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1. Residue formulas. Let E be a holomorphic vector bundle on a compact complex
manifold X of dimension n with structure sheaf OX , and let E be the locally free sheaf
of OX -modules (or briefly, an OX -sheaf) canonically associated to E. A residue formula
for E expresses the Chern numbers of E as finite sums of residues. Recall that a Chern
number is associated to a symmetric OX -linear map p : EndOX

(E)⊗n → OX as follows.
Letting c̃(E) ∈ H1(X,EndOX

(E)⊗Ω1
X)) denote the Chern class of E in the sense of [At],

one may apply p to c̃(E) to obtain a class p(E) = p(c̃(E)) ∈ Hn(X,ΩnX) which may be
evaluated on the fundamental cycle of X. The number (2πi)−n

∫
X
p(E) is the associated

Chern number of X; we will discuss computing these numbers as sums of residues.
Let ΘX denote the sheaf of sections of the holomorphic tangent bundle W of X.

Let L be an invertible OX -sheaf, and assume V ∈ H0(X,ΘX ⊗ L) is a section that has
only isolated zeros. The zero set of V can be given the structure of a possibly unreduced
scheme Z, called the zero scheme of V . Namely, Z is the finite subscheme of X defined by
the sheaf of ideals IZ = i(V )(Ω1

X ⊗ L−1) ⊂ OX , where, i(V ) : Ω1
X ⊗ L−1 → OX denotes

the canonical contraction operator defined by viewing V as an operator V : Ω1
X → L (so

i(V ) = V ⊗ 1). The structure sheaf of Z is denoted by OZ . Thus OZ := OX/IZ .
Letting LZ := L ⊗ OZ denote the pull back to Z of L, there is a canonical C-linear

map ResV : H0(Z,LnZ) → C called the Grothendieck residue morphism [C1], [CL2],
which is based on [Be], [H], [V] (also see [L]). A residue formula for a pair (p,E) as
above will consist of using V to associate a natural class pZ(E) ∈ H0(Z,LnZ) to p(E)
(the localization to Z) such that

(1.1) (2πi)−n
∫
X

p(E) = ResV (pZ(E)),

where L, V, Z are as above.
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The first general residue formula of this type is the celebrated theorem of Bott [B1].
Recall that if V ∈ H0(X,ΘX) is a holomorphic vector field on X, an isolated zero ζ of
V is called simple if the element A(ζ) ∈ End(Wζ) induced by the Lie derivative on ΘX

with respect to V is an isomorphism.

Theorem 1. Let X be a compact complex manifold of dimension n and
V ∈ H0(X,ΘX) a holomorphic vector field on X with simple isolated zeros ζ1, . . . , ζk.
Then for any symmetric OX-linear map p : EndOX

(W)⊗n → OX , one has

(1.2) (2πi)−n
∫
X

p(W ) =
∑
i

p(Aζi)
DetA(ζi)

.

In the setting of this theorem, L = OX , and Z is the set of zeros of V , as explained
below. If V is non-vanishing, then the right-hand side of (1.2) is zero. When the degree
of p is less than n, it is also the case that the right-hand side of (1.2) is zero, although
this does not follow directly from (1.2) (see Section 4 below).

2. Equivariant sheaves. We will state Bott’s theorem in a general form, after intro-
ducing the concept of an equivariant sheaf, which is a useful extension of the original defi-
nition given in [B2]. Let F be a locally free sheaf of OX -modules and V ∈ H0(X,ΘX⊗F)
an F-valued holomorphic vector field on X. V can also be viewed as an OX -module ho-
momorphism F∗ → ΘX , or dually, an OX -module homomorphism Ω1

X → F . Notice that
it makes sense to talk about the zeros of an F-valued holomorphic vector field; however
if the rank of F is greater than one, V can have more complicated singularities.

One says that an OX -sheaf E is V -equivariant if there exists a C-linear morphism
V : E → F ⊗ E such that

(2.1) V(fσ) = V (f)σ + fV(σ)

where f (resp. σ) is a local section of OX (resp. E). The requirement of (2.1) is that V
lifts the derivation V of OX .

