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Introduction. The Hurwitz problem stated by him in 1898 [H1] and its further
development [H2] were the motivation to introduce and to study the so-called Hurwitz
pairs (see [Sh], [SY] for an extensive literature).

In our works [RSV1], [RSV2] the precise relation between Hurwitz pairs and Clifford
algebras has been established. Two canonical algorithms have been described for con-
structing an irreducible representation of a certain Clifford algebra for a given Hurwitz
pair and, conversely, for constructing all possible Hurwitz pairs from a given Clifford
algebra and its irreducible representation.

All this has been inspired by our wish to develop the so-called Hurwitz analysis
initiated in [KR1], [KR2].

The first Section of the present paper is purely algebraic. Besides the review of main
results from [RSV1], [RSV2], it contains some essential supplements. The principal one
is how ”to translate” any formula of the type a =

∑
i bi · ci in a Clifford algebra into the

language of the multiplication in the Hurwitz pair.
In Section 2 we introduce two types of generalized Cauchy-Riemann operators and

show that all main formulas for the functions from the kernels of these operators, can be
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obtained in the traditional way. And thus, we get two types of analysis (i.e., the analogs
of the function theory in one complex variable) associated to a fixed Hurwitz pair.

Finally, in Section 3, we show that the proper way to construct both types of Hurwitz
analysis is to derive it from Clifford analysis. The derivation is being done by means of
the ”translation” described in Section 1.

1. Preliminaries

1.1. Let S be a (p+ 1)-dimensional real vector space with basis {εα}, α ∈ {0} ∪ Np,
Np := {1, 2, . . . , p}, and let the R-bilinear form

(·, ·)S : S × S → R

be defined by the following metric matrix

η := [ηαβ ] := [(εα, εβ)S ] = diag (1, . . . , 1;−1, . . . ,−1),
r+1 s

where p = r + s.

Introduce also the n-dimensional real vector space V with basis {ej , j ∈ Nn}, provided
with an R-bilinear form

(·, ·)V : V × V → R,

which is defined by the following nonsingular metric matrix

κ := [κkj ] := [(ek, ej)V ].

We assume also that the form (·, ·)V in V is either symmetric: κ = κt, or antisymmetric:
κ = −κt, where ”t” means transposition.

Let
◦ : S × V → V

be an R-bilinear mapping. We call it (see, for instance [LR]) a Hurwitz multiplication
(of elements from V by elements of S on the left-hand side) if the following axioms are
fulfilled:

H.1. for all {f, g} ⊂ V and all a ∈ S

(a, a)S(f, g)V = (a ◦ f, a ◦ g)V ;

H.2. there exists the unit element ε ∈ S with respect to the mapping ” ◦ ”, i.e. for all
f ∈ V

ε ◦ f = f ;

H.3. the mapping ” ◦ ” does not leave invariant any proper subspace of V.
The set (S, V, ◦) is called a Hurwitz pair.

1.2. Introduce the R-linear isomorphisms

νS : S → Rp+1

and
νV : V → Rn
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by the rule

νS : a =
p∑

α=0

aαεα 7→ ã =


a0

a1
...
ap

 ∈ Rp+1

and

νS : f =
n∑
j=1

fjej 7→ f̃ =


f0

f1
...
fn

 ∈ Rn.

For each basis elements εα ∈ S and ej ∈ V we have εα ◦ ej ∈ V . Thus for some real
constants ckαj :

εα ◦ ej =
n∑
k=1

ckαjek,

and for every f =
∑n
j=1 fjej ∈ V :

εα ◦ f =
n∑
k=1

(
n∑
j=1

ckαjfj)ek.

Applying the isomorphism νv to the both sides of this equality we obtain

νV (εα ◦ f) = Cα · νV (f),

where Cα := [ckαj ]
n
j,k=1.

Thus, each element εα ∈ S determines uniquely the matrixx Cα (and vice versa), and
the following diagram

V V

Rn Rn
νV

��

m(εα) //

νV

��m(Cα)//

is commutative. Here m(εα) : f 7→ εα ◦ f and m(Cα) : f̃ 7→ Cα · f̃ .

1.3. Without loss of generality we may assume that the unit element (≡ identity
ε ∈ S) coincides with ε0.

Under the assumption we have (see [RSV1]): for each {α, β} ⊂ Np
Cα · Cβ + Cβ · Cα = −2ηαβIn.

