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If you open any book on the theory of ordinary differential equations (TODE) you
can observe that almost every proof in the TODE uses the continuity of the dependence
of a solution of the Cauchy problem on initial data and parameters of the right-hand
side.

But the classical TODE has few theorems assuring this continuity. In general they
suppose the continuity of the right-hand side.

We can note a trivial

Example 0.1. Let g(t, y) be a continuous function. The dependence of solutions of
the equations y′ = g(t, y) + α(t2 + y2 + α2)−1 on the parameter α is continuous though
the right-hand side is not continuous at the point t = y = α = 0.

So we meet the problem to describe a topological structure adequate to the idea of
the continuity of the dependence of solutions on parameters of the right-hand side of the
equation.

Solving this problem we develop a new large working theory which gives a natural
framework of topological contents of the TODE. The theory deals with equations of
classical types, with equations having various singularities in the right-hand sides, with
differential inclusions etc.

Some account of the theory may be found in [7] (see also the Chapter IX in the
book [4] and the book [8]). You can find there proofs of many results of this survey (see
also [9]–[32], [35] for other details).

The theory of Sections 1–6 is rather old. The author is very grateful to Professors
J. Mawhin and L. Górniewicz for valuable contacts which have greatly stimulated results
of Section 7. He is also thankful to B. S. Klebanov for discussing this paper.

The paper is in final form and no version of it will be published elsewhere.

[171]
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1. The space of partial mappings. Given an ordinary differential equation, we call
its solutions functions defined on different domains. On the other hand, traditional meth-
ods of investigation of equations are based on topological properties of functions which
are defined on a fixed domain. For instance, constantly we use the uniform convergence
of sequences of solutions but this convergence is defined only if the solutions in question
have common domain of definition.

The noted situation causes an impossibility to use functional methods everywhere. If
we come across an equation where functional methods are not applicable, we begin to
look for what is the obstacle. In other words, we begin to study singularities.

Here we follow just this way. First we define a topological structure which can help
us. Up to my knowledge the first person who considered a structure of this type was a
Polish mathematician S. K. Zaremba [43] (see also [36]). K. Kuratowski in [38] and [39]
approached analogous notions in another respect.

Let X and Y be Hausdorff topological spaces, and A a closed subset of the space X.
Any continuous mapping f : A→ Y will be called a partial mapping from X to Y . Let us
denote by Cv(X,Y ) the set of all partial mappings from X to Y , and by Ccv(X,Y ) the
set of all partial mappings from X to Y having compact domains. The topology of this
spaces is uniquely determined by the condition that the injective map Gr : Cv(X,Y ) →
exp(X×Y ), which associates with a function ϕ ∈ Cv(X,Y ) its graph Gr(ϕ) ∈ exp(X×Y ),
is an embedding [40]. (Here expX denotes the space of all nonempty closed subsets of
X with the Vietoris topology and expcX denotes the space of all nonempty compact
subsets of X.)

Let us start with listing some technical properties of these notions which are important
for their applications in the TODE.

Let H be a closed subset of the space X. We can consider two topologies on the set
C(H,Y ) of all continuous mappings from H to X. The first one is the compact-open
topology. We shall denote the corresponding topological space by Cb(H,Y ). We obtain
the second one by considering the set as a subspace of the space Cv(X,Y ). In this case
we shall keep the notation C(H,Y ).

Theorem 1.1. Let H ∈ expX. Then the identity mapping C(H,Y ) → Cb(H,Y ) is
continuous.

Theorem 1.2. Let H ∈ expcX. Then the identity mapping C(H,Y ) → Cb(H,Y ) is
a homeomorphism.

Theorem 1.2 shows that the topological structure of the space Ccv(X,Y ) generalizes
the compact-open topology on the set of functions having a fixed domain.

If the spaces X and Y are metric, then the topology of the space exp(X × Y ) is
metrizable by the corresponding Hausdorff metric. So are the topologies of the spaces
Gr(Ccv(X,Y )) and Ccv(X,Y ).

If the spaces X and Y are complete metric spaces, then the topology of the space
exp(X×Y ) is metrizable by the corresponding complete Hausdorff metric. But in general
case the set Gr(Ccv(X,Y )) is not closed in the space exp(X × Y ) and hence this way
does not give us a complete metric on the space Ccv(X,Y ). However we have
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Theorem 1.3. Let the space Y be metrizable. Then the set Gr(Ccv(X,Y )) is a Gδ-
subset of the space exp(X × Y ).

It follows from Theorem 1.3 that if the spaces X and Y are complete metric spaces,
then the space Ccv(X,Y ) is metrizable by a complete metric.

Let us note one more relation of the space Ccv(X,Y ).

Theorem 1.4. The mapping π : Cv(X,Y )→ expX which associates with a function
ϕ ∈ Cv(X,Y ) its domain is continuous. If the space Y is a singleton, then the mapping
π is a homeomorphism.

