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Abstract. This paper deals with a class of nonlinear control systems in Rn in presence of
deterministic uncertainty. The uncertainty is modelled by a multivalued map F with nonempty,
closed, convex values. Given a nonempty closed setK ⊂ Rn from a suitable class, which includes
the convex sets, we solve the problem of finding a state feedback u(t, x) in such a way that K
is invariant under any system dynamics f . As a system dynamics we consider any continuous
selection of the uncertain controlled dynamics F .

0. Introduction. In this paper the invariance property of a given nonempty, closed
set K ⊂ Rn under a nonlinear controlled dynamics is investigated. The dynamics of
the control system is affected by a deterministic uncertainty which is modelled by a
multivalued map F . Here we consider only the continuous selections f of F as possible
system dynamics. Specifically, we consider a differential inclusion of the form

(1) ẋ ∈ F (t, x, u), t ∈ [0, T ], u ∈ U ⊂ Rm, x ∈ Rn.

Given a nonempty, closed set K ⊂ Rn, the problem that we want to study is that of
determining a state feedback control u(t, x) such that K is invariant under any corre-
sponding system dynamics f(t, x, u(t, x)) ∈ F (t, x, u(t, x)). That is, for any initial state
x0 ∈ K, if x(t) is a solution of the Cauchy problem

(2)
{
ẋ = f(t, x, u(t, x)) for a.a. t ∈ [0, T ],
x(0) = x0,
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then x(t) ∈ K for each t ∈ [0, T ]. In this paper the approach to solve this problem is
based on the viability theory and the relative invariance property of a set. Therefore, we
make use both of the contingent Bouligand cone TK(x) and of the external contingent
cone T̂K(x) to the set K at a point x. Then, we define the regulation map as R(t, x) =
{u ∈ U : F (t, x, u) ⊂ TK(πK(x))} for (t, x) ∈ [0, T ]×Rn, where πK(x) is the continuous
projection of x onto K. The control u(t, x) will be a selection of this map.

The problem in doing this is that, in general, the feedback control u(t, x) turns out
to be only measurable and so not enough regular to allow to consider classical solutions
of (2), i.e. absolutely continuous functions x(t), t ∈ [0, T ], satisfying (2) for almost all
(a.a.) t ∈ [0, T ]. For this, we have to introduce regularizations of f . We consider here
the Krasovskĭı’s regularization and the Filippov’s regularization. Unfortunately, when we
consider the regularizations of f it is not more guaranteed that they are still contained
in the Bouligand tangent cone. To overcome this difficulty we make suitable assumptions
on the set K and on the uncertain dynamics F in order to obtain a more regular feedback
control u(t, x) as selection of R(t, x). Specifically, we will obtain a directionally continuous
map u(t, x) with respect to a certain cone ΓM in R ×Rn. For this, we use a selection
theorem due to Bressan ([10], Theorem 1). The ΓM -continuity property of u(t, x) is the
main tool for obtaining the desired invariance property. In fact, by this notion we can
show that the solution set of (2) and that of the Krasovskĭı’s regularization coincide.
Then we solve our problem by proving that any solution of (2) is viable.

Obviously, if the assumptions on the set K and the uncertain dynamics F guaran-
tee that the corresponding regulation map R(t, x) fulfills the assumption of the cele-
brated Michael’s selection theorem then there exists a Carathéodory feedback control
u(t, x) ∈ R(t, x) and we can proceed in the usual way (compare [1], [2], [3], [13], [16],
[21]). Therefore, our results will generalize those obtained in the previous references in
the singlevalued case.

Several control problems require a viability or an invariance property of some subset
K of the state space. For instance, control problems with state constraints, observability
and tracking problems. In this paper our approach is based on the viability theory. Other
approaches, based on Liapunov functions have been also used. In [19] and [20] a non
smooth Liapunov function together with the calculus for non differentiable functions
were employed in order to solve the problem of the asymptotic linearization of a nonlinear
uncertain dynamical system. This problem was considered also in [7] and [8]. In this case
the approach relies to the theory of Variable Structure Systems.

