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Introduction. Consider the linear oscillator:

(0.1) ẍ(t) + ω2x(t) = 0, x(t) ∈ R

All the solutions are given by the formula x(t) = a cosωt + b sinωt, for suitable
a, b ∈ R. Drawing the flow lines (x(t), ẋ(t)) in the phase space R2, one easly checks that
(0, 0) is a stationary point and that every other vector rotates of an angle Ω(t) = ωt in
time t.

The rotation number of this linear Lagrangian system is, by definition:

τ = lim
t→+∞

Ω(t)
2πt

=
ω

2π

Now consider the equation:

(0.2) ẍ(t)− λ2x(t) = 0, x(t) ∈ R

Again (0, 0) is the only stationary point, but the rotation angle around the origin of any
other vector of the phase space remains bounded by π: a good reason for defining the
rotation number of this system as τ = 0.
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Finally, consider the N -dimensional system:

(0.3) ẍ(t) +Ax(t) = 0, x(t) ∈ RN , A =



ω2
1

. . . 0
ω2
l

−λ2
1

0
. . .

−λ2
N−l


It seems natural to define the rotation number of such system as:

τ(A) =
ω1 + . . .+ ωl

2π

1. The rotation number of a linear Lagrangian system. Consider the N -
dimensional second order linear system:

(1.1) ẍ(t) +A(t)x(t) = 0, x(t) ∈ RN

System (1.1) is Lagrangian if theN×N matrix A(t) is symmetric. Systems (0.1), (0.2),
(0.3) are examples of linear Lagrangian sytems, with A(t) constant in t and diagonal.

It is useful to transform (1.1) into a 2N -dimensional first order linear system:

(1.2) z(t) := (x(t), ẋ(t)) ∈ R2N , ż(t) +B(t)z(t) = 0, B(t) =
(

0 −I
A 0

)
Let W (t) be the solution of the matrix differential problem:

(1.3)

{
Ẇ (t) +B(t)W (t) = 0

W (0) = I

W (t) is the Wronskian of system (1.2): for each z0 ∈ R2N , t 7→W (t)z0 is the solution
of (1.2) with initial condition z0.

Because of the special form of the matrix B(t), W (t) is symplectic for each t ∈ R:

(1.4) W (t)TJW (t) = J, J =
(

0 I
−I 0

)
To see this fact, just notice that (1.4) obviously holds for t = 0 and the derivative of

W (t)TJW (t) vanishes, with the aid of (1.3).
The symplecticity of W (t) carries many important consequences: the determinant of

W (t) equals 1 and, if α ∈ C is an eigenvalue of W (t), so are ᾱ, α−1 and ᾱ−1. If 1 or −1
are eigenvalues, they have even multiplicity.

The eigenvalues of W (t) are called Floquet multipliers; Floquet multipliers of system
(0.3) are e±ω1i, . . . , e±ωli, e±λ1 , . . . , e±λN−l . In this case W (t) turns out to be diagonaliz-
able, but in general it may be not.

In any case W (t) can be put into polar form W (t) = P (t)O(t), where P (t) =
[W (t)W (t)T ]

1
2 is symmetric, positive and symplectic, O(t) = P (t)−1W (t) is orthogonal

and symplectic. The matrix O(t) is made of four N × N -blocks; writing the conditions
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for orthogonality and symplecticity, one finds:

O(t) =
(
U1(t) −U2(t)
U2(t) U1(t)

)
=
(
U1(t) 0

0 U1(t)

)
+ J

(
U2(t) 0

0 U2(t)

)
Identifying R2N to CN , and considering the action of J as the multiplication by i,

O(t) can be naturally identified to a unitary matrix U(t) which acts on CN :

U(t) := U1(t) + iU2(t)

The determinant of U(t) is a complex number with modulus 1 and the rotation at
time t is defined to be:

(1.5) Ω(t, A) =
1
i

log[detU(t)]

Here suitable determinations of the multi-valued function log are chosen, so that
Ω(0, A) = 0 and Ω(·, A) is a continuous function.

If the limit τ(A) = limt→+∞
Ω(t)
2πt exists, τ(A) is said to be the rotation number of the

Lagrangian linear system (1.1 ). It is an useful exercise to show that, if A is of the form
(0.3), τ(A) coincides with its previous definition.