The importance of the uniform convergence for the Analysis is ensured by the fact
that the mapping which associates with any element (z, t) of the product C(T, Y ) × T
the value z(t) ∈ Y is continuous for the corresponding topology on the set C(T, Y ). The
space Cv(X,Y ) has a similar property.

Let ϕ be a filter on a set A. A family {Mα | α ∈ A} (with a fixed filter ϕ on A) is
said to be a generalized sequence. Various versions of the notion of its limit are defined
in a natural way. We shall keep the usual notation.

Theorem 1.5. Let X and Y be Hausdorff topological spaces, let the space X be normal ,
and let generalized sequences {zα | α ∈ A} ⊆ Cv(X,Y ) and {Dα | α ∈ A} ⊆ expX
converge by filter ϕ to z ∈ Cv(X,Y ) and D∈expX respectively. Suppose that Dα ⊆ π(zα)
for each α ∈ A. Then D ⊆ π(z) and the generalized sequence {zα

∣∣
Dα
| α ∈ A} converges

by filter ϕ to z
∣∣
D

.

On the other hand we have

Theorem 1.6. Let X and Y be Hausdorff topological spaces, {zα | α ∈ A} ⊆ Cv(X,Y ),
z ∈ Cv(X,Y ), {Dα | α ∈ A}, {Eα | α ∈ A} ⊆ expX, Dα ∪ Eα ⊆ π(zα) for each
α ∈ A, D,E ∈ expX and generalized sequences {zα

∣∣
Dα
| α ∈ A} and {zα

∣∣
Eα
| α ∈

A} converge by filter ϕ in the space Cv(X,Y ) to z
∣∣
D

and z
∣∣
E

respectively. Then the
generalized sequence {zα

∣∣
Dα∪Eα

| α ∈ A} converges by filter ϕ in the space Cv(X,Y ) to
z
∣∣
D∪E.

Both theorems have many applications in proofs of results of our theory.
One of the main properties of the space Cv(X,Y ), where the spaces X and Y are

metric, is the possibility to obtain a suitable version of Arzela theorem. The notion of
the equicontinuity keeps its meaning in this case. For M ⊆ X ×Y and Z ⊆ Cv(X,Y ) let
us denote by ZM the set {z | z ∈ Z, Gr(z) ⊆M}.

Theorem 1.7. Let X and Y be metric spaces. Then every compact subset of the space
Cv(X,Y ) is equicontinuous.

Theorem 1.8. Let K be a compact subset of the product of metric spaces X and Y ,
and let a sequence α = {zk | k = 1, 2, . . .} ⊆ (Cv(X,Y ))K be equicontinuous. Then there
exists a convergent (in Cv(X,Y )) subsequence of the sequence α.

Below the case of X = R and Y = Rn will be considered only. Let us denote by
Cs(R×Rn) the set of all mappings from Cv(R×Rn) having compact connected domains
(we shall consider singletons as degenerate segments; so the elements of Cs(R×Rn) have
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segments as domains). Let Cs(M) = (Cs(R×Rn))M for M ⊆ R×Rn. The set Cs(M) is
closed in the space (Ccv(R, Rn))M .

2. Basic properties of solution spaces and the Cauchy problem. Aiming to
define an adequate topological structure, let us start with a general definition of solution
which may be suitable in all particular cases below.

Let U be a subset of the product R × Rn. We shall consider differential equations
y′ = f(t, y) or their generalized versions (inclusion) y′ ∈ f(t, y) having right-hand sides
defined on the set U . A function z ∈ Cs(U) will be called a solution of the equation if

a) the segment π(z) is not degenerate, the function z is generalized absolutely con-
tinuous and z′(t) = f(t, z(t)) (resp. z′(t) ∈ f(t, z(t))) for almost all t ∈ π(z),

or
b) |π(z)| = 1 (in other words π(z) is a singleton).

The set of all solutions to the equation y′ = f(t, y) (resp., inclusion y′ ∈ f(t, y)) will
be denoted by D(f). For M ⊆ U let D(f,M) = (D(f))

∣∣
M

.
In these definitions we do not fix domains of functions. We consider them all together.

So the solution set D(F ) lies in the space Cs(U).
In what follows U will be open in R× Rn.
For equations with continuous right-hand sides our definition gives only continuously

differentiable solutions. For equations with right-hand sides satisfying the Carathéodory
conditions this definition gives Carathéodory solutions etc.

Our generalization of the notion of solution can be applied in situations which are
very close to the classical theory.

Example 2.1. Let g(t, y) be a function which is continuous everywhere but one point.
The properties of so defined solutions of the equation y′ = g(t, y) are the same as those
of solutions of the equations studied in the classical theory. This case is not covered by
the Carathéodory theorem because we need not have here an integrable majorant.