If V is an ordinary vector field, i.e. V ∈ H0(X,ΘX), then the tangent sheaf ΘX and the
sheaves of holomorphic p-forms ΩpX for p ≥ 0 are made equivariant by Lie differentiation,
i.e. by putting V = LV = di(V ) + i(V )d. A further example is given by a holomorphic
foliation of X, i.e. a holomorphic subbundle F of the holomorphic tangent bundle W of
X which is closed under the Lie bracket of two local sections. Let F denote the sheaf of
sections of F , and consider the exact sequence of locally free OX -sheaves

(2.2) 0→ F → ΘX
π→ Q→ 0

where Q is the sheaf of sections of the normal bundle Q = W/F . Next, let V denote the
identity map I ∈ H0(F∗ ⊗ F) ⊆ H0(F∗ ⊗ ΘX). Then Q is equivariant with respect to
V . In fact, a lift V of V is defined by putting V(q) = π[V, q∨], where q is a local section
of Q and q∨ is any lift of q to ΘX .

Recall that a holomorphic connection on E is a C-linear operator ∇ : E → Ω1
X ⊗ E

satisfying the analog of equation (2.1). The obstruction to the existence of a holomorphic
connection is the Atiyah-Chern class c̃(E) ∈ H1(X,EndOX

(E)⊗Ω1
X) ([At]), i.e. ∇ exists

if and only if c̃(E) = 0. If V ∈ H0(X,ΘX ⊗F), define δ(V ) ∈ H1(X,EndOX
(E)⊗F) by

δ(V ) = i(V )c̃(E).

Proposition 2.3. Let E be a locally free sheaf of OX-modules. Then E is V -equivariant
if and only if δ(V ) = 0.



VECTOR FIELDS, RESIDUES AND COHOMOLOGY 53

P r o o f. Just define ∇ locally and put V = i(V ) ◦ ∇.

The main point of introducing equivariance is that when X is projective, any locally
free OX -sheaf can be made equivariant. In fact we have

Proposition 2.4. If X is projective and E is locally free, then there exists an invertible
OX-sheaf L such that E is equivariant with respect to any section of H0(X,ΘX ⊗L) and
such that ΘX ⊗ L has sections with isolated zeros.

P r o o f. When L is sufficiently positive, H1(X,EndOX
(E)⊗L) = 0 and ΘX ⊗L will

be very ample, hence will have sections in general position.

For another application, let us consider a not necessarily integrable holomorphic sub-
bundle F of W . Let V ∈ H0(X,ΘX ⊗F∗) be the associated vector field (see (2.2)), and
i(V ) : Ω1

X → F∗ the corresponding OX -module surjection.

Proposition 2.5. Assume V is as above and that E is locally free and V -equivariant.
Then for any symmetric OX-linear p : EndOX

(E)⊗k → OX , p(c(E)) = 0 as long as
k > corankF .

P r o o f. Consider the exact sequence of locally free sheaves

0→ EndOX
(E)⊗K → EndOX

(E)⊗ Ω1
X → EndOX

(E)⊗F∗ → 0,

where K is the kernel of i(V ). Considering the H1-level of the cohomology exact sequence
one sees that V -equivariance implies c̃(E) ∈ H1(X,EndOX

(E)⊗K). Hence if k > corankF ,
then c̃(E)⊗k = 0, since the rank of K is the corank of F .

Notice that this result applies to the case where F is an integrable subbundle of W .
Indeed, in that case one may take E = ΘX/F , which was shown above to be equivariant.
Thus p(c(E)) = 0 as long as k > rank E . This is the holomorphic version of a vanishing
theorem of Bott [B3].

