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Abstract. Consider a family of integral operators and a related family of differential op-
erators, both defined on a class of analytic functions holomorphic in the unit disk, distortion
properties of the real part are derived from a general aspect.

1. Integral and differential operators. Let F̃ denote the class of analytic func-
tions which are holomorphic in the unit disk E = {| z |< 1}. Let F̃ nad G be its subclasses
consisting of f ∈ F̃ normalized by f(0) = f ′(0) − 1 = 0 and f(0) = 1, respectively. In
previous papers [3, 6] we have observed an integral operator L(a) defined on F , which is
represented by

L(a)f(z) = a

∫
I

ta−2f(zt)dt

where a is a positive parameter and I denotes the unit interval [0, 1]. On the other hand,
Miller [7] and subsequently Altintas [1] discussed a differential operator defined by

Λ(α) = 1 + α
d

d log z
where α is a positive parameter.

As indicated in [6], the defining representation of L(a) shows that the normalization
f ′(0) = 1 is inessential and further it is applicable to any function of F̃ provided a > 1.
The interrelation between Λ and L is given by the following theorem.

Theorem 1. The differential operator Λ(α) is the inverse of the operator

(α+ 1)−1L
(
(α+ 1)/α

)
namely

1
α+ 1

L
(α+ 1

α

)
Λ(α) = id,

or , in other words,
(
a(a− 1)−1

)
Λ
(
(a− 1)−1

)
is the inverse of L(a).
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P r o o f. Direct calculation yields

Λ(α)
1

α+ 1
L
(α+ 1

α

)
f(z) = Λ(α)

1
α

∫
I

t
1

α−1 f(zt)dt =
1
α

∫
I

t
1

α−1

(
f(zt) + αztf ′(zt)

)
dt

=
∫
I

∂

∂t

(
t

1
α f(zt)

)
dt = f(z).

The iterated sequence {L(a)n}∞n=1 arises automatically. Moreover, as shown in [3], it
can be interpolated into a family {L(a)λ}λ>0 depending on a continuous parameter
λ, in such a manner that it possesses the structure of semigroup; namely, it satisfies
L(a)λL(a)µ = L(a)λ+µ. Further it’s every member is explicity represented by

L(a)λf(z) =
aλ

Γ (λ)

∫
I

ta−2
(

log
1
t

)λ−1
f(zt)dt,

L(a)0 being understood to be the identity. While this representation has been derived
for f ∈ F and a > 0, it applies also to any f ∈ G provided a > 1.

According to this extension, Theorem 1 leads to the following corollary which may be
regarded as a relation defining the fractional integral operator Λ(α)−λ.

Corollary 1. If α > 0 and λ ≥ 0, we have

1
(α+ 1)λ

L
(α+ 1

α

)λ
Λ(α)λ = id.

For the later purpose we notice the analytic prolongation of L(a)λ. In fact, as shown
in [5], this operator is analytically prolongable with respect to λ and a within single-
valuedness into the whole complex plane (λ, a) cut along the negative real axis on the
a-plane. While L(a)λ behaves on the negative real axis of the a-plane also analytically,
provided a 6= −1,−2, ... if Re λ > 0, a 6= 0 if Re λ < 0, and a 6= 0,−1,−2, ... if Re
λ = 0; however, the operator shows after prolongation many-valuedness when a crosses
the negative real axis, unless λ coincides with an integer.

Accordingly, in view of Corollary 1, the operator Λ(α)λ also possesses a similar pro-
longability with respect to the pair of parameters λ and a.

2. Distorsion of the real part. In the following lines we restrict ourselves to the
case of λ > 0 and α > 0. It has been shown by Miller [7] and Altintas [1] that if f ∈ G
satisfies Re Λ(α)f(z) > β, then Re f(z) > β.

While this result has been partly improved in [5], it can be further generalized as in
the following form.

Theorem 2. If f ∈ F̃ with f(0) = a0 + ib0 and a0 > β∗ satisfies in E the inequality
Re Λ(α)λf(z) > β∗′ , then

Re f(z) > β∗ + (a0 − β∗)Ψ(λ, α),

where

Ψ(λ, α) =
1

αλΓ (λ)

∫
I

t
1

α−1
(

log
1
t

)λ−1 1− t
1 + t

dt.
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The function f̂ of the form

f̂(z;β) = β +
â0 − β
αλΓ (λ)

∫
I

t
1

α−1

(
log

1
t

)λ−1 1− εzt
1 + εzt

dt+ îb0

with f̂(0, β) = â0 + ib0 and | ε |= 1 is extremal in the following sense:

inf
z∈E

Re Λ(α)λf̂(z;β∗) = β∗

and
inf
z∈E

Re f̂(0, β∗) = β∗ + (a0 − β∗)Ψ(λ, α).