1.4. Given integers r, s, with p = r + s, denote by Clr,s the real Clifford algebra
with the identity i0 and generated by the elements {iα : α ∈ Np} which satisfy only the
conditions

iα · iβ + iβ · iα = −2ηαβi0,

where

ηαβ =


0, α 6= β,
+1, α = β ∈ Nr,
−1, α = β ∈ Np \ Nr.
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1.5. Theorem ([RSV1]). Let (S, V, ◦) be a Hurwitz pair with ε=ε0. Then there exists
an n-dimensional irreducible representation

πn : Clr,s → R(n)

of the Clifford algebra Clr,s, and this representation is generated by the following mapping :

πn : iα 7→ Cα,

where R(n) denotes the algebra of all real n× n matrices and Cα is as in 1.2.

1.6. Consider a fixed Hurwitz pair (S, V, ◦) with the unit element ε=ε0. Each element
a ∈ S generates in a natural way the operator of ”Hurwitz multiplication by a” acting
on V by the rule

f ∈ V 7→ a ◦ f ∈ V.

Denote this operator by m(a). It is clear that for a =
∑p
α=0 aαεα

m(a) =
p∑

α=0

aαm(εα),

where m(ε0) = I, the identity operator on V.

The mapping
µ : a 7→ m(a) ∈ Hom(V, V )

gives a linear isomorphism between the space S and some linear subspace of Hom(V, V ).
Denote by Alg(S, V, ◦) the algebra generated by all operators m(a) acting on V . We

have obviously
µ(S) ⊂ Alg(S, V, ◦) ⊂ Hom(V, V ) ∼= R(n),

and in general both inclusions are proper.

1.7. Theorem ([RSV1]). The algebra Alg(S, V, ◦) is isomorphic to the algebra
πn(Clr,s) and this isomorphism is generated by the following mapping

m(εα) 7→ m(Cα), α ∈ {0} ∪ Np.

All above said can be found in [RSV1], [RSV2], but to construct the corresponding
function theory we need to complement the algebraic part of those works with some new
results.

1.8. The algebra Alg(S, V, ◦) allows us to introduce a multiplication on elements of S
in such a way that the algebra S̃ generated by this multiplication becomes isomorphic to
Alg(S, V, ◦). The corresponding isomorphism will be an extension of the linear mapping
µ from S onto the algebra S̃.

Denote by Š the free algebra generated by the elements of S and let

µ̌ : Š → Alg(S, V, ◦)

be the real algebra homomorphism which is generated by the following mapping of the
generators a ∈ S of the algebra Š:

µ̌ : a ∈ S 7→ µ̌(a) := µ(a) = m(a) ∈ Hom(V, V ),
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i.e. the mapping µ̌ is an extension (up to a real algebra homomorphism) of the mapping

µ : S → Alg(S, V, ◦).

Now introduce the algebra S̃ := Š/ ker µ̌ and the mapping

(1.1) µ̃ : S̃ → Alg(S, V, ◦)

which is defined by the rule
µ̃ : [ǎ] 7→ µ̌(ǎ),

where [ǎ] := ǎ+ ker µ̌ for ǎ ∈ Š.
We will be denote by ”∗” the multiplication symbol in S̃.

The described procedure provides a natural imbedding of S into S̃. Identifying, as
usual, S and its image under this imbedding, we can say now that S is a subset (and a
linear subspace) of the algebra S̃. It is clear that

µ̃|S = µ.

The mapping µ̃ gives now a real algebra isomorphism of S̃ onto Alg(S, V, ◦) ⊂ Hom(V, V ),
and thus also a representation of the algebra S̃ on the space V.

Moreover, we have a well-defined extension (from S × V onto S̃ × V ) of the Hurwitz
multiplication, also denoted by ”o”, as follows:

for each s ∈ S̃ and f ∈ V s ◦ f := µ̃(S)(f) ∈ V.

1.9. R e m a r k. For any elements s1, s2 ∈ S̃ and f ∈ V the following ”associativity
law” is true

(s1 ∗ s2) ◦ f = s1 ◦ (s2 ◦ f),

and thus we can write s1 ∗ s2f := (s1 ∗ s2) ◦ f = s1 ◦ (s2 ◦ f).

1.10. Theorem. Let (S, V, ◦) be a Hurwitz pair and S̃ the algebra described in 1.8.
Then there exists a natural number k such that S̃, as a linear space, is isomorphic to a
finite direct sum of k copies of V :

S̃ ∼= V ⊕ . . .⊕ V (k times).