3. A complex. Assume V ∈ H0(X,ΘX ⊗ L), where L is an invertible OX -sheaf on
X. Consider the complex of OX -sheaves

(3.1) 0→ ΩnX → Ωn−1
X ⊗ L → · · · → Ω1

X ⊗ Ln−1 → Ln → 0

with differential i(V ) of degree −1. For a fixed Leray cover U of X, let (K•, D) denote
the complex with

(3.2) Kr =
⊕
q−p=r

Cq(U ,ΩpX ⊗ L
n−p)

and total differential D : Kr → Kr+1 given on Cq(U ,ΩpX ⊗Ln−p) by D = δ+ (−l)qi(V ).
Residue formulas involve 0-cocycles in this complex. Note that a total 0-cocycle has the
form θ = θ0 + θ1 + · · ·+ θn, where θp ∈ Cp(U ,ΩpX ⊗ Ln−p) and

δθp + (−1)p i(V )θp+1 = 0.

The cocycle condition implies that θ0 ∈ C0(U ,OX ⊗ Ln) determines an element e0(θ) ∈
H0(Z,LnZ). Moreover, en(θ) := θn ∈ Cn(U ,ΩnX) is a cocycle. Let H• denote the coho-
mology of K•. The corresponding morphisms e0 : H0 → H0(Z,LnZ) and en : H0 →
Hn(X,ΩnX) are canonical edge morphisms in the spectral sequences associated to (3.1),
which we will mention again below.
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Proposition 3.3. Let V ∈ H0(X,ΘX ⊗ L) and assume the zero scheme Z of V is
non-trivial but isolated. Then (3.1) gives a locally free resolution of LnZ . Moreover, the
edge morphism e0 :H0 → H0(Z,LnZ) is an isomorphism.

Proposition 3.3 is explicitly proved in [C1]. Now suppose that E is V -equivariant.
Then (2.1) says that V induces an element VZ ∈ H0(Z, (EndOX

(E) ⊗ L)Z). Thus if p
denotes a symmetric OX -linear map p : EndOX

(E)⊗n → OX , then p(VZ) ∈ H0(Z,LnZ).
Thus we define pZ(E) to be p(VZ) (cf. Section 1). On the other hand, we have already
defined p(E) ∈ Hn(X,ΩnX). Let m : H0(Z,LnZ)→ Hn(X,ΩnX) be ene−1

0 .

Proposition 3.4. M(P (vz)) := M(Pz(e)) = P (e).

In the next section, we will establish the residue formula (1.1).

Example (cf. Bott’s Theorem). Suppose V ∈ H0(X,ΘX) has simple isolated zeros
and Z is non-trivial, say Z = {ζ1, . . . , ζr}. Then, by definition, OZ,ζi

= C, and OZ,x = 0
if x 6∈ Z. If E is V -equivariant, the lift V of V induces

VZ ∈ H0(Z, (EndOX
(E))Z) =

⊕
i

EndC(Eζi
)

and
p(VZ) ∈ H0(Z,OZ) =

⊕
i

Cζi

where Cζi = C for each i. Let Bi := V0,ζi ∈ EndC(Eζi). Then p(VZ)ζi = p(Bi) for each i.

In [C1], there is another complex constructed using differential forms in which the
map m has a more explicit form.

4. The residue morphism and fundamental commutative diagram. Let U be
an open ball in Cn containing the origin 0, which is the only common zero of a1, . . . , an ∈
H0(U,L). For s ∈ H0(U,Ln ⊗ ΩnX) define

(4.1) Res
(

s
a1 · · · an

)
= (2πi)−n

∫
∂D×···×∂D

s

a1 · · · an
,

where D is a disc in C containing 0 small enough so that ∂D × · · · × ∂D ∩ {a1 · · · an =
0} = ∅. One easily sees that the right-hand side of (4.1) is independent of such D.

Now suppose ζ is an isolated zero of V ∈ H0(X,ΘX ⊗ L), and let z1, . . . , zn be
local coordinates for X on a neighborhood U of ζ with zi(ζ) = 0 for all i. Locally
V =

∑
i ai∂/∂zi where all ai ∈ H0(U,L). Given f ∈ H0(U,Ln), the residue of f with

respect to V at ζ is by definition

ResV,ζ(f) := Res
(

s
a1 · · · an

)
where s = f ⊗ dz1 ∧ · · · ∧ dzn. Again, one can verify ResV,ζ(f) is independent of the
choices.