When the control appears linearly and the uncertainty is modelled as a perturbation of
the nominal plant, rather than by a differential inclusion, several authors (see e.g. [5], [6],
[12] and [15]) designed, by techniques based on smooth Liapunov functions, a continuous
robust feedback controller guaranteeing some stability requirements on the system. In [4],
a system under uncertainty governed by a differential inclusion is considered and criteria
for different types of local observability are given.

Finally, for an overview on the relevant and interesting work performed by the Russian
school in the field of uncertain dynamical system we refer to [17] and [18] and the extensive
references therein. The relevant tool for modelling the uncertain dynamics is represented
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by the theory of trajectory tubes for differential inclusions. Several problems concerning
systems with constraints on the state have been solved by means of this theory.

1. Statement of the problem and some preliminaries. We consider a nonlinear
control system with deterministic uncertain dynamics modelled by a differential inclusion
of the form:

ẋ ∈ F (t, x, u), t ∈ [0, T ], u ∈ U ⊂ Rm, x ∈ Rn

where U is a connected compact set.
Throughout the paper a system dynamics f will be a continuous function f : D :=

[0, T ]×Rn × U → Rn such that f(t, x, u) ∈ F (t, x, u) for any (t, x, u) ∈ D.
We assume the following conditions on the dynamics F : D−◦Rn.

(H1) F (t, x, u) is a nonempty closed convex set for any (t, x, u) ∈ D, F is (t, x, u)-
continuous in the Hausdorff metric.

Observe that, by (H1) and the Michael’s selection theorem, the set of the system
dynamics f is non empty.

Formulation of the problem. Given a nonempty closed set K ⊂ Rn. To find
a state feedback control u(t, x) defined in [0, T ] × Rn such that for every dynamics
f(t, x, u(t, x)) ∈ F (t, x, u(t, x)) and every x0 ∈ K any solution x(t), t ∈ [0, T ], of the
Cauchy problem {

ẋ = f(t, x, u(t, x)),
x(0) = x0,

satisfies x(t) ∈ K for each t ∈ [0, T ], i.e. it is viable. In other words, u(t, x) makes K
invariant under every dynamics f(t, x, u(t, x)).

Since, in general, the control law (t, x)→ u(t, x) will not be continuous in the variable
x, but only measurable in the pair (t, x) we cannot expect that (2) possesses classical so-
lutions, i.e. absolutely continuous function x(t) satisfying (2) for a.a. t∈ [0, T ]. This is the
reason why we will consider two regularizations of the function g(t, x) := f(t, x, u(t, x)),
called respectively the Krasovskĭı’s regularization and the Filippov’s regularization of g,
(see [2]). They are defined as follows:

K(g)(t, x) =
⋂
δ>0

co g(B((t, x), δ)),

F (g)(t, x) =
⋂
δ>0

⋂
µ(N)=0

co g(B((t, x), δ)−N),

where µ denotes the Lebesgue measure in Rn+1, co the closed convex hull and B((t, x), δ)
the open ball centered at the point (t, x) with radius δ.

Any absolutely continuous solution of the multivalued Cauchy problems

ẋ ∈ K(g)(t, x), x(0) = x0,(3)

ẋ ∈ F (g)(t, x), x(0) = x0,(4)

on the time interval [0, T ] is called a Krasovskĭı’s (Filippov’s) solution to (2).
Obviously any Filippov’s solution is a Krasovskĭı’s solution. Thus, if we solve the

proposed problem for (3) we have solved the problem also for system (4).
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In what follows we will provide conditions on the dynamics F and on the set K which
together (H1) will ensure that any solution of (3) is viable, whenever x0 ∈ K. For this,
we give the following:

Definition 1 ([1], [2], [3]). Let K be a nonempty closed subset of Rn. The set
TK(x) ⊆ Rn, x ∈ K, defined by

TK(x) =
{
y ∈ Rn

∣∣∣∣ lim inf
τ→0+

1
τ

dist (x+ τy,K) = 0
}

where dist(u,K) = inf{|u− x| | x ∈ K}, is called the Bouligand contingent cone to K at
x ∈ K.