P r o o f. Denote by
ρ : S̃ → Hom(S̃, S̃),

the left regular representation of the algebra S̃ which is defined by the rule

ρ : s ∈ S̃ 7→ m(s) ∈ Hom(S̃, S̃),

where m(s) : x ∈ S̃ 7→ s ∗ x ∈ S̃.
The mapping ρ gives a real algebra isomorphism between S̃ and its image ρ(S̃) ⊂

Hom(S̃, S̃). Another natural representation of the algebra S̃ is given on the space V by
the mapping (1.1)

µ̃ : S̃ → Alg(S, V, ◦) ⊂ Hom(V, V ),

where, for each s ∈ S̃
µ̃(s) = m(s) : f ∈ V 7→ s ◦ f ∈ V.

The mapping µ̃ is also a real algebra isomorphism between S̃ and its image Alg(S, V, ◦).
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Thus we have two representations of the irreducible finite-dimensional algebra S̃ on
the spaces S̃ and V with (generally speaking) different dimensions:

dimV ≤ dim S̃;

and their images are isomorphic. This proves the assertion.

1.11. Corollary. The representation ρ in the proof of Theorem 1.10 is isomorphic
to a multiple of the representation µ̃ :

ρ ∼= µ̃⊕ . . .⊕ µ̃ (k times).

This means that there exists an invertible element γ ∈ Hom(S̃, S̃) such that

γ(S̃) = V ⊕ . . .⊕ V (k times)

and that for all s ∈ S̃

γρ(s)γ−1 = µ̃(s)⊕ . . .⊕ µ̃(s) (k times).

1.12. Denote by P the projection onto the first summand in the decomposition

γ(S̃) = V ⊕ . . .⊕ V (k times).

Then for each s ∈ S̃
µ̃(s) = Pγρ(s)−1|V .

Note that the projection P commutes with all elements of the form γρ(s)γ−1.

Denote by v the isomorphism

ν : γImργ−1 → Alg(S, V, ◦),

where ν : γρ(s)γ−1 7→ Pγρ(s)γ−1|V . Then we have the following commutative diagram
of algebras:

Clr,s S̃

Imρ

Alg(S, V, ◦) γImργ−1

π̃=µ̃−1πn //

πn

��

µ̃'id

�
�
�
�
�
�
�
�
�
�
�
�
���

ρ

��

��
ν

oo

1.13. Let {a, bj , ci} be a finite subset of elements from the Clifford algebra Clr,s and
let

a =
∑
i

bi · ci.

Application of the above constructed homomorphisms and isomorphisms gives us the
”translation” of this equality into S̃ and V respectively:

in S̃ : π̃(a) =
∑
i

π̃(bi) ∗ π̃(ci);

in V : Pγπ̃(a) =
∑
i

Pγ(π̃(bi) ∗ π̃(ci)) =
∑
i

Pγρ(π̃(bi)) · π̃(ci) =



HURWITZ ANALYSIS 215

=
∑
i

Pγρ(π̃(bi))γ−1 · γπ̃(ci) =
∑
i

Pγρ(π̃(bi))γ−1|V · Pγπ̃(ci) =

=
∑
i

µ̃(π̃(bi)) · Pγπ̃(ci) =
∑
i

π(bi) ◦ Pγπ̃(ci)

or, finally,
Pγπ̃(a) =

∑
i

π(bi) ◦ Pγπ̃(ci).

1.14. Analogously, for a finite subset {s, xi, yj} of the algebra S̃, if

s =
∑
i

xi ∗ yi

then we have the corresponding equality in V :

Pγ(s) =
∑
i

xi ◦ Pγ(yi).

2. Hurwitz analysis: exact formulation and construction in the traditional
way

2.1. Given a Hurwitz pair (S, V, ◦) (with no restrictions on η), denote by ` any integer
with the condition 2 ≤ ` ≤ p, and let Ω be a domain in R`+1. For any set of vectors
(ψ0, ψ1, . . . , ψ`) =: ψ ∈ S`+1 we can write the formal expression

(2.1)
∑̀
α=0

ψα ◦ ∂

∂xα
,

where ∂
∂xα

denotes the operation of the usual partial derivation of a given (S̃-valued or
V -valued) function defined in Ω. Depending on the type of function the expression (2.1)
allows to introduce two kinds of operators.

2.2. For an arbitrary function f ∈ C1(Ω, V ) define the operator Dψ by the rule

(2.2) Dψ[f ] :=
∑̀
α=0

ψα ◦ ∂

∂xα
[f ] :=

∑̀
α

ψα ◦ ∂f

∂xα
.