P r o o f. We first note that

L(a)λ1 =
aλ

Γ (λ)

∫
I

ta−2
(

log
1
t

)λ−1

dt =
( a

a− 1

)λ
,

whence follows, in view of analytic prolongability, for any constant c,

Λ(a)λc =
1

(α+ 1)λ
L
(α+ 1

α

)λ
c =

1
(α+ 1)λ

(α+ 1)λc = c.

Consequently, Harnack inequality yields

Re
Λ(α)λf(ζ)− β∗

a0 − β∗
≥ 1− | ζ |

1+ | ζ |
for ζ ∈ E, whence follows

Re Λ(α)λf(zt) > β∗ + (a0 − β∗)
1− t
1 + t

for z ∈ E and t ∈ (0, 1]. Consequently, basing on the relation

f(z) = Λ(α)−λΛ(α)λf(z)

=
1

(α+ 1)λ
L
(α+ 1

α

)λ
Λ(α)λf(z)

=
1

αλΓ (λ)

∫
I

t
1

α−1

(
log

1
t

)λ−1

Λ(α)λf(zt)dt,

we obtain

Re f(z) >
1

αλΓ (λ)

∫
I

t
1

α−1

(
log

1
t

)λ−1(
β∗ + (a0 − β∗)

)1− t
1 + t

dt

= β∗ + (a0 − β∗)Ψ(λ, α).

Next the function f̂ given in theorem may be written in the form

f̂(z;β) = β + (â0 − β)Λ(α)−λ
1− εz
1 + εz

+ îb0.

whence follows
Λ(α)λf̂(z;β) = β + (â0 − β)

1− εz
1 + εz

+ îb0.

Thus the last assertion follows readily.

Corollary 2. If f ∈ F̃ with f(0) = a0 + ib0 and a0 < β∗ satisfies in E the inequality
Re Λ(α)λf(z) < β∗, then

Re f(z) < β∗ − (β∗ − a0)Ψ(λ, α),
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where Ψ is the expression defined in Theorem 2. The function f̂ given in Theorem 2 is
extremal in the sense:

sup
z∈E

Re Λ(α)λf̂(z;β∗) = β∗,

sup
z∈E

Re f̂(z;β∗) = β∗ − (β∗ − â0)Ψ(λ, α).

P r o o f. We have only to apply Theorem 2 to the function −f instead of f and to
replace the quantities β∗ and a0 by −β∗ and −a0, respectively.

Now, in view of the interrelation between Λ(α) and L(a), a = (λ + 1)/λ, stated in
Corollary 1 and the analytic prolongability with respect to λ, the semigroup character
of {L(a)λ}λ implies that of {Λ(a)λ}λ; namely, Λ(α)λ = Λ(α)µΛ(α)λ−µ for 0 < µ < λ.
Hence, by repeated application of Theorem 2, we see that Λ(α)λf(z) > β∗ implies

Re Λ(α)µf(z) > β∗ + (a0 − β∗)Ψ(λ− λ, α),

Re f(z) > β∗ + (a0 − β∗)Ψ(λ− µ, α) + (a0 − (β∗ + (a0 − β∗)Ψ(λ− µ, α))Ψ(µ, α)

= β∗ + (a0 − β∗)Ψ(λ− µ, α) + (1−Ψ(λ− µ, α))Ψ(µ, α).

by comparing the lower bound B(1)
∗ = β∗+(a0−β∗)Ψ(λ, α) for Re f(z) given in Theorem

2 with the bound B
(2)
∗ obtained in the last expression, their difference becomes

B
(1)
∗ −B(2)

∗ = (a0 − β∗)((1−Ψ(µ, α))(1−Ψ(λ− µ, α)− (1−Ψ(λ, α))).