Our problem requires that K ⊂ Rn is invariant under any dynamics f(t, x, u(t, x))
∈ F (t, x, u(t, x)), (t, x) ∈ [0, T ]×Rn. The invariance property involves the behaviour of
F outside of K. Therefore we need to extend the notion of contingent cone to K to a set
A ⊃ K. For this purpose, following [1] we introduce the concept of external contingent
cone to K.

Definition 2. Let K ⊂ A be a non empty closed set of Rn. Let x ∈ A, the set
T̂K(x) ⊆ Rn defined by

T̂K(x) =
{
y ∈ Rn

∣∣ lim inf
τ→0+

1
τ

[dist(x+ τy,K)− dist(x,K)] ≤ 0
}

is called the external contingent cone to K at the point x ∈ A.

Obviously, T̂K(x) = TK(x) for any x ∈ K. Let x ∈ A, denote by ΠK(x) the set of
projections of x onto K, i.e. the set of points z ∈ K such that |x− z| = dist(x,K). We
have the following result:

Proposition 1 ([1], Lemma 5.1.2). Let K be a non empty closed subset of Rn. Then

TK(ΠK(x)) ⊆ T̂K(x).

We introduce now a particular class of nonempty closed sets K by means of the
following definition.

Definition 3 ([1], [3]). A nonempty closed subset K ⊆ Rn is said to be sleek if the
multivalued map TK : K−◦Rn is lower semicontinuous.

It is well known that any nonempty closed convex set K is sleek ([3], Theorem 4.2.2).
Furthermore if K is sleek then the multivalued map TK : K−◦Rn is convex-valued
([3], Theorem 4.1.8). A larger class of sleek sets is represented by the so-called proxi-
mate etracts (see [9], [23]).

Definition 4. A nonempty closed subset K of Rn is said to be a proximate retract
if there exists an open neighbourhood I of K in Rn and a continuous map r : I → K

(called metric retraction) such that the following two conditions are verified.

r(x) = x for each x ∈ K
|r(y)− y| = dist(y,K) for each y ∈ I.

It is known that any C2-manifold of Rn is a proximate retract (see [23]).
We can now formulate the following assumptions.
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(H2) There exists γ > 0 such that for any (t, x) ∈ [0, T ] × Rn there exists u ∈ U for
which

F (t, x, u) + γB1 ⊂ TK(ΠK(x)),

where B1 is the unitary open ball centered at the origin.
(H3) For any (t, x) ∈ [0, T ]×Rn; u, v ∈ U and θ ∈ [0, 1] there exists ũ ∈ U such that

θF (t, x, u) + (1− θ)F (t, x, v) = F (t, x, ũ).

Furthermore, there exist constants a, b > 0 such that

a|u− v| ≤ d(F (t, x, u), F (t, x, v)) ≤ b|u− v|

for any (t, x) ∈ [0, T ]×Rn and any pair u, v ∈ U.

Here d(A,B) denotes the Hausdorff distance of the two sets A,B. We recall that d is
a metric in the family of all nonempty, bounded and closed subsets of a Banach space.We
give the following.

Definition 5. The multivalued map R : [0, T ]×Rn−◦U defined as follows:

R(t, x) = {u ∈ U : F (t, x, u) ⊂ TK(ΠK(x))}

is called the regulation map.

In the sequel we will denote TK(ΠK(x)) by T (x).

Finally, we assume the following condition.

(H4) ΠK : Rn → K is a singlevalued, continuous function, which will be denoted by
πK .

We are now in a position to prove the following.

Theorem 1. Let K ⊆ Rn be a sleek subset of Rn. Assume (H1)–(H4). Then the
regulation map R has nonempty closed values and it is lower semicontinuous.

P r o o f. The proof follows the lines of that of ([2], Theorem 3, p. 49), where a single-
valued autonomous dynamics, affine in the control, was considered.