The residue has some fundamental properties. First, note that
∂ai
∂zj

(ζ)

makes sense, and put

J(a1, . . . , an)ζ :=
∂(a1, . . . , an)
∂(z1, . . . , zn)

(ζ).
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Then

(4.2) ResV,ζ(f) =
f(ζ)

J(a1, . . . , an)ζ
,

provided J(a1, . . . , an)ζ 6= 0. Moreover, if f ∈ (a1, . . . , an), then it is not hard to show
that ResV,ζ(f) = 0. It follows that ResV,ζ(f) depends only on the element f̃(ζ) ∈ LZ,ζ
defined by f . Therefore, there exists a well defined morphism ResV : H0(Z,LnZ) → C
such that ResV (f̃) =

∑
ζ ResV,ζ(f̃(ζ)). The basic residue theorem is the following

Residue Theorem. Let X be a compact complex manifold of dimension n and L
an invertible OX-sheaf. Suppose V ∈ H0(X,ΘX ⊗ L) has only isolated zeros, and let
m : H0(Z,LnZ)→ Hn(X,ΩnX) denote the C-linear map defined in Section 3. Then ResV :
H0(Z,LnZ) → C can be factored as ResV = (−1)n tr ◦m, where tr : Hn(X,Ωn) → C is
(2πi)−n

∫
X

. Moreover, suppose E is a V -equivariant holomorphic vector bundle on X,
and VZ denotes the element of H0(Z, (EndOX

(E) ⊗ L)Z) obtained from the lift V of V .
Assume p : EndOX

(E)⊗k → OX is a symmetric OX-linear map. Then

(2πi)−n
∫
X

p(E) = ResV (p(VZ)).

In particular, if k < n, then ResV (p(VZ)) = 0.

P r o o f. The first part of the theorem about ResV is proved in [C1]. The second
assertion is a consequence of the first part, with the use of Proposition 3.4.

By Proposition 2.4, if X is projective algebraic and E is an arbitrary holomorphic
vector bundle on X, then there exists an invertible sheaf L and V ∈ H0(X,ΘX ⊗L) with
isolated zeros, so the Residue Theorem is always applicable. More generally, using the
formalism of [CL2 §6], this remark also holds for coherent OX -sheaves.

Example (continued). Suppose again that V ∈ H0(X,ΘX) has simple isolated zeros
{ζ1, . . . , ζr}. Then

A(ζk) = Det(
∂ai
∂zj

(ζk)) = J(a1, . . . , an)ζk
6= 0.

Hence Theorem 1 follows immediately from the Residue Theorem and (4.2).

5. Vector fields and cohomology. When V is a holomorphic vector field on a
smooth projective variety with zeros, all of which are isolated, the spectral sequences
associated to the complex (3.1) when L = OX give a striking picture of the ordinary
cohomology algebra H∗(X,C) of X. For brevity, we will refer to [CL1,2] or [C3] for a
treatment of the spectral sequences themselves. The upshot is that all Hp(X,ΩqX) vanish
if p 6= q, and the coordinate ring A(ZV ) := H0(Z,OZ) of the zero scheme Z has a filtration
C = F0 ⊆ F1 ⊆ · · · such that FiFj ⊆ Fi+j , and there are isomorphisms of graded C-
algebras Gr(A(ZV )) ∼=

⊕
pH

p(X,ΩpX), where Gr :=
⊕

i≥0 Fi/Fi−1 (F−1 = 0). Because
of the Hodge Decomposition Theorem, Hr(X,C) =

⊕
p+q=rH

p(X,ΩqX), it follows that
Gr(A(ZV )) ∼= H∗(X,C). Note that the isomorphism doubles degrees.

When V is generated by a C∗-action and all Hp(X,ΩqX) vanish if p 6= q, then one has
the following result in which Z can have positive dimension.

Theorem 5.1 ([C2]). Assume X is a projective variety such that all Hp(X,ΩqX) vanish
if p 6= q, and let Z be the (necessarily non-empty) fixed point set of a C∗-action on X.
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Then there exists a filtration of the cohomology algebra H∗(Z,C) whose associated graded
algebra is H∗(X,C).

