) COROLLARY 3.13 [21]. Let the space $X = \mathbb{R} \oplus l_p^{n-1}$, $1 \le p \le \infty$, $p \ne 2$, be provided with the hyperbolic cone. Then the boundary spectrum of every power bounded nonnegative operator in X is rational.

It is interesting to extend the previous theory to general convex structures. At present the author has the following preliminary results.

THEOREM 3.14. Let (X, D) be a convex structure such that $0 \in \text{Int } D$. If there are no 2-dimensional Euclidean substructures of this structure then the boundary spectrum of every power bounded D-endomorphism is rational.

We say that an admissible 3-dimensional subspace Y is semi-Euclidean if D_Y is a rotation body which means that $Y = Y_1 + Y_2$, dim $Y_1 = 1$, dim $Y_2 = 2$ and D_Y is the set of $y = y_1 + y_2$ with $y_1 \in Y_1$, $y_2 \in Y_2$ satisfying the inequality

$$\sqrt{(y_2, y_2)} \le d(y_1)$$

where d is a concave nonnegative function on a closed finite or infinite interval of $Y_1 \equiv \mathbb{R}$. In some extreme cases this function may take the value $+\infty$ which yields the space Y or some of its half-spaces or a layer in Y as extreme examples. If the domain of d is the whole axis \mathbb{R} then d is constant and D_Y is a cylinder.

THEOREM 3.15. Let (X, D) be a convex structure such that $0 \in \partial D$. If there is no 3-dimensional semi-Euclidean substructure of this structure then the boundary spectrum of every power bounded D-endomorphism is rational.

In conclusion let us formulate the following

PROBLEM. Let the boundary spectrum of a *D*-endomorphism *A* be rational. How can one characterize the order of the group K(A) in geometrical terms?

References

- G. P. Barker and R. E. L. Turner, Some observations on the spectra of cone preserving maps, Linear Algebra Appl. 6 (1973), 149–153.
- [2] M. Fiedler and E. Haynsworth, Cones which are topheavy with respect to a norm, Linear and Multilinear Algebra 1 (1973), 203-211.
- B. Jamison, Asymptotic behavior of successive iterates of continuous functions under a Markov operator, J. Math. Anal. Appl. 9 (1964), 203–214.
- [4] M. A. Kaashoek and T. T. West, Locally Compact Semi-Algebras with Applications to Spectral Theory of Positive Operators, North-Holland, Amsterdam, 1974.
- [5] M. A. Krasnosel'skiĭ, On a spectral property of linear completely continuous operators in the space of continuous functions, Probl. Mat. Anal. Slozhnykh Sistem 2 (1968), 68–71 (in Russian).
- K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97.
- [7] M. Yu. Lyubich, On the maximal entropy measure of a rational endomorphism of the Riemann sphere, Funktsional. Anal. i Prilozhen. 16 (1982), 78–79 (in Russian).

Y. LYUBICH

- [8] M. Yu. Lyubich and Yu. I. Lyubich, The Perron-Frobenius theory for almost periodic operators and representations of semigroups, J. Soviet Math. 48:5 (1990), 539–554; transl. from Teor. Funktsii Funktsional. Anal. i Prilozhen. 46 (1986), 54–72.
- Yu. I. Lyubich, On the boundary spectrum of contractions in Minkowski spaces, Siberian Math. J. 11 (2) (1970), 271–279.
- [10] —, *The iterations of quadratic mappings*, in: Mathematical Economics and Functional Analysis, Nauka, Moscow, 1974 (in Russian).
- [11] —, Introduction to the Theory of Banach Representations of Groups, Birkhäuser, Basel, 1988.
- [12] —, Dissipative actions and almost periodic representations of Abelian semigroups, Ukrainian Math. J. 40 (1988), 58–62.
- [13] —, On trajectory convergence of dissipative flows in Banach spaces, Integral Equations Oper. Theory 13 (1990), 138–144.
- [14] —, Perron-Frobenius theory for finite-dimensional spaces with a hypebolic cone, Linear Algebra Appl. 220 (1995), 283–309.
- [15] Yu. I. Lyubich and L. N. Vaserstein, Isometric embeddings between classical Banach spaces, cubature formulas and spherical designs, Geom. Dedicata 47(1993), 327–362.
- [16] Yu. I. Lyubich and Vũ Quôc Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), 37–42.
- [17] K. Numakura, On bicompact semigroups, Math. J. Okayama Univ. 1(1952), 99–108.
- [18] B. Reznick, Sums of even powers of real linear forms, Mem. Amer. Math. Soc. 463 (1992).
- M. Rosenblatt, *Eigencontinuous Markov operators*, Teor. Veroyatnost. i Primenen. 9 (1964), 205–222.
- [20] A. K. Suschkevitsch, Über die endlichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit, Math. Ann. 99 (1928), 30–50.
- [21] A. I. Veitsblit and Yu. I. Lyubich, Boundary spectrum of nonnegative operators, Siberian Math. J. 26 (1985), 798-802.
- [22] Vũ Quôc Phóng, Almost periodic and strongly stable semigroups of operators, this volume, 401–426.