In virtue of (H2) the regulation map R(t, x) has nonempty values for any (t, x) ∈
[0, T ]×Rn. Furthermore, R(t, x) is closed by (H1). We have now to prove that for fixed
(t, x) ∈ [0, T ] ×Rn, u ∈ R(t, x) and ε > 0 there exists a neighbourhood N(t, x) of (t, x)
such that for any (t′, x′) ∈ N(t, x) there exists ũ ∈ R(t′, x′) ∩ (u+ εB1).

Let δ > diamU such that δ > (2γ + ε′a)/2a, with ε′ = 2aε/(a+ b). Let α =
γε′/(2δ − ε′) > 0. Since F is continuous in the Hausdorff metric, U is compact and
T is lower semicontinuous there exists a neighbourhood N(t, x) of (t, x) and η < ε′ such
that for any (t′, x′) ∈ N(t, x) we have:

1. for any u1, u2 with |u1 − u2| < η we have d(F (t′, x′, u1), F (t, x, u2)) ≤ α/2;
2. F (t, x, u) ⊂ T (x′) + (α/2)B1.

Therefore, for any (t′, x′) ∈ N(t, x) there exists v′ ∈ U with |u− v′| < η such that

(5) F (t′, x′, v′) ⊂ T (x′) + αB1.
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Let 0 < θ < γ/(α+ γ) < 1, since θα = (1− θ)γ by multiplying (5) by θ we obtain

(6) θF (t′, x′, v′) ⊂ θT (x′) + (1− θ)γB1.

By (H2) we have that for any (t′, x′) ∈ N(t, x) there exists u′ ∈ U such that

(7) (1− θ)F (t′, x′, u′) + (1− θ)γB1 ⊂ (1− θ)T (x′).

Summing (6) and (7) we get

θF (t′, x′, v′) + (1− θ)F ′(t′, x′, u′) + (1− θ)γB1

⊂ θT (x′) + (1− θ)T (x′) + (1− θ)γB1,

by the convexity of T (x′) we have

θF (t′, x′, v′) + (1− θ)F (t′, x′, u′) + (1− θ)γB1 ⊂ T (x′) + (1− θ)γB1.

Thus

θF (t′, x′, v′) + (1− θ)F (t′, x′, u′) ⊂ T (x′).

By (H3) there exists ũ ∈ U such that

θF (t′, x′, v′) + (1− θ)F (t′, x′, u′) = F (t′, x′, ũ),

that is ũ ∈ R(t′, x′). Now to finish the proof we must show that |u− ũ| < ε. For this, we
consider

d(F (t, x, u), F (t′, x′, ũ)) = d(F (t, x, u), θF (t′, x′, v′) + (1− θ)F (t′, x′, u′)).

From the properties of the Hausdorff metric (see e.g. [16]) we obtain

d(F (t, x, u), F (t′, x′, ũ)) ≤ θd(F (t, x, u),F (t′, x′, v′))

+ (1− θ)d(F (t, x, u), F (t′, x′, u′)).

On the other hand

d(F (t, x, u), F (t′, x′, u′)) ≤ d(F (t, x, u), F (t, x, u′)) + d(F (t, x, u′), F (t′, x′, u′)).

By using again (H3) we obtain

(8) d(F (t, x, u), F (t′, x′, ũ)) ≤ α

2
+ (1− θ)b|u− u′| ≤ α

2
+ b

ε′

2
,

since (1− θ)|u− u′| ≤ ε′/2. But

(9)
d(F (t, x, u), F (t′, x′, ũ)) ≥ d(F (t, x, u), F (t, x, ũ))− d(F (t, x, ũ), F (t′, x′, ũ))

≥ a|u− ũ| − α

2
.

In conclusion, combining (8) and (9) we get

|u− ũ| ≤ α

a
+
bε′

2a
≤ ε′

2
+
bε′

2a
<

(a+ b)
2a

ε′ = ε.