It may be directly shown that the logarithm of the quantity

1−Ψ(λ, α) =
1

αλΓ (λ)

∫
I

t
1

α−1

(
log

1
t

)λ−1 2t
1 + t

dt

possesses the subadditivity with respect to λ, i.e.,

1−Ψ(λ, α) < (1−Ψ(µ, α))(1−Ψ(λ− µ, α)),

0 < µ < λ, whence follows B(1)
∗ > B

(2)
∗ verifying that the estimate based on Theorem

2 at one stretch is better than the estimate obtained by repeated steps. Concerning the
upper bound given in Corollary 2, the circumstance is quite similar.

3. Remarks to the bounds of distorsion. The quantity Ψ(λ, µ) is nothing but
the quantity Φ(λ, 1/α) dealt with in [3]. It can be expressed in the series from

Ψ(λ, α) = 1 +
1
αλ

∞∑
ν=2

(−1)ν

(ν + α−1 − 1
)λ

and if, in particular. α−1 = k is a positive integer, Ψ is alternatively expressible in the
form

Ψ
(
λ,

1
k

)
= 1 + 2(−1)k−1kλ

(
(1− 21−λ)ζ(λ) +

k∑
κ=1

(−1)κ

κλ

)
,

ζ denoting Riemann zeta function and the value of (1− 21−λ)ζ(λ) at λ = 1 being under-
stood to be its limit value log 2.

It has been also noted Ψ(λ, α) possesses monotonicity with respect to each argument.
In fact, for any fixed α > 0 or fixed λ > 0, Ψ(λ, α) increases strictly from 0 to 1 when λ

or α increases from 0 to ∞, respectively.
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Now, we deal with the sequence {Ψ(λ, 1/k)}∞k=1 for any fixed λ. In view of the above-
stated expression for Ψ , it follows readily that it satisfies the recurrence relation

Ψ
(
λ,

1
k + 1

)
=
(

1 +
1

k + 1

)λ
− 1−

(
1 +

1
k

)λ
Ψ
(
λ,

1
k

)
.

For λ = 1, we have
Ψ(1, 1) = 2 log 2− 1,

while for even integer λ = 2m, (m = 1, 2, ...), we have

Ψ(2m, 1) = 2
(
1− 21−2m

)
ζ(2m)− 1 =

(
1− 21−2m

)
(2π)2m

(−1)m−1B2m

(2m)!
− 1,

where B’s denote Bernoulli numbers defined by the generating function

t

exp t− 1
=
∞∑
n=1

Bn
n!
tn.

In particular, for lower values of m, the numerical valuse off B’s are given by

B2 =
1
6
, B4 = − 1

30
, B6 =

1
42
, B8 =

1
10
,

B10 =
5
66
, B12 = − 691

2730
, B14 =

7
6
, .....

Hence, in view of the above-mentioned recurrence relation, the numerical values of
Ψ(λ, 1/k) with λ = 1 or 2m, m = 1, 2, ... and k = 1, 2, ... will be successively deter-
mined. For instance,

Ψ(1, 1) = 2 log 2− 1 = 0, 3862...,

Ψ(1,
1
2

) = 3− 4 log 2 = 0, 2274...,

Ψ(1,
1
3

) = 6 log 2− 4 = 0, 1588...;

Ψ(2, 1) =
π2

6
− 1 = 0, 6449...,

Ψ(2,
1
2

) = 7− 2π2

3
= 0, 4202...,

Ψ(2,
1
3

) =
3π2

2
− 29

2
= 0, 3044...;

Ψ(4, 1) =
7π4

360
− 1 = 0, 8940...,

Ψ(4,
1
2

) = 31− 14π4

45
= 0, 6949...,

Ψ(4,
1
3

) =
567π4

360
− 1223

8
= 0, 5443....

4. Generalization of the distorsion. The background of the proof of Theorem 2
is based on a simple idea of subordination.

Let D be any simply-connected domain laid the w-plane which is the image of E by
a mapping w = W (z) satisfyin W (0) = f(0). Te Green function of the domain D with
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pole at W (0) is given by log | W−1(w) |−1 and hence its level curve Ct of height log t−1

is expressed by {| W−1(w) |= t}. The preimage of Ct is the concentric circumference
{| z |= t}. The image of {| z |< t} is the interior of Ct which will be denoted by Dt.