Note that our approach is antipodal to the approach suggested by A. F. Filippov
in [33] (see also [34]). He changes the equation y′ = f(t, y) under consideration with
discontinuities in the space variables by an inclusion y′ ∈ F (t, y) related in a natural
way to the equation y′ = f(t, y), and he calls a solution of the equation every solution of
the inclusion without any supplementary consideration. We deal with the most natural
possible notion of solution. This two ways can give different set of solutions.

The levels of the TODE correspond to the levels of the theory of integration. The
TODE with continuous right-hand side corresponds to the integral of Riemann. The
TODE under the conditions of Carathéodory corresponds to the integral of Lebesgue.
The application of our theory gives us a level corresponding to the integral of Denjoy.
This level has been already reached in Example 2.1.

The idea that various properties of solutions depend one on another is not too original.
There exist some results about the properties without direct reference to the equation.
But we shall go further. One of our tools will consist of precise analysis of such relations.
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Let us highlight some basic properties of solution set Z:

(1) if z ∈ Z and a segment I lies in π(z), then z
∣∣
I
∈ Z,

(2) if z1, z2 ∈ Z, I = π(z1) ∩ π(z2) 6= ∅ and z1

∣∣
I

= z2

∣∣
I

then the function

z(t) =
{
z1(t) if t ∈ π(z1),
z2(t) if t ∈ π(z2)

(defined on the segment π(z1) ∪ π(z2)) belongs to the set Z,

(p) the set Z contains all functions from Cs(U) defined on singletons and if a function
z ∈ Cs(U) is defined on a segment [a, b] where a < b and z

∣∣
I
∈ Z for each segment

I lying in ]a, b[ then z ∈ Z,

(c) the set ZK is compact for every K ∈ expc U ,

(e) for each point (t, y) of the set U there exists a function z ∈ Z such that t ∈ 〈π(z)〉
and z(t) = y (〈M〉 denotes the interior of M),

(u) if z1, z2 ∈ Z, π(z1) = π(z2) and z1(t) = z2(t) for some t ∈ π(z1), then z1 = z2.

It is easy to see that properties (1), (2) and (p) follow directly from our definitions.
Conditions (e) and (u) correspond to the existence theorem and the uniqueness theorem.
Condition (c) corresponds to a weak version of the condition of the continuity of the
dependence of solutions of the Cauchy problem on initial values.

Next natural step should be to develop a theory having noted properties as axioms.
Some such investigations have old history, see [43], [36]. New theorems following this
approach may be found below. But if we have no possibilities to prove this properties
out the classical TODE, the importance of such results stays uncertain. So having the
purpose to create a working valuable axiomatic TODE we must think about developing
of new non-classical methods of proving the basic properties. We shall do it.

One of important aspects of the properties is their local character. This implies new
strong possibilities of studying singularities of equations. In such studies we now do not
need to refer constantly to properties of equations. We obtain an opportunity to prove
the inessentiality of singularities by steps. Suppose that for each element V of a family γ
of open subsets of the set U we have proved that the space ZV is “good” (has no essential
singularities). In many cases we can estimate the remainder U \ ∪γ so that it becomes
obvious that the whole space Z is “good” too. Classical results or considerations like just
described may be used for proving “goodness” of the spaces ZV , where V ∈ γ. Examples
of such propositions will be given below.

We shall denote by Ri(U) the set of all Z ⊆ Cs(U) satisfying condition (1) and by
R(U) the set of all Z ⊆ Cs(U) satisfying conditions (1) and (2). Let ∗ denote an arbitrary
set of conditions on subspaces of the space Cs(U). The symbol Ri∗(U) (respectively R∗(U))
will denote the set of all elements of Ri(U) (respectively of R(U)) satisfying all conditions
of ∗ . The sets R(i)

∗ (U) will be called “classes of solution spaces”.
Our language is not traditional for the TODE and first we shall indicate the following

relation between the classical situation and ours.
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Theorem 2.1. Let Z ∈ Rp(U) and for each K ∈ expc(U) and for each segment I of
R the set ZK ∩ π−1(I) be closed in the space C(I,Rn) and the set ZK be equicontinuous.
Then Z ∈ Rc(U).

Theorem 2.1 gives the possibility to deduce the fulfillment of condition (c) from tra-
ditional descriptions of properties of solution sets. So under hypotheses of the theorems
of Peano [33], Carathéodory [2] and Davy [3] the solution sets belong to Rce(U). The
class Rce(U) is one of the most important classes of solution spaces. Many theorems of
the classical theory find here their generalization.

For the class Rce(U) theorems on the continuity of the dependence of a solution of the
Cauchy problem on initial data and some other important propositions are true (under
the assumption of condition (u) in corresponding cases). So we obtain the possibility of
its application out the classical TODE.

The properties of belonging of a solution space to the class Rce(U) is an example of
a “good” property.