In the general case the above limit may not exist. However, if A(t) is periodic in
t, Bott’s iteration formula can be used to prove that the limit exists [6]. If A(t) is not
periodic, the existence of this limit can be sometimes obtained using ergodic theorems,
as we will see at the end of next section.

Roughly speaking, the rotation number has the following meaning: the matrix P (t)
in the decomposition W (t) = P (t)O(t) represents the expansion and it is neglected. O(t)
is orthogonal and thus it is a combination of rotations. In general one could only speak
about the rotation of O(t) around a certain axis, but the fact that O(t) is also symplectic
allows to put all the rotational information into a single number, Ω(t, A). Finally, one
looks at the asymptotic behaviour of Ω(t, A) and defines τ(A).

More sophisticated interpretations are also possible: one can study the topology of
the symplectic group and see the rotation number as the winding number of the path
W (t) in this space, as in [8]. Otherwise one can can speak about the rotation of suitable
Lagrangian spaces in the Lagrangian manifold as in [3] and [1].

2. Non-linear systems: the twist number of an orbit. Consider the N -dimen-
sional Lagrangian system:

(2.1) γ̈(t) + V ′(t, γ(t)) = 0, γ(t) ∈ RN

where V : R×RN 7→ R is a smooth potential, and V ′ is the gradient of V .
Let γ : R 7→ RN be a solution of (2.1) and consider the linearized system at γ:

(2.2) ẍ(t) + V ′′(t, γ(t))x(t) = 0, x(t) ∈ RN

We define the twist at time t of the orbit γ as the rotation at time t of system (2.2):

Ω(t, γ) := Ω(t, V ′′(t, γ(t))
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We define the twist number of the orbit γ as the rotation number of system (2.2):

τ(γ) := τ(V ′′(t, γ(t))) = lim
t→+∞

Ω(t, γ)
2πt

provided that this limit exists.
Notice that the twist number of the solution x(t) ≡ 0 of a linear Lagrangian system

equals the rotation number of the sytem itself.
If V is T0-periodic in time and γ is a kT0-periodic orbit, k ∈ N, V ′′(t, γ(t)) is also

kT0-periodic and the twist number τ(γ) is well defined. In this case, γ is said to be
hkT0-resonant, h ∈ N, if system (2.2) has a hkT0-periodic non trivial solution.

If the orbit γ is not periodic, the existence of the twist number can be proved using
ergodic theory.

Assume that our system is autonomous, that is V does not depend on time. We recall
that the energy surface Σh, h ∈ R, is the set:

Σh =
{

(x, y) ∈ R2N |1
2
|y|2 + V (x) = h

}
and that every trajectory (x(t), ẋ(t)) leaving from Σh stays in Σh for all times.

Let Φ : R ×R2N 7→ R2N be the flow which solves system (2.1). A Borel measure µ
on R2N is said to be invariant if µ(Φ(t,Γ)) = µ(Γ), for each t ∈ R and Γ Borel set in
R2N .

Every energy surface Σh supports a special invariant measure, the Liouville measure,
which is induced by Lebesgue measure in R2N (see, for example [11]). An ergodic theorem
can be used to prove the following [1]:

Theorem 1. Consider an autonomous Lagrangian system in RN , given by a potential
V . Let Σh ⊂ R2N be an energy surface with Liouville measure µh. If Σh is compact , then
for µh-almost every (x0, y0) ∈ Σh the unique orbit x(t) such that x(0) = x0 and ẋ(0) = y0

has a well defined twist number.

It is also possible to regard arbitrary invariant probability measures as generalizations
of solutions: an invariant KAM tori, for example, can be better described by the invariant
probability measure it supports, than by all the trajectories which lie on it. The use of the
same ergodic theorem allows also to define the twist number of an invariant probability
measure µ: it is the integral, with respect to µ, of the twist number of all the trajectories
which lie in the support of µ. See [1] for full details.