The operator Dψ becomes later the Cauchy-Riemann operator in the analysis of V -valued
functions. It is necessary to emphasize strongly that just here we see the consequence
of the Hurwitz multiplication asymmetry: in contrast with the usual hyperholomorphic
setting we can introduce the left operator only, not the left and the right ones (compare
with what will be done below).

2.3. Consider an arbitrary g ∈ C1(Ω, S̃). Introduce the left ψD and the right Dψ

analogs of the operator Dψ by the rules:

(2.3) ψD[g] :=
∑̀
α=0

ψα ∗ ∂

∂xα
[g] :=

∑̀
α

ψα ∗ ∂g

∂xα
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and

(2.4) Dψ[g] :=
∑̀
α=0

ψα ∗ ∂

∂xα
∗m(ψα)[g] :=

∑̀
α

ψα ◦ ∂g

∂xα
∗ ψα,

where m is the map defined in 1.6.

2.4. Using the notion of the ”natural conjugation” on S we introduce the ”conjugate”
operators D]ψ, ψD] and Dψ]:

D]ψ[f ] :=
∑̀
α=0

ψα] ◦ ∂

∂xα
[f ],(2.5)

ψD][g] :=
∑̀
α=0

ψα] ∗ ∂

∂xα
[g],

Dψ][g] :=
∑̀
α=0

∂

∂xα
[g] ∗ ψα],

where ”]” is a linear mapping on S defined on the basis elements εk by the rule

ε]k = −εk, k ∈ Np.

2.5. R e m a r k. To develop the corresponding function theory it is necessary to be
able to multiply the above defined operators.

The following pecularities arise from the asymmetry of the Hurwitz multiplication.
We have sets of S-valued functions, of V -valued functions, of S̃-valued operators (that is,
differential operators with coefficients from S̃), etc. We can ”multiply” V -valued functions
on the left-hand side by S̃-valued operators obtaining V -valued functions: ψD◦f :=ψD[f ].

We can ”multiply” various S̃-valued operators on both sides resulting in S̃-valued
operators: ψD ∗ ψD] := ψD · ψD] with the ” · ” denoting the usual operator product. We
should take into account that, according to the definition of ψD and ψD], the result of
the multiplication is an operator acting on S̃-valued (not on V -valued) functions.

Finally we can ”multiply”, in the sense of the Hurwitz multiplication, operators of
the type of Dψ :

Dψ ◦ Dψ : f 7→ Dψ ◦ (Dψ ◦ f) = Dψ[Dψ[f ]].

The operator Dψ ◦Dψ acts on V -valued functions and in this sense Dψ ∗D]ψ 6= ψD ∗ψD].

2.6. For a fixed set ψ introduce the differential `-form

(2.6) σ
(`)
ψ,x :=

∑̀
α=0

(−1)α · ψαdx[α],

where dx[α] is the differential `-form dx := dx0∧ . . .∧dx` with dxα omitted. The operator
of exterior differentiation d acts on such S̃-valued differential forms as a S̃-linear mapping.
Then, if g ∈ C1(Ω, S̃), f ∈ C1(Ω, V ), an easy calculation gives

(2.7) d(g ∗ σ(`)
ψ,x ◦ f) = (Dψ[g] ◦ f + g ∗ Dψ[f ])dx.



HURWITZ ANALYSIS 217

and analogously, for g, h ∈ C1(Ω, S̃)

(2.8) d(g ∗ σ(`)
ψ,x ∗ h) = (Dψ[g] ∗ h+ g ∗ ψD[h])dx.

2.7. If now we assume that Ω is a bounded domain with smooth enough boundary
Γ=∂Ω, then, application of the Stokes formula immediately gives the following equalities:∫

Γ

g ∗ σ(`)
ψ,x ◦ f =

∫
Ω

(Dψ[g] ◦ f + g ∗ Dψ[f ])dx,(2.9) ∫
Γ

g ∗ σ(`)
ψ,x ∗ h =

∫
Ω

(Dψ[g] ∗ h+ g ∗ ψD[h])dx(2.10)

2.8. Up to now we assumed no restrictions on η. But if we want to have a good function

theory, we should limit ourselves to the cases where η = Ip+1 or η =
(

1 0
0 −Ip

)
. Let

one of these conditions be fulfilled. Denote by ∆`+1(S̃) and ∆`+1(V ) the usual (` + 1)-
dimensional Laplace operator acting on C2(Ω, S̃) and C2(Ω, V ), respectively.