R e m a r k 1. We have assumed, for simplicity, the continuity of F with respect to
the time t and that the control set U is independent on (t, x). Indeed, for the validity of
Theorem 1, we can assume only the measurability of F with respect to t and U = U(t, x).
The multivalued map U : [0, T ]×Rn−◦W , whereW is a compact subset of Rm, is assumed
to satisfy the following conditions:
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(U1) U(t, x) is a nonempty convex closed set for any (t, x) ∈ [0, T ]×Rn.
(U2) U is measurable.
(U3) U(t, · ) is lower semicontinuous for a.a. t ∈ [0, T ].

In fact, under these assumptions following the arguments employed in ([21], Theorem 3.4)
and adapting the proof of Theorem 1 we can show that the regulation map R has
nonempty closed values, it is measurable with respect to (t, x) and lower semicontin-
uous in x.

2. Some comments and remarks. Some comments on the assumptions are useful.
First of all, observe that (H1) and the Michael’s selection theorem imply that F has the
continuous selection property. That is, for any p0 ∈ F (t0, x0, u0) with (t0, x0, u0) ∈ D
there exists a continuous selection f of F such that p0 = f(t0, x0, u0). In fact, for any
(t0, x0, u0) ∈ D and p0 ∈ F (t0, x0, u0), it is sufficient to consider the multivalued map
G : D−◦Rn defined as follows:

G(t, x, u) =
{
F (t, x, u) for (t, x, u) 6= (t0, x0, u0)
{p0} for (t, x, u) = (t0, x0, u0),

which satisfies the assumptions of the Michael’s selection theorem.
Furthermore, if we assume a more restrictive condition on the continuity of F on

D, then any continuous selection f of F can be expressed as a convex combination of
extreme points of the set F (t, x, u), (see [24]).

Concerning (H2), observe that even if F were a singlevalued continuous map condition
(H2) could not be weakened to the following (tangentiality) condition:

– for any (t, x) ∈ [0, T ]×Rn there exists u ∈ U such that F (t, x, u) ⊂ T (x).

In fact, in this case the map R(t, x) could be not longer lower semicontinuous as the
following simple example shows (see [13]).

Example 1. Let f : [0, 2]× [0, 1]× [0, 1]→ R be the map defined as follows

f(t, x, u) =
{

max{1− u, t} − 1 for t ≤ 1
max{u, 2− t} − 1 for t ≥ 1.

Then f satisfies our conditions, K = [0, 1] and the feedback map R : [0, 2]× [0, 1]−◦R is
given by

R(t, x) =

 {0} for x = 0 and t < 1
{1} for x = 0 and t > 1
[0, 1] for x = 0 and t = 1 or x > 0,

which is not lower semicontinuous.

We exhibit now a class of uncertain control dynamics F for which assumptions (H3)
is satisfied.

Example 2. Consider F : [0, T ]×Rn × U−◦Rn of the form

F (t, x, u) = φ(t, x) + f(t, x)h(u)

where
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(i) φ : [0, T ] × Rn−◦Rn has nonempty closed convex values and it is bounded and
continuous in the Hausdorff metric.

(ii) f : [0, T ] × Rn → Rn is a continuous function for which there exist constants
m1,m2 > 0 such that

m1 ≤ |f(t, x)| ≤ m2 for any (t, x) ∈ [0, T ]×Rn.

(iii) h : Rm → R is a continuous map. Moreover, there exist constants λ,Λ > 0 such
that

λ|u− v| ≤ |h(u)− h(v)| ≤ Λ|u− v|
for any pair u, v ∈ U , with U connected compact set of Rm.

It is easy to verify that F satisfies assumption (H3).