This result was applied in [C2] to study cohomology of Springer fibers in a G/B.
There are many situations in which Z has positive dimension, yet the filtration F• of
the algebra H∗(Z,C) is little understood, and it seems to be important to obtain a
better understanding of the situation. Recently, the filtration has been described when
the C∗-action is embedded as a maximal torus of a connected two-dimensional solvable
group B acting on X with a unique fixed point [C5]. In the rest of the paper, we describe
this result.

Let B denote the upper triangular Borel subgroup of SL2(C) with standard (Gm, Ga)
pair (λ, φ) satisfying

λ(a)φ(t)λ(a)−1 = φ(a2t)

for all a ∈ C∗, t ∈ C. Here λ(a) = diag[a, a−1] and

φ(t) =
(

1 t
0 1

)
.

X will denote a smooth projective variety with an algebraic B-action (b, x)→ b ·x having
a unique B-fixed point o. Xλ and Xφ will denote respectively the fixed point sets of the
Gm- and Ga-actions on X induced by λ and φ. It is known that in this situation Xλ is
finite and Xφ = {o}, so we may write Xλ = {x1, . . . , xr}. Note also that o ∈ Xλ. Recall
that the Bialynicki-Birula plus and minus cells associated to λ are respectively

x+
i := {x ∈ X | lim

a→0
λ(a) · x = xi}

and

x−i := {x ∈ X | lim
a→∞

λ(a) · x = xi}.

By [BB], the plus and minus cells define two locally closed λ-stable decompositions of
X into affine spaces. A basic fact is that U := o− is the open minus cell (the so called
big cell). Hence, there exist affine coordinates w1, . . . , wn on U which are homogeneous
with respect to the C∗-action λ and in fact, have positive even degrees. Consequently,
the coordinate ring A(U) is the graded C-algebra C[w1, . . . , wn], which is concentrated
in even positive degrees. This grading is called the principal grading.

Let (V,W ) denote the pair of algebraic vector fields on X generated by (φ, λ). W has
simple isolated zeros {x1, . . . , xr}, while V has a single non-reduced zero at o. The basic
deformation of (V,W ) is the family of vector fields {V s = V + sW | s ∈ C} on X.

Proposition 5.2 ([C5]). Assume B acts algebraically on X with exactly one fixed
point. Then for s 6= 0, V s has χ(X) simple isolated zeros all of which lie in the big cell.

We will denote the zero scheme of V = V 0, which is supported by o, by Z instead of Z0.
By Proposition 5.2, if s 6= 0, the zero scheme Zs of V s is reduced. The intuitive picture is
that for s 6= 0, Zs is a transverse splitting of the zero o of V . By the general theory outlined
above, the coordinate ring A(Zs) has a filtration F s whose associated graded is the
cohomology of X. It turns out that in our setting, the filtrations have natural descriptions,
although the proof of this is somewhat complicated. To describe these filtrations, note
that since Zs ⊂ U for all s ∈ C, the coordinate ring A(Zs) = H0(Zs,OZs) is the quotient
of A(U) = C[w1, . . . , wn] by the ideal IZs generated by V s(w1), . . . , V s(wn). Thus there
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is a natural principal filtration P s of A(Zs) satisfying P si P
s
j ⊆ P si+j . Namely, we define

P si := Im[
⊕

j≤iA(U)2j → A(Zs)].

Theorem 5.3. For each s ∈ C, the filtrations F s and P s of A(Zs) coincide. Hence
there is a graded C-algebra isomorphism Φs : GrP A(Zs) → H∗(X). Moreover, the ideal
defining A(Z) is homogeneous, so Φ0 : A(Z) → H∗(X) is an isomorphism of graded
C-algebras.

The part of Theorem 5.3 dealing with Φ0 goes back to [ACLS] and is proved in [AC1].
The proof for s 6= 0 will appear in [C5]. In [AC2], it was noticed that the presentation of
H∗(X,C) as A(Z) gives a product formula for the Poincaré polynomial of X.