If Λ(α)λf(z) ⊂ D, then it is subordinate to W (z) and hence Λ(α)λf(zt) ⊂ D for any
z ∈ E and t ∈ I. Consequently, for any z ∈ E, the quantity

f(z) = Λ(α)−λΛ(α)λf(zt) =
1

αλΓ (λ)

∫
I

t
1

α−1

(
log

1
t

)λ−1

Λ(α)λf(zt)dt

may be regarded as a weighted mean of Λ(α)λf(zt) ∈ Dt along I with a positive weight.
Thus, we can state a theorem generalizing Theorem 2 and its Corollary 2:

Theorem 3. Let f ∈ F̃ . Let D be a simply-connected domain and D the interior of the
level curve of height log t−1 of its Green function with pole at f(0). Then Λ(α)λf(E) ⊂ D
with α > 0 and λ > 0 implies

Λ(α)λf
(
{| z |< t}

)
⊂ Dt

In particular , if D is symmetric with respect to the horizontal line {Imw = Im f(0)},
then Re Λ(α)λf(E) ⊂ D implies

Ω∗ < nRe f(z) < Ω∗

where Ω∗ and Ω∗ are given by

Ω∗

Ω∗

}
=

{
inf

sup
1

αλΓ (λ)

∫
I

t
1

α−1

(
log

1
t

)λ−1

ReW (zt)dt,

W being a function univalently mapping E onto D which satisfies W (0) = f(0); here inf
and sup are concerned in z lying on the circumference {| z |= 1}.

P r o o f. The first part of the assertion follows readily from the subordination princi-
ple. For the second particular case, we have only to notice that the symmetry of D with
respect to the line {Imw = Im f(0)} implies that of Dt for any t ∈ I.

As an example of Theorem 3, we state here a result obtained by applying it to the
case where D is a parallel strip. It relates to a result in [2].

Corollary 3. If , in Theorem 3 , D is a parallel strip {β∗ < Rew < β∗}, then the
bounds of Re f(z) are given by

Ω∗

Ω∗

}
=

1
αλΓ (λ)

∫
I

t
1

α−1

(
log

1
t

)λ−1

W (∓t)dt,

denoting the function mapping E onto D with W (0) = a0 + ib0:

W (0) =
2(β∗ − β∗)

π
arctan

z + τ

1 + τz
+
β∗ + β∗

2
+ ib0

where

τ = − tan
(π

4
β∗ + β∗ − 2a0

β∗ − β∗

)
.

The extremal function f̂ is of the form

f̂(z) = Λ(α)λW (z)
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with a0 = â0, b0 = b̂0 and the respective lower and upper bounds are attained at boundary
points z = −1 and z = +1, respectively , where f̂ behaves holomorphically.

P r o o f. Since the image strip {β∗ < Rew < β∗} of E by the mapping w = W (z) is
convex, the image W ({| z |< t}) is so also for any t ∈ I. Consequently, in view of the
symmetry with respect to the line {Imw = b0}, the minimum and maximum of ReW (z)
as well as off Re Λ(α)λW (z) on the circumference {| z |= t}) are attained at z = −t and
z = +t, respectively. Hence, in view of Theorem 3, the assertion follows.

The corollary just stated may be regarded as an improvement of Theorem 2 together
with its Corollary 2. As noticed in [2], Corollary 3 reduces to Theorem 2 and Corollary 2
as the limit casses of β∗ → +∞ and β∗ → −∞, respectively. It is shown that if we retain
β∗ and observe the limit case of β∗ → +∞, the lower bound for Re f(z) given in Corollary
3 reduces to that given in Theorem 2. In fact, it is verified that as β∗ → +∞, we obtain

τ = −1 +
π(a0 − β∗)

β∗
+ o
( 1
β∗

)
,

arctan
τ − t
1− τt

= −π
4

+
π(a0 − β∗)

2β∗
1− t
1 + t

+ o
( 1
β∗

)
,

every o-notation being uniform, and hence

Ω∗ =
2(β∗ − β∗)

π

1
αλΓ (λ)

∫
I

t
1

α−1

(
log

1
t

)λ−1

arctan
τ − t
1− τt

dt+
β∗ + β∗

2

= β∗ + (a0 − β∗)Ψ(λ, α) + o(1).

Similarly, as β∗ → −∞, we obtain

Ω∗ = β∗ − (β∗ − a0)Ψ(λ, α) + o(1).
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