Then
ψD] ∗ ψD = ψD ∗ ψD] = Dψ] ∗Dψ = Dψ ∗Dψ] = ∆`+1(S̃),(2.11)

Dψ ∗ D]ψ = D]ψ ∗ Dψ = ∆`+1(V ).(2.12)

It is easy to describe all ψ’s with the properties (2.11)-(2.12).

2.9. It is well-known that most part of the usual one-dimensional complex analysis
(i.e. the theory of holomorphic functions of one complex variable) can be constructed
starting from only two facts: a) factorization of the Laplace operator by the conjugate
Cauchy-Riemann operators and b) the Green’s (or 2-dimensional Stokes) formula. Some
multidimensional generalizations, such as the quaternionic and the Clifford analysis, are
based on these two facts (one can find the detailed substantiation of this point of view
in [S], for example).

Formulas (2.9) and (2.11), as well as (2.10) and (2.12) show that we can develop the
corresponding theories for V -valued and S̃-valued functions in the same way. We will show
the initial part of this procedure just to illustrate the idea. We shall use the notations

(2.13) kerDψ =: Nψ(Ω, V ); ker ψD =: ψM(Ω, S̃); ker Dψ =: Mψ(Ω, S̃),

and call the elements of these sets V -valued and S̃-valued hyperholomorphic functions,
respectively (in the latter case adding sometimes the word ”left” or ”right”).

2.10. Let θ`+1 denote the fundamental solution of ∆`+1 in R`+1, i.e. ∆`+1(θ`+1) = δ,

(2.14) θ`+1 : x ∈ R`+1 \ {0} → 1
(1− `)|S`|

· |x|1−`,

where |S`| is the area of the unit sphere in R`+1. We cannot identify θ`+1 in a natural
way with a V -valued function, but we can identify it with the S̃-valued function θ`+1 · ε0.
Hence we can introduce the function

Kψ(x) := ψD][θ`+1](x) = Dψ][θ`+1](x) =(2.15)

=
1

|S`| · |x|`+1
·
∑̀
α=0

ψα] · xα,
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which will play the role of the Cauchy kernel for both theories. It has the following
important properties:

a) Kψ ∈ C∞(R`+1 \ {0}, S̃),

b) Kψ ∈ ψM(R`+1 \ {0}, S̃) ∩Mψ(R`+1 \ {0}, S̃),

c) Let y ∈ R`+1, Kψ,y(x) := Kψ(y−x); then Kψ,y ∈ ψM(R`+1 \{y}∩Mψ(R`+1 \{y}).

2.11. Theorem (Borel-Pompeiu formula). Let f ∈ C1(Ω, S̃), then for ∀ x ∈ Ω,

(2.16) f(x) =
∫

Γ

Kψ(r − x) ∗ σ(`)
ψ,r ◦ f(r)−

∫
Ω

Kψ(r − x) ∗ Dψ[f ](r)dr

and

(2.17) g(x) =
∫

Γ

Kψ(r − x) ∗ σ(`)
ψ,r ∗ g(r)−

∫
Ω

Kψ(r − x) ∗ ψD[g](r)dr,

i.e.

(2.18). g(x) =
∫

Γ

g(r) ∗ σ(`)
ψ,r ∗ Kψ(r − x)−

∫
Ω

Dψ[g] ∗ Kψ(r − x)dr

P r o o f. Cut out a small ball centered in x, apply (2.9) and (2.10) to the rest of Ω;
substitute Kψ instead of g or f . Standard routine calculations give the answer.

2.12. Theorem (Cauchy integral formula). Let f ∈ Nψ(Ω, V ), g ∈ Mψ(Ω, S̃), h ∈
ψM(Ω, S̃), then for ∀ x ∈ Ω

f(x) =
∫

Γ

Kψ(r − x) ∗ σ(`)
ψ,r ◦ f(r),

h(x) =
∫

Γ

Kψ(r − x) ∗ σ(`)
ψ,r ◦ h(r),

g(x) =
∫

Γ

g(r) ∗ σ(`)
ψ,rKψ(r − x).

P r o o f. Directly from Theorem 2.11.