3. Asymptotically linear Lagrangian systems. The Lagrangian system (2.1) is
called asymptotically linear if:

(3.1) V (t, x) =
1
2
< A∞(t)x, x > +U(t, x)

where:
(a) U(t, x) is bounded;
(b) U ′(t, x) is bounded;
(c) lim|x|→+∞ U ′′(t, x) = 0 uniformly in t.
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Moreover assume that:
(d) V (t, 0) = 0 for each t ∈ R;
(e) V ′(t, 0) = 0 for each t ∈ R;
(f) V ′′(t, 0) =: A0(t).

We can associate two linear systems to an asymptotically linear system: the lineariza-
tion at zero and the linearization at infinity:

(3.2) ẍ(t) +A0(t)x(t) = 0

(3.3) ẍ(t) +A∞(t)x(t) = 0

τ0 will denote the rotation number of system (3.2), while τ∞ will denote the rotation
number of system (3.3).

Assume now that V is T0-periodic in t; if T = kT0, k ∈ N, the system is called
T -resonant at zero [ at infinity] if (3.2) [ (3.3)] has a T -periodic non trivial solution.

Theorem A. Assume that system (2.1 ) is asymptotically linear and T0-periodic in
time. Suppose that it is kT0-non-resonant at zero or at infinity and that :

(3.4) |τ0 − τ∞| >
2N
kT0

Then the system has at least one non trivial kT0-periodic solution. Moreover , if all
the kT0-periodic solutions are kT0-non-resonant , the system has at least two kT0-periodic
non trivial solutions.

This theorem was proved in [5]. A sketch of the proof will be given in section 6. There
is also a version for Hamiltonian systems, in the completely non-resonant case [8].

Notice that Theorem A implies that, if τ0 6= τ∞, there always exists a kT0-periodic
non trivial solution, for k large enough. If τ0 = τ∞ it is possible that there exist no non
trivial periodic solutions: consider system (0.2). It is linear, τ0 = τ∞ = 0, but x(t) ≡ 0
is the only periodic solution.

With some extra assumptions, Theorem A can be used to show the existence of
infinitely many closed orbits. For example, if there are no T0-periodic solutions and τ0 6=
τ∞, we find kT0-periodic solutions for each k prime and large enough, and these are all
distinct.

4.Lagrangian systems on manifolds. Let M be a Riemannian manifold, equipped
with its Levi-Civita covariant derivation D. A Lagrangian system on M has the form:

(4.1) Dtγ̇(t) + V ′(t, γ(t)) = 0

In most textbooks in mechanics, Lagrangian systems on manifolds are defined just by
giving a Lagrangian L : R× TM 7→ R. System (4.1) corresponds to the case in which L
has the form L(t, (x, v)) = T (x, v)−V (t, x), where T (x, ·) is a positive quadratic form on
TxM . Then T can be used to define a Riemannian structure on M such that the Lagrange
equations take the form (4.1).

The linearization of (4.1) along a solution γ is not a linear system in R2N anymore,
but it is a linear system in TM along γ. Technical difficulty increases, but one can still
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define the twist at time t, Ω(t, γ) and the twist number τ(γ) = lim
t 7→+∞

Ω(t, γ)
2πt

, which have

still the same geometrical meaning.
The above limit always exists when V is T0-periodic in time and γ is kT0-periodic. Er-

godic theorems can be still applied to define the twist number for almost every trajectory
and for invariant probability measures, as mentioned in section 2. See [1] for details.

Theorem B. Assume that M is compact and has a finite fundamental group. Suppose
that V is T0-periodic. Set :

T = {τ(γ)|γ is a kT0 − periodic orbit, k ∈ N}

Then T is dense in R+ = {α ∈ R|α ≥ 0}.

This Theorem was proved in [1]. A sketch of the proof will be given in section 7.
It is impossible to remove the condition on the topolgy of M : let M be a manifold

with negative sectional curvature; by Hadamard Theorem π1(M,x0) is infinite. Consider
system (4.1) with V ≡ 0: we are looking at geodesics. It is well known that the geodesic
flow on a negatively curved compact manifold is an Anosov system [2]. In particular all
the Floquet multipliers of a geodesic γ lie away from the unit circle in C and τ(γ) = 0
for every γ. Therefore T = {0} in this case.