Proposition 2.1. Let γ be a family of open subsets of the set U,Z
∣∣
V
∈ Rce(V ) for

each V ∈ γ and |U \ ∪γ| = 1. Then Z ∈ Rce(U).

See Example 2.1. The proof of the statement is easy. We get as its trivial corollary.

Proposition 2.2. Let γ be a family of open subsets of the set U,Z
∣∣
V
∈ Rce(V ) for

each V ∈ γ. Let the set U \ ∪γ be at most countable. Then Z ∈ Rce(U).

(Proof is based on the following classical proposition of general topology: every count-
able complete metric space has an isolated point. Then we apply Proposition 2.1. I do
not think that the proof of the corresponding statement for the classical TODE without
suggestions of our theory is so easy.)

Above we have dealt only with solutions defined on closed segments. Our real purpose
there was just to define what must mean words “solution spaces”.

For Z ∈ R(U) we shall denote by Z+ (respectively by Z−) the set of all functions
z : [a, b[→ Rn (respectively the set of all functions z : ]a, b] → Rn) with arbitrary a < b

(±∞ may be taken as open ends) satisfying the conditions:

(2.1) z
∣∣
I
∈ Z for every segment I lying in π(z),

(2.2) there is no element in Z extending z.

For Z ∈ R(U) we shall denote by Z−+ the set of all functions z :]a, b[→ Rn with
arbitrary a < b(±∞ may be taken as open ends) satisfying the condition:

(2.3) z
∣∣
]a,t]
∈ Z− and z

∣∣
[t,b[
∈ Z+ for some (and then for each) t ∈]a, b[.

Theorem 2.3. Let z ∈ Z ∈ Rce(U). Then there exists a function from Z−+ extending
the function z.

Let Ω+(z) = ∩{[z(π(z) ∩ [t,∞[)] | t ∈ π(z)} for z ∈ Z+ ∪ Z−+.

3. Converging sequences of solution spaces and the space Ri(U). Now we
shall consider a notion of convergence adequate to the question about the continuity of
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the dependence of a solution of the Cauchy problem on parameters of the right-hand side.
Let U be an open subset of the product R× Rn.

We say that a sequence {Zi | i = 1, 2, . . .} ⊆ Ri(U) converges (in U) to a space
Z ∈ Ri(U) if

(3.1) for any K ∈ expc U and for any sequence zi ∈ (Zi)K(i1 < i2 < . . .) there is a
subsequence {zim | m = 1, 2, . . .} converging to a function z ∈ Z.

R e m a r k 3.1. Let Z ∈ Ri(U). The convergence of the sequence Zi ≡ Z to the space
Z is equivalent to the condition Z ∈ Ric(U). Thus results of the study of condition (3.1)
can be applied to prove the fulfillment of condition (c).

Properties of this type are known in the TODE. See for instance Theorem I.2.4 in [33].
But they are not so general and complete as our condition is, and I do not know papers
where such properties are topics of investigation. In [33] and in other texts where we
come across such properties, the authors note them and pass quickly to notions which
are charged less by technical details (compare our condition (3.1) with cumbersome and
incomplete description in Theorem I.2.4 in [33]).

Our next step will be to define a topology which is adequate to the convergence in
(3.1). But we have noted in the remark that the convergence of the stationary sequence is
a valuable property of the corresponding solution space. Not every solution space satisfies
this condition. On the other hand, in every topological space every stationary sequence
converges. Thus we are able to define the topology in question on the set Ric(U) only. In
fact here such a topology exists.

In the set Ric(U) the convergence (3.1) corresponds strictly to the following topology.
For M ⊆ U and V ⊆ Cs(U) let O{M,V } = {Z | Z ∈ Ri(U), ZM ⊆ V }. We shall consider
the family {O{K,V } | K ∈ expc U, V is an open subset of Cs(U)} as a subbase of the
space Ri(U). This condition defines the unique topology on Ri(U). We consider the sets
Rc(U) and Ric(U) as subspaces of so defined space Ri(U).

To display the position of this notion, let us consider the equation

(3.2) y′ = f(t, y, α),

where the right-hand side depends on a parameter α ∈ A. Then the continuity of the
mapping A → Rc(U) which associates with a parameter α the solution space of the
equation y′ = f(t, y, α), is equivalent to the continuity of the dependence of solutions of
equation (3.2) on the parameter α (in a form which does not involve the uniqueness of
solutions in general case and in a strict form under the supposition of the uniqueness).

Proposition 3.1. A sequence {Zi | i = 1, 2, . . .} ⊆ Ri(U) converges to Z ∈ Ric(U) in
the space Ri(U) if and only if condition (3.1) is fulfilled.

Proposition 3.2. A point Z ∈ Ric(U) belongs to the closure of a subset M of the space
Ri(U) if and only if there exists a sequence {Zi | i = 1, 2, . . .} ⊆M converging to Z.