R e m a r k 2. By Remark 1 and considering the restriction of F to [0, T ]×K it follows
that Theorem 1 is a generalization of ([2], Theorem 3, p. 49) and ([1], Theorem 6.3.1) even
in the singlevalued case. In fact, it reduces to this result if the dynamics is affine in u and
the process is autonomous. Moreover, observe that in the multivalued case even if F is
affine in the control we cannot use the argument employed in the proof of ([2], Theorem 3
p. 49) in order to prove our result. For instance, if F (t, x, u) = ψ(t, x)u, where u ∈ R
and ψ(t, x) ⊂ Rn is a closed convex set, the set θF (t, x, u) + (1 − θ)F (t, x, v) does not
necessarily coincide with the set F (t, x, θu+(1−θ)v) unless u ∈ U = [a, b], a > 0. Finally,
in (H3) we have assumed the existence of constants a, b > 0 such that

a|u− v| ≤ d(F (t, x, u), F (t, x, v)) ≤ b|u− v|

for any (t, x)∈ [0, T ]×Rn and any pair u, v ∈ U . This condition appears reasonable from
the point of view of the effectiveness of the control variable u on the dynamical system.
In fact, the dynamics is sensitive with respect to the variations of the control via the
parameter a. On the other hand, the parameter b provides a necessary upper bound on
this sensitivity.

R e m a r k 3. Condition (H4) is satisfied, for instance, if K is a nonempty closed
convex set or if K is a proximate retract with I = Rn.

3. Main result. In this section we state and prove the main result which solves the
proposed problem. For this, we assume also the following condition.
(H5) There exists a positive constant M such that

|F (t, x, u)| ≤M for any (t, x, u) ∈ D.

Here |F (t, x, u)| = sup {|y| | y ∈ F (t, x, u)}.
We give in the sequel a definition and a result which is a direct consequence of ([10],

Theorem 1).

Definition 6. Consider the cone

ΓM := {(t, x) ∈ R×Rn | |x| ≤Mt}.

We say that a map f : R×Rn → Rn is directionally ΓM -continuous at a point (t, x) if and
only if f(tn, xn)→ f(t, x) for every sequence (tn, xn)→ (t, x) with (tn − t, xn − x) ∈ ΓM



AN INVARIANCE PROBLEM FOR CONTROL SYSTEMS 201

for any n ≥ 1. Moreover, we say that it is ΓM -continuous on a set Q ⊂ Rn+1 if it is
ΓM -continuous at every point (t, x) ∈ Q.

Proposition 2. Under assumptions (H1)–(H5), the regulation map R admits a ΓM -
continuous selection u defined on [0, T ]×Rn.

Proposition 2 guarantees that any dynamics f(t, x, u(t, x)) of F (t, x, u(t, x)) is ΓM -
continuous with respect to (t, x) ∈ [0, T ]×Rn. Observe that the Krasovskĭı’s regulariza-
tion K(g)(t, x) of g(t, x) := f(t, x, u(t, x)) is not necessarily contained in F (t, x, u(t, x)).

We prove now the main result.

Theorem 2. Under assumptions (H1)–(H5), any Krasovskĭı’s solution of the Cauchy
problem {

ẋ = f(t, x, u(t, x))
x(0) = x0 ∈ K

satisfies x(t) ∈ K, for any t ∈ [0, T ].

P r o o f. First, we show that if x(t), t ∈ [0, T ], is an absolutely continuous function
such that {

ẋ(t) ∈ K(g)(t, x(t)) for a.a. t ∈ [0, T ],
x(0) = x0,

where x0 ∈ Rn, then x(t), t ∈ [0, T ], satisfies the Cauchy problem{
ẋ(t) = g(t, x(t)) for a.a. t ∈ [0, T ],
x(0) = x0.

For this, we use the arguments of [11] and [14] which combine the ΓM -continuity with
standard techniques.

By means of Lusin’s Theorem there exists Qn ⊂ [0, T ], n ∈ N, measurable sets
such that ẋ restricted to Qn is continuous, ẋ(t) ∈ K(g)(t, x(t)) for any t ∈ Qn and
µ([0, T ] \ ∪n∈NQn) = 0. Moreover, the Lebesgue’s density theorem (see [22]) ensures,
for any n ∈ N, the existence of a measurable set Nn ⊆ Qn, with µ(Nn) = 0 such that
any point t ∈ Qn \Nn is a density point for Qn. Let t ∈ Qn \Nn, we can find a sequence
{tm} ⊂ Qn \Nn with tm > t and tm → t decreasing as m→∞.