3. Derivation of Hurwitz analysis from Clifford analysis

3.1. We start again, as in 2.1, from a Hurwitz pair (S, V, ◦), an arbitrary integer
` : 2 ≤ ` ≤ p, and a domain Ω in R`+1. To simplify our description, we will consider only
the case ψ = ψst = (ε0, ε1, . . . , εm) and we will write Dψst =: Dst =: D, ψstD =: stD and
so on.

3.2. Let Clr,s and πn denote the Clifford algebra and its irreducible representation,
respectively. πn acts on elements of Clr,s but we can consider it to act on Clr,s-valued
functions: πn[f ](x) := πn[f(x)]. We will use the same notation πn for this new mapping,
and we will keep this agreement for other mappings from the diagram in 1.12.
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3.3. The operators stD and Dst, together with their conjugates stD and Dst, are
defined on C1(Ω, Clr,s) by

stD[f ] :=
∑̀
k=0

ik ·
∂f

∂xk
,

Dst[f ] :=
∑̀
k=0

∂f

∂xk
· ik,

stD[f ] :=
∑̀
k=0

ik ·
∂f

∂xk
,

Dst[f ] :=
∑̀
k=0

∂f

∂xk
· ik.

The following facts are well-known (see, for instance, [BDS])
1. Let ω(`)

st,x :=
∑`
k=0(−1)k · ikdx[k] (cf. 2.6) and let f, g ∈ C1(Ω, Clr,s). Then

d(g · ω(`)
st,x · f) = (Dst[g](x) · f(x) + g · stD[f ](x))dx.

2. Under the same assumptions∫
Γ

g(x) · ω(`)
st,x · f(x) =

∫
Ω

{Dst[g](x) · f(x) + g(x) · stD[f ](x)}dx.

3. Assume now that r = 0, s = p. Then

stD · stD = stD · stD = ∆`+1.

4. Functions from ker stD = P(Ω;Cl0,p) are called (left) Cl0,p-valued hyperholomor-
phic functions. Similarly for Dst.

5. If θ`+1 is defined as in (2.14), then the function

K(x) := stD[θ`+1](x) = Dst[θ`+1](x) =
1

|S`| · |x|`+1

∑̀
k=0

ik · xk

is the analog of the Cauchy kernel for this function theory.
6. The Borel-Pompeiu formula is true:

f(x) =
∫

Γ

K(r − x) · ω(`)
st,x · f(x)−

∫
Ω

K(r − x) ·st D[f ](x)dx =∫
Γ

f(x) · ω(`)
st,x ·K(r − x)−

∫
Ω

Dst[f ](x) ·K(r − x) · dx.

7. If g is right-hyperholomorphic and f is left-hyperholomorphic, then∫
Γ

g(x) · ω(`)
st,x · f(x) = 0.

8. The Cauchy integral formula holds: for a left-hyperholomorphic function,

(3.1) f(x) =
∫

Γ

K(r − x) · ω(`)
st,x · f(x)

and analogously for a right-hyperholomorphic function.
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3.4. Applying 1.13 we have:

π̃(stD[f ]) = π̃(stD · f) =

=
∑̀
k=0

π̃(ik ·
∂

∂xk
) ∗ π̃(f) =

=
∑̀
k=0

εk ·
∂

∂xk
∗ f̃ = stD[f̃ ]

for any S̃-valued function f̃ . Hence

π̃(stD) = stD.

Analogously

π̃(Dst) = stD.

Again as in 1.13 we obtain:

Pγπ̃(stD[f ]) =
∑̀
k=0

πn(ik ·
∂

∂xk
) ◦ Pγπ̃(f) =

=
∑̀
k=0

εk
∂

∂xk
◦ f̃ = D[f̃ ]

for any V -valued function f̃ . Hence

Pγπ(stD) = D.

Easy calculations give also:
π̃(stD) = stD],

π̃(Dst) = Dst],

PUπ(stD) = D],

π̃(ω(`)
st ) = σ

(`)
st .

3.5. Now we can obtain all results of Section 2 as direct corollaries of the corresponding
facts from Clifford analysis. Let us show this on Theorem 2.13. Taking formula (3.1) and
applying the technique from 3.1-3.4 we have:

g(x) = π̃(g̃)(x) =
∫

Γ

π̃(K(r − x) · ω(`)
st,x · g̃(x)) =

=
∫

Γ

π̃(K(r − x)) ∗ π̃(ω(`)
st,x) ∗ π̃(g̃(s)) =

=
∫

Γ

K(r − x) ∗ σ(`)
st,xg(x),

which coincides with the corresponding equality in Theorem 2.12.
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