The spaces R(U) and Rc(U) are not T1, but our purpose was not to construct any
space having nice properties but to find a topology strongly adequate to questions under
consideration, what is done.
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The closeness of relations between convergence (3.1) and the topology of the space
Rc(U) can lead to the idea that we can avoid introducing the topology and consider
only the convergence. In fact it is not so. It is very difficult to describe on the level
of convergence all needed properties and to prove some relations. In particular the first
countability of the space Rc(U) is one of its properties enabling applications in the TODE.
On the other hand, the existence of topological space Rc(U) allows to emphasize easily
fundamental properties and relations of solution spaces. For instance, we have

Theorem 3.1. The subset Rce(U) of the space Rc(U) is closed.

The calmness of the last statement can hide its valuable contents. Really this fact is
applied in standard proofs of theorems of Peano, Carathéodory and Davy. It now can be
used for investigation of equations outside the classical TODE. Let y′ = g(t, y) be such
equation. In various cases the right-hand side g of the equation can be “approximated”
in some generalized sense by a sequence gn. In our theory there are more possibilities to
prove the convergence D(gn)→ D(g) than in the classical one. So more equations can be
easily investigated. We are able to find new existence theorems or to apply the Theorem
3.1 directly to particular equations.

B. S. Klebanov showed that the set of elements of Rce(U) having the property of
Wazewski is closed in Rce(U), see [34].

The fulfillment of the following property for the equation with continuous right-hand
side was proved by H. Kneser in [37] (see also [33]):

(k) for each point (t, y) of the set U there exists a number ε > 0 such that if s ∈ R
and |s− t| < ε then the set {z(s) | z ∈ Z, s, t ∈ π(z), z(t) = y} is connected.

Theorem 3.2. The subset Rcek(U) of the space Rc(U) is closed.

In some questions the following homological triviality of solution sets is important:

(h) for each point (t, y) of the set U there exists a number ε > 0 such that if s ∈ R
and t < s < t+ ε then the set {z | z ∈ Z, s, t ∈ π(z), z(t) = y} is acyclic.

Theorem 3.3. The subset Rceh(U) of the space Rc(U) is closed.

Theorem 3.3 gives us a possibility to prove easily the fulfillment of condition (h) in
cases which are quite non-trivial for other ways of investigation (see remarks related to
condition (3.3) below).

The same technical tools allow to prove that a solution space Z under consideration
satisfies the following condition

(3.3) Z ∈ [Rceu(U)]

which has many important consequences. The real situation is such that the construction
of a solution space Z which does not satisfy condition (3.3) requires noticeable additional
efforts. Condition (3.3) is satisfied in every natural situation related to equations and
inclusions (for equations with complicated right-hand side too).

One of the most important statements about converging sequences of spaces is the
following theorem. It looks too technical but has many applications in various situations.
The theorem is closely related to J. Yorke’s topology [42].
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Theorem 3.4. Let a sequence of spaces {Zi | i = 1, 2, . . .} ⊆ Rce(U) converge to
a space Z ∈ Rce(U), zi ∈ Z−+

i , ti ∈ π(zi) and the sequence of points {(ti, zi(ti)) | i =
1, 2, . . .} converge to a point (t, y) ∈ U . Then there exist a function z ∈ Z−+, for which
t ∈ π(z), z(t) = y, and a subsequence {zij | j = 1, 2, . . .} such that for every segment
I lying in π(z) the inclusion I ⊆ π(zij ) is satisfied beginning with some j = j0 and the
sequence {zij

∣∣
I
| j = j0, j0 + 1, . . .} converges uniformly to the function z

∣∣
I
.

4. An equicontinuity condition and the position of the upper limit of a
sequence of spaces. Keeping our suppositions about U , let us denote by s(U) the set
of all sequences {Zi | i = 1, 2, . . .} ⊆ Ri(U) satisfying the condition

(4.1) for any K ∈ expc U each sequence zj ∈ (Zij )K , i1 < i2 < . . ., is equicontinuous.

Theorem 1.7 implies that every convergent sequence of elements of Ri(U) belongs to
the set s(U). On the other hand, Theorem 1.8 implies

Proposition 4.1. Let α = {Zi | i = 1, 2, . . .} ∈ s(U) and lim supi→∞ Zi ⊆ Z ⊆
Cs(U). Then the sequence α converges in U to the space Z.

Thus the proof of the convergence of a sequence α = {Zi | i = 1, 2, . . .} ⊆ Ri(U)
to a space Z ⊆ Cs(U) can be divided into two steps. The first one is the proof of the
fulfillment of the condition α ∈ s(U). The second one is the proof of the fulfillment of
the condition lim supi→∞ Zi ⊆ Z.

Our next aim is to point rather simple working conditions implying the fulfillment of
the condition α ∈ s(U).