Hence ẋ(tm) → ẋ(t). On the other hand |x(t) − x(s)| ≤ M |t − s| for all t, s ∈ [0, T ],
since |K(g)(t, x)| ≤ M by (H5), the fact that g is a selection of F and the definition of
K(g). Let ε > 0. We have ẋ(tm) ∈ K(g)(tm, x(tm)) ⊆ g(tm, x(tm))+

ε

2
B1 for any m ∈ N.

But g is ΓM -continuous in [0, T ] ×Rn, hence there exists m0(ε) ∈ N such that for any
m ≥ m0 we have |g(tm, x(tm))− g(t, x(t))| < ε/2, that is

g(tm, x(tm)) ∈ g(t, x(t)) +
ε

2
B1.

Therefore for m ≥ m0 we have ẋ(tm) ∈ g(t, x(t)) + εB1 and so ẋ(t) ∈ g(t, x(t)) + εB1.
For ε → 0 we get ẋ(t) = g(t, x(t)), x(0) = x0 for all t ∈ Q̂ = ∪n∈N(Qn \ Nn) with

µ([0, T ] \ Q̂) = 0.
In conclusion, x(t) is an absolutely continuous function such that

ẋ(t) ∈ T (x(t)) for a.a. t ∈ [0, T ].
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Now if we take x0 ∈ K then x(t) ∈ K for a.a. t ∈ [0, T ]. To show this, let t ∈ [0, T ]
such that there exists ẋ(t) and ḋ(t), where d(t) := dist(x(t),K) is absolutely continuous.
Consider x(t+ τ), with τ > 0, there exists ε(τ) with ε(τ)→ 0 when τ → 0+ such that

x(t+ τ) = x(τ) + τ ẋ(t) + τε(τ).

Therefore

ḋ(t) = lim
τ→0+

dist(x(τ) + τ ẋ(t) + τε(τ),K)− dist(x(t),K)
τ

.

On the other hand by Proposition 1 we have ẋ(t) ∈ T (x(t)) ⊂ T̂K(x(t)), thus ḋ(t) ≤ 0
for a.a. t ∈ [0, T ]. From this if t ∈ [0, T ] is such that d(t) > 0 we have

0 < d(t) =
∫ t

0

ḋ(s) ds ≤ 0

which is a contradiction. This concludes the proof.

R e m a r k 4. From the proof of Theorem 2 it turns out that any Krasovskĭı’s so-
lution x(t) of (2), whenever f(t, x, u(t, x)) ∈ F (t, x, u(t, x)), is such that the function
dist(x(t),K) is nonincreasing in [0, T ]. Therefore, if the initial condition x(0) = x0 is
sufficiently close to K, say dist(x0,K) < ε, then dist(x(t),K) < ε for any t ∈ [0, T ].
Furthermore, if K is bounded and the initial conditions x0 are taken in a bounded neigh-
bourhood V ⊂ B(0, r) of K, then condition (H5) can be replaced by the weaker condition:

(H5)′ there exists a constant M > 0 such that

|F (t, x, u)| ≤ L

for any t ∈ [0, T ], any |x| < 2r and any u ∈ U .

Observe that if F satisfies (H1) and F (t, x, u) is a bounded set for any (t, x, u) ∈ D
then (H5)′ is satisfied.

In Remark 1 we pointed out that if F is Carathéodory and U = U(t, x) satisfies (U1),
(U2) and (U3) then the regulation map R is measurable in t and lower semicontinuous
in x with nonempty closed values. Thus, if we introduce for u(t, x) the notion of Scorza-
Dragoni ΓM -continuity (see e.g. [14]) we can prove Theorem 2 under these assumptions.
Furthermore, under some regularity assumption, we could also allow the set K to depend
on t, and the existence of periodic solutions of (2) in K could be also investigated.