We conclude this section stating a consequence of this Theorem [1]:

Theorem 2. Suppose that all the assumptions of Theorem B are fulfilled. Assume,
moreover , that M has a strictly positive sectional curvature and that all the periodic
solutions of (4.1 ) have period multiple of T0. Let α ≥ 0. Then one of the following
assertions must be true:
(1 ) There exists a kT0-periodic orbit γ such that τ(γ) = α.
(2 ) There exists an invariant probability measure µ such that τ(µ) = α and a sequence

of closed orbits (γn) with diverging periods which weakly converges to µ.

5. Twist number and Morse theory. We recall some definitions and results of
infinite dimensional Morse theory. Let H be a Hilbert space and f be a smooth function
on H. x ∈ H is a critical point for f if df(x) = 0; K(f) will denote the set of critical
points of f . If there is no critical point x such that f(x) = c, c is a regular value for f .

The Morse index m(x, f) of a critical point x is the dimension of a maximal subspace
of H on which the quadratic form d2f(x) is negative. The critical point x is called
non-degenerate if d2f(x) is non-degenerate.

f is said to satisfy Palais-Smale condition if each sequence (xn) such that f(xn) is
bounded and df(xn)→ 0, has a converging subsequence.

Let F be a fixed field ( usually F = Z2) and (X,A) a pair of topological spaces, A ⊂ X.
We denote by βq(X,A), q ∈ N, the q-th Betti number of (X,A), that is the dimension
on F of the F-vector space Hq(X,A; F), the q-th homology space with coefficients in F.

Poincaré polynomial P (X,A) is defined as P (X,A)(t) =
∑∞
q=0 βq(X,A)tq. If X and

A have infinite topological dimension, P (X,A) may actually be a formal power series,
rather than a polynomial.

We set fa = {x ∈ H|f(x) ≤ a}, f ba = {x ∈ H|a ≤ f(x) ≤ b}.
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The fundamental results of Morse theory can be summarized into the Morse relations:

Theorem 3. Assume that f ∈ C2(H) satisfies Palais-Smale condition and that all
its critical points are non-degenerate. Let a, b ∈ R be regular values for f . Then there
exists a polynomial Q with non negative integer coefficients such that :∑

x∈K(f)∩fba

tm(x,f) = P (f b, fa)(t) + (1 + t)Q(t)

Notice that the set K(f) ∩ f ba is finite because of Palais-Smale condition and of the
non-degenerance of critical points.

This Theorem can be generalized in several directions: for example one can take f
bounded from below and a = −∞, b = +∞. Moreover, one can use functions on Hilbert
manifolds, and obtain the same result. Also the condition about the non-degenerance
of critical points can be avoided, using Conley index. In the next two sections, Morse
relations will be used in some of these more general formulations. See [7] and [12] for the
proofs and for a complete bibliography on these topics.

Morse theory is an important tool to prove the existence of periodic solutions of (2.2)
and to compute their twist number. In fact there is a close relationship between the Morse
index and the twist number, as we are going to show.

Let V be a T0-periodic potential in RN . γ is a T = kT0-periodic solution of (2.2) if
and only if γ is a critical point of the action functional :

(5.1) fT (γ) =
∫ T

0

[
1
2
|γ̇(t)|2 − V (t, γ(t))

]
dt

on the Hilbert space ΛT =
{
γ ∈ H1([0, T ]; RN )|γ(0) = γ(T )

}
. It is easy to see that every

critical point of fT has a finite Morse index m(x, fT ).
Notice that γ is T -non-resonant if and only if it is a non-degenerate critical point of

fT .
The main result of this section is the following:

Theorem 4. If V is T0-periodic and γ is a T = kT0-periodic solution of (2.2 ):

lim
h→+∞

m(γ, fhT )
hT

= τ(γ)

Moreover , the following estimate holds:

hTτ(γ)−N ≤ m(γ, fhT ) ≤ hTτ(γ) +N

Theorem 4 is a consequence of a result of Bott [6]. A similiar statement for convex
Hamiltonian systems was proved in [9], [10]. See [4] for a proof of the theorem in the
above formulation.

6. Sketch of the proof of Theorem A. Set T = kT0. We consider only the
completely non-resonant case, refering to [4] for the general case: all T -periodic solutions
of (2.2) are T -non-resonant and the system is T -non-resonant at infinity.