For M ⊆ R× Rn let Mt = {y | y ∈ Rn, (t, y) ∈M}.
Let θ : U → Rn be a multifunction. For (t, y) ∈ U let Γty = {{y} ∪H | H is an open

subset of the set Ut and (Oεy ∩ θ(t, y)) \ {y} ⊆ H for some ε > 0}. Let us denote by
τ(θ, t) the topology on the set Ut defined by the system of neighbourhoods {Γty | y ∈ Ut}.

Theorem 4.1. Let α = {Zi | i = 1, 2, . . .} ⊆ Ri(U),

lim sup
δ,ε→0,i→∞

{Gr(z
∣∣
[s1,s2]

) | z ∈ Zi, [s1, s2] ⊆ ]t− ε, t+ε[ ∩π(z),

z([s1, s2]) ∩Oδy 6= ∅} ⊆ θ(t, y),

γ be a family of open subsets of the set U , {(Zi)V | i = 1, 2, . . .} ∈ s(V ) for each V ∈ γ,
for each t ∈ R the set (U \ ∪γ)t does not contain non-trivial connected subsets on which
the topology τ(θ, t) coincides with the Euclidean topology of Rn. Then α ∈ s(U).

Note one trivial corollary of the theorem. The mapping θ ≡ Rn satisfies all supposi-
tions and so we get

Proposition 4.2. Let α = {Zi | i = 1, 2, . . .} ⊆ Ri(U), γ be a family of open subsets
of the set U , {(Zi)V | i = 1, 2, . . .} ∈ s(V ) for each V ∈ γ , for each t ∈ R the set
(U \ ∪γ)t do not contain non-trivial connected subsets. Then α ∈ s(U).

R e m a r k 4.1. Note one more situation where the fulfillment of condition (4.1) is
obvious. Suppose that ∪{Zi | i = 1, 2, . . .} ⊆ Φ ∈ Ric(U). Then condition (4.1) holds.
For example, let the right-hand sides of equations y′ = fi(t, y) satisfy the condition
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‖fi(t, y)‖ ≤ ϕ(t) with a Lebesgue integrable function ϕ. Thus all the solution spaces
D(fi) lie in the solution space of the inequality ‖y′(t)‖ ≤ ϕ(t). The last solution space
satisfies condition (c), and this implies fulfillment of condition (4.1) for the sequence
{D(fi) | i = 1, 2, . . .}.

Proposition 4.3. Let X be a metric space, ϕ : U → X be a continuous mapping ,
α = {Zi | i = 1, 2, . . .} ⊆ Ri(U). Suppose that for every compact set K ⊆ U and every
sequence zj ∈ (Zij )K (i1 < i2 < . . .) the sequence of functions

βj(t) = ϕ(t, zj(t)), j = 1, 2, . . . , t ∈ π(zj)

is equicontinuous, γ is a family of open subsets of the set U and

{(Zi)V | i = 1, 2, . . .} ∈ s(V )

for each V ∈ γ, for every t ∈ R and x ∈ X the set

(U \ ∪γ)t ∩ ϕ−1(x)

does not contain non-trivial connected subsets. Then α ∈ s(U).

Let M ⊆ U and Ψ ⊆ Cs(U). We shall say that the set M ⊆ U is at most countable
with respect to the space Ψ and write |M |Ψ ≤ ω, if |Gr(ψ) ∩M | ≤ ω for every function
ψ ∈ Ψ (here ω denotes the countable power).

Theorem 4.2. Let α = {Zi | i = 1, 2, . . .} ⊆ Ri(U), Φ = lim supα ⊆ Ψ ⊆ Cs(U),
Z ∈ Rp(U), γ be a family of open subsets of the set U , lim supi→∞(Zi)V ⊆ (Z)V (in the
space Cs(V )) for each V ∈ γ and |U \ ∪γ

∣∣
Ψ
≤ ω. Then Φ ⊆ Z.

The fact mentioned in Example 0.1 follows from Propositions 4.2 and 4.1 and Theorem
4.2. As we have mentioned in Section 3, such results can be applied to prove the fulfillment
of condition (c), too. Stronger results on this topic and other working notions may be
found in [4], [7]–[32]. Let us note some more statements of different levels about the
convergence.

Proposition 4.4. Let F : U → Rn be a multifunction, z0 ∈ (D(F ))−+, all limit
points of the graph of the function z0 at the end points of its domain lie outside U ,
α = {Zi | i = 1, 2, . . .} ⊆ Ri(U), the sequence {(Zi)U\Gr(z0) | i = 1, 2, . . .} converge in
R(U \Gr(z0)) to the space D(F,U \Gr(z0)). Then the sequence α converges to D(F ) in
R(U).

Applying the proposition to the stationary sequence Zi ≡ Z we obtain

Corollary. Let F : U → Rn be a multifunction, z0 ∈ (D(F ))−+, all limit points
of the graph of the function z0 at the end points of its domain lie outside U , D(F,U \
Gr(z0)) ∈ Rc(U \Gr(z0)). Then D(F ) ∈ Rc(U).