4. An application. An important control problem for system (1) that we can tackle
by means of the approach presented in this paper is illustrated in the sequel.

Consider two control systems

(F) ẋ ∈ F (t, x, u), t ∈ [0, T ], u ∈ U ⊂ Rm, x ∈ Rn

and

(ψ) ẏ = ψ(t, y, v), t ∈ [0, T ], v ∈ V ⊂ Rm, y ∈ Rn,

where U, V are connected compact sets of Rn and ψ is continuous.
The initial state x(0) = x0 is also uncertain, but bounded, i.e., x0 ∈ B(0, r), r > 0.

The initial condition y(0) = y0 is taken in a given ball B(0, ρ), ρ > 0.
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Introduce now a multivalued map Q : Rn−◦Rn, where the domain represents the
states y and the range represents the states x. Assume the following conditions
(Q1) Q(y) is a non empty convex compact set of Rn for any y ∈ Rn and Q is upper

semicontinuous.
(Q2) Graph(Q) is a convex set of Rn ×Rn containing the set B(0, ρ)×B(0, r).

The map Q−1 is often called the observation map.

We consider the following problem.

(P) Given a state-control pair (y(t), v(t)) of (ψ), the problem that we want to solve is
that of determining a feedback control u(t, x), (t, x) ∈ [0, T ] × Rn such that for
any dynamics f(t, x, u(t, x)) ∈ F (t, x, u(t, x)) and for any x0 ∈ B(0, r) we have
x(t) ∈ Q(y(t)) for any t ∈ [0, T ], where x(t) is any Krasovskĭı’s solution of the
Cauchy problem {

ẋ = f(t, x, u(t, x)),
x(0) = x0.

In other words, given a nonlinear control model (ψ) we want to find a feedback
control u(t, x) under which any solution, in the Krasovskĭı sense, of (F) is such that the
pair (y( · ), x( · )) is viable in the graph of Q.

Let K := GraphQ. Since K is a closed convex subset of Rn × Rn there exists a
continuous (non-expansive) projector πK : Rn × Rn → K. Define now the regulation
map RQ : [0, T ]×Rn ×Rn × V−◦U as follows.

RQ(t, x, y, v) = {u ∈ U | (ψ(t, y, v), F (t, x, u)) ⊂ TK(πK(y, x))}

if v ∈ V and RQ(t, x, y, v) = ∅ if v 6∈ V .

We have the following result.

Proposition 3. Under assumptions (H1), (H2), (H3), (H5) and (Q1), (Q2) problem
(P) is solvable.

P r o o f. For any fixed state-control pair (y(t), v(t)) of the reference model (ψ), by
Theorem 1 we get that the map

(t, x) → R̃Q(t, x) := RQ(t, x, y(t), v(t))

is lower semicontinuous with nonempty closed values. Then we can apply the first part
of the proof of Theorem 2 to conclude that

(ẏ(t), ẋ(t)) ∈ TK(πK(y(t), x(t))).

On the other hand (y0, x0) ∈ K and so using the second part of the proof of Theorem 2
we obtain that

(y(t), x(t)) ∈ K for any t ∈ [0, T ].

Observe that the condition

(ψ(t, y, v), F (t, x, u)) ⊂ TK(πK(y, x))
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can be rewritten in terms of the contingent derivative DQ(y, x) of the map Q as follows:

F (t, x, u) ⊂ DQ(y, x)(ψ(t, y, v)).

In fact

GraphDQ(y, x) := TGraphQ(y, x).

A similar control problem was treated in [19] and [20] (see also [7], [8]) by means
of an approach based on the theory of variable structure systems. More precisely, by
introducing a sliding manifold as the zeros of a non differentiable function s and using
the Clarke’s generalized gradient of s, conditions ensuring the asymptotic linearization
of an uncertain control system of the form (F) were given.

Finally, tracking problems concerning singlevalued control systems affine in the con-
trols are considered in ([1], Chapt. 8, Sect.2).
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