In the remainder of this section, we will outline some recent results on cohomology
of (possibly) singular B-stable subvarieties of X. The first step is to glue the zero sets
of the V s in U × C to form a curve Z = {(x, s) | V s(x) = 0}. Z has χ(X) irreducible
components, and any two components meet exactly at (o, 0). The interesting point seems
to be the nature of the singularity of Z at this point. If Y is a B-stable subvariety of X,
put ZY := Z ∩ (Y ×C). Thus ZY is the union of the irreducible components of Z which
meet Y × C∗.

Theorem 5.4 ([C5]). Suppose Y is a B-stable subvariety of X and that the cohomology
restriction map i∗Y : H∗(X,C) → H∗(Y,C) is surjective. Let RY denote the coordinate
ring of the schematic intersection of ZY and U × 0 in U × C. Then RY has a natural
grading and there exists an isomorphism of graded rings ΨY : RY → H∗(Y,C) which is
natural with respect to restrictions.

The last assertion means that if W is a B-stable subvariety of Y such that i∗W :
H∗(X,C) → H∗(W,C) is surjective, then i∗ΨY = ΨW j

∗, where i∗ : H∗(Y,C) →
H∗(W,C) and j∗ : RY → RW are the restriction maps.

The surjectivity assumption is necessary in order that ΨY be an isomorphism, since
ΨY cannot be surjective unless iY is. In fact, surjectivity holds in a fairly general situation.
Suppose X is a projective spherical B-variety such that XB is a single point (B is here a
Borel subgroup in a semisimple algebraic group). Suppose furthermore that every B-orbit
is a product of C’s. That is, the B-orbits do not have C∗ factors. Then it is a result of
DeConcini and Springer [DS] that the B-orbits are actually plus cells, for a suitable
Gm-action on X (arising from a maximal torus in B). That being the case, it is obvious
that if Y is the closure of a B-orbit, then i∗Y is surjective. Thus Theorem 5.4 applies as
long as there exists a B ⊆ B for which XB is a single point. (I am indebted to Michel
Brion for pointing out that this may not always be the case.) In particular, these remarks
apply when X is an algebraic homogeneous space G/P , where G is a linear algebraic
group over C and P is a parabolic subgroup.

The following result shows that sometimes it is possible to describe H∗(Y,C) in terms
of Z and the ideal of the affine variety Y o = Y ∩ U . Indeed, let A(Z ∩ Y ) denote the
coordinate ring A(U)/(I(Z) + I(Y o)) of the scheme theoretic intersection of Z and Y o.
Then we have

Theorem 5.5. Suppose Y is a B-stable subvariety of X and the cohomology restriction
map i∗Y : H∗(X,C)→ H∗(Y,C) is surjective. Then there exists an isomorphism of graded
rings ΦY : A(Z ∩Y )→ H∗(Y,C) if and only if the scheme theoretic and variety theoretic
intersections of Z and Y o × 0 in X × C coincide.
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The condition that the scheme theoretic and variety theoretic intersections of Z and
Y o × 0 in X × C coincide is simply that I(ZY ) = I(Z) + I(Y o × C). The map ΦY was
studied in the case of Schubert varieties in a Grassmannian by E. and Y. Akyildiz in [AA]
and by E. Akyildiz, A. Lascoux and P. Pragacz [ALP] when Y is a Schubert subvariety in
the variety of complete flags in Cn. In both of these cases it was shown that ΦY is always
a graded ring isomorphism. However, there are examples due to Dale Peterson (see the
appendix of [C4]) where X is G/B with G 6= SL(n,C) and Y is a Schubert variety for
which A(Z ∩ Y ) and H∗(Y,C) have different dimensions over C.

Assuming that i∗Y is surjective, it is not hard to deduce that the curve ZY is Gorenstein
if and only if Y is a rational homology manifold. Recently the author has shown that
under certain (probably unnecessary) mild restrictions, Y is non-singular if and only if
ZY is a locally complete intersection.
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