Traditional results claim the continuity (for equations) and upper semicontinuity (for
inclusions) of right-hand sides in some or all variables. The claiming is related in particular
to a game with the following property of a solution space

(n) if a sequence {zi | i = 1, 2, . . .} ⊆ Z of functions defined on a segment [a, b] ⊆
R, a < b, converges uniformly to a function z ∈ Z then for a.e. t ∈ [a, b] the
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derivatives z′(t), z′i(t), i = 1, 2, . . . , exist and z′(t) ∈ ∩{cc({z′i(t) | i ≥ k}) | i =
1, 2, . . .}, where cc(M) denotes the closed convex envelope of a set M .

R e m a r k 4.2. Basic situation where condition (n) is satisfied is the solution space
of the inequality ‖y′(t)‖ ≤ ϕ(t), where ϕ is an arbitrary Lebesgue integrable function.
The inequality is used in Carathéodory’s and Davy’s theorems). But this property is
an example of “good” properties and the reasoning mentioned in section 2 suits to its
investigation.

Basic results about the convergence of sequences of solution spaces look like the fol-
lowing two theorems.

Theorem 4.3. Let

(4.2) Fk : U → Rn for k = 0, 1, 2, . . . , F : U → Rn be multifunctions,
(4.3) the space D(F ) satisfy conditions (c) and (n),
(4.4) Fk(x) ⊆ F (x) for every x ∈ U and k = 0, 1, 2, . . .,
(4.5) for every ε > 0 there exists a set E ⊆ U , for which

a) µ({t | t ∈ π(ϕ), (t, ϕ(t)) 6∈ E}) < ε for every ϕ ∈ D(F ),
b) Et is closed in Ut for every t ∈ R,
c) F0(t, y) ⊇ ∩{cc(∪{Fk({t} ×W ) | k = 0, i, i+ 1, i+ 2, . . .}), i = 1, 2, . . . , W is a

neighborhood of y in Et} for every (t, y) ∈ E.
Then the sequence {D(Fk) | k = 1, 2, . . .} converges to the space D(F0).

Theorem 4.4. Let conditions (4.2− 4) hold ,

(4.6) a set V ⊆ U be open,
(4.7) F0(t, y) ⊇ ∩{cc(∪{Fk({t} × W ) | k = 0, i, i + 1, i + 2, . . .}), i = 1, 2, . . . ,W is a

neighborhood of y in Ut} for every (t, y) ∈ U \ V .
(4.8) the sequence {D(Fi, V ) | i = 1, 2, . . .} converge to the space D(F0, V ).

Then the sequence {D(Fk) | k = 1, 2, . . .} converges to the space D(F0).

R e m a r k 4.3. Remember our notes in the beginning of Section 3 about the position
of the topological space Rc(U) and the notion of the convergence of sequences of solution
spaces. Thus we have pointed possibilities of proving propositions about continuity of the
dependence of solutions on initial values and parameters in non-classical situations.

R e m a r k 4.4. Compare the contents of this section with Theorems 3.1–3.3. We get
the possibility of proving existence theorems, the fulfillment of conditions (k) and (h) in
situations which are a long way from the classical theory. Let us show for instance how
we can prove all these facts for the equation

(4.9) y′ = f(y) + g(t),

where the function f : R → [1,∞[ is measurable, the function g : R → [0,∞[ is locally
integrable. Let Zf,g denote the solution space of equation (4.9). Difficulties in the inves-
tigation of the equation are related to the joint discontinuity in the right-hand side both
in t and in y.
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Let fi → f almost everywhere. Using propositions of the type mentioned above, we
can prove the convergence

(4.10) Zfi,g → Zf,g.

Note that for the present we have no any existence theorem and we can not confirm
that spaces under consideration have any non-trivial elements. But if “something” is
contained in the spaces, “it” converges.

Applying to a stationary sequence fi ≡ f the previous observation about convergence
(4.10) we get the belonging Zf,g ∈ Rc(R× R).

Next, every function f of the mentioned type can be approximated by a sequence
of continuous functions {fi | i = 1, 2, . . .}, in the sense that fi(t) → f(t) as i → ∞ for
almost all t.

The equation

y′ = fi(y) + g(t)

is covered by Carathéodory theorem, and thus Zfi,g∈Rce(R×R). Now Theorems 3.1–3.3
give us the existence theorem and the fulfillment of the conditions (k) and (h) for the
equation (4.9).

Note one more situation where our considerations give a sufficient theory of the Cauchy
problem.