The action functional has the form:

fT (γ) =
∫ T

0

[
1
2
|γ̇(t)|2 − 1

2
< A∞(t)γ(t), γ(t) > −U(t, γ(t))

]
dt, γ ∈ ΛT
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If c ∈ R, set:

fT,∞(γ) =
1
2

∫ T

0

[
|γ̇(t)|2− < A∞(t)γ(t), γ(t) >

]
dt

ΣcT := f cT = {γ ∈ ΛT |fT (γ) ≤ c}
ΣcT,∞ := f cT,∞ = {γ ∈ ΛT |fT,∞(γ) ≤ c}

If c < 0 is small enough, ΣcT is topologically equivalent to ΣcT,∞, therefore:

P (ΛT ,ΣcT ) = P (ΛT ,ΣcT,∞)

Since the system is T -non-resonant at infinity, fT,∞ is a non-degenerate quadratic
form and, if c < 0, P (ΛT ,ΣcT,∞) = tm(0,fT,∞).

Since the system is T -non-resonant at infinity, it is possible to prove that fT satisfies
Palais-Smale condition.

Assuming that c is a regular value, write Morse relations for fT :

(6.1)
∑

γ∈K(fT )
fT (γ)≥c

tm(γ,fT ) = P (ΛT ,ΣcT )(t) + (1 + t)Q(t)

If c < 0 is small enough:

(6.2) tm(0,fT ) +
∑

γ∈K(fT )\{0}
fT (γ)≥c

tm(γ,fT ) = tm(0,fT,∞) + (1 + t)Q(t)

If we apply Theorem 4 to γ(t) ≡ 0, considered as a T -periodic solution of the systems
γ̈(t) +A∞(t)γ(t) = 0 and γ̈(t) + V (t, γ(t)) = 0, we obtain the following estimates:

m(0, fT,∞)−m(0, fT ) ≥ Tτ∞ −N − Tτ0 −N = T (τ∞ − τ0)− 2N

m(0, fT )−m(0, fT,∞) ≥ Tτ0 −N − Tτ∞ −N = T (τ0 − τ∞)− 2N

Since T |τ∞ − τ0| − 2N > 0, m(0, fT ) 6= m(0, fT,∞) and in equation (6.2) Q 6= 0:
therefore there are at least two critical points of fT different from zero.

If some of the T -periodic solutions are T -resonant, one has to use Morse theory for
degenerate critical points, and can deduce only the exixtence of one non trivial solution.

If the system is T -resonant at infinity, the problem is much more complicated, because
Palais-Smale condition does not hold.

More details can be found in [5].

7. Sketch of the proof of Theorem B. Let ΛT (M) = {γ ∈ H1([0, T ];M)|γ(0) =
γ(T )} and define fT as in (5.1), but for γ ∈ ΛT (M).

We assume that all the kT0-periodic solutions, k ∈ N , are kT0-non-resonant.
Assume first that M is simply connected: then infinitely many Betti numbers of

ΛT (M) are different from zero, if one takes Z2 coefficients [13]. Let an be the index of
the n-th Betti number different from zero.

It is easy to show that the set { anhT0
|n, h ∈ N, h ≥ k} is dense in R+. Therefore there

exist an̄ and h such that:

(7.1)
∣∣∣∣α− an̄

hT0

∣∣∣∣ < ε

2
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(7.2)
N

hT0
<
ε

2
Here N is the dimension of M . Set T = hT0.

fT satisfies Palais-Smale condition, because M is compact. The functional fT is
bounded from below, therefore we can write Morse relations for the whole manifold
ΛT (M) and we find a critical point γ such that m(γ, fT ) = an̄.

By Theorem 4:

(7.3) m(γ, fT )−N ≤ Tτ(γ) ≤ m(γ, fT ) +N

From (7.1), (7.2) and (7.3):
|τ(γ)− α| < ε

Therefore the Theorem is proved for M simply conected. If the fundamental group of
M is finite, the universal covering M̃ is compact: we can consider the lifted Lagrangian
system on M̃ and prove the density of the twist numbers for it.

Projecting a periodic solution of the lifted system down on M , we obtain a periodic
solution of the original system with the same twist number. Therefore T is dense in R+

also in this case.
The resonant case is not more difficult: one has to use Morse theory for degenerate

critical points and the proof remains the same.
More details can be found in [1].
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