Theorem 4.5. Let the right-hand sides of the equations of the system{
x′ = f1(x, y) + h1(t, x, y)

y′ = f2(x, y) + h2(t, x, y)

be defined on an open subset U ⊆ R×Rn, the functions f1 (with values in R) and f2 (with
values in Rn−1) be bounded , continuous in y and measurable in x, f1(x, y) ≥ ε for a fixed
ε > 0 and every (t, x, y) ∈ U , the functions h1 : U → [0,∞[ and h2 : U → Rn−1 satisfy
the Carathéodory’s conditions. Then the solution space of the system satisfies conditions
(c), (e) and (h).

5. Change of variables. Uniqueness of solutions. Consider the following situa-
tion being more general than the one which we have dealt with above.

Let π : Y → R be a continuous mapping of a Hausdorff space Y into the real line R.
Denote by Σ(Y, π) the set of all compact convex subsetsK of Y satisfying the condition

(5.1) the mapping π
∣∣
K

is injective.

It is well known that in this case the mapping π
∣∣
K

: K → π(K) is a homeomorphism and
we can consider the continuous inverse mapping fK : π(K)→ K ⊆ Y . The mapping fK
is a partial selection for the multifunction π−1 : R→ Y .

We will denote by π(fK) the set K = π(Im fK) being the domain of the function
fK . So we shall denote the domain of the partial selection using the same symbol as the
mapping under consideration.

Denote by Σs(Y, π) the set of all such selections. The mapping Im associating to a
function fK ∈ Σs(Y, π) its image K ∈ Σ(Y, π) is bijective.
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The Vietoris topology is defined on the sets Σ(Y, π) ⊆ expc Y . Define a topology on
the set Σs(Y, π) by the condition that the bijective mapping Im is an embedding.

This situation is obviously related to that one of Section 1. We do not repeat here
topological remarks made there.

Let Y ⊆ R× Y0 and π denote the restriction to Y of the projection R× Y0 → R. Let
p : R× Y0 → Y0 be the second projection. In this case we can associate to each function
f ∈ Σs(Y, π) the function pf : π(f) → Y0. Such function pf is a partial mapping of R
into Y0 and we get the situation considered above. The mapping P : Σs(Y, π)→ Cs(Y ),
where P (z) = pz, is a homeomorphism.

The statements about Cs(Y ), Ri(Y ), R(Y ), etc. have its obvious versions for Σs(Y, π)
and related structures. But we have mentioned these notions only to point out that this
level is natural for a category corresponding to our considerations. Let us introduce
morphisms of the structures in question.

Let π : Y → R, π1 : Y1 → R and Φ : Y → Y1 be continuous mappings.
We shall say that the mapping Φ is extendable to a space Z ⊆ Σs(Y, π) if for each

function z ∈ Z the set Φ(Im(z)) belongs to Σs(Y1, π1) (we shall denote it by Φ̃(z)) and
either

(+) the function π1(Φ(t, z(t))) is increasing for each z ∈ Z,
or

(−) the function π1(Φ(t, z(t))) is decreasing for each z ∈ Z.
A homeomorphism Φ : Y → Y1 satisfying this condition will be called a change of

variables for the space Z ⊆ Σs(Y, π).
Under the assumptions of Section 2 so defined change of variables keeps the fulfillment

of conditions 1, 2, (e), (c) and (u) of Section 2. Condition (k) is keeping under assumption
of the fulfillment of conditions (c) and (e). Below we extend the notation Φ̃(z) to elements
of Cs(U).

Some particular changes of variables will be important for us.
Let ϕhλ(t, y) = (t − h, λ−1y) for h ≥ 0, λ > 0 and (t, y) ∈ R × Rn. Let Ψτ (t, y) =

(t − τ, y) for τ ∈ R and (t, y) ∈ R × Rn (Ψτ ≡ ϕτ1 and ϕτλ ≡ Ψτϕ0λ ≡ ϕ0λΨτ ). The
mappings ϕhλ and Ψτ are changes of variables for every space Y ⊆ Cs(R× Rn).

The change of variables ϕ0λ transfers the space of solutions of an equation y′ = f(t, y)
to the space of solutions of the equation y′ = λ−1f(t, λy). The change of variables Ψτ

transfers the space of solutions of an equation y′ = f(t, y) to the space of solutions of the
equation y′ = f(t+ τ, y).

Returning to a general case denote by GRi(Y, π) the set of all spaces Z ⊆ Σs(Y, π)
satisfying condition (1) of section 2.

If a continuous mapping Φ : Y → Y1 is extendable to a space Z ⊆ Σs(Y, π), we have
a continuous mapping Φ̃ : Z → Σs(Y1, π1) and

if Z ∈ GRi(Y, π), then Φ̃(Z) ∈ GRi(Y1, π1).

This is one of the most important properties of the class GRi(Y, π) (and, of course,
of the class Ri(U)). Its other important properties which determine its central position
in such questions are:
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if ζ ⊆ GRi(Y, π), then ∪ζ ∈ GRi(Y, π),
if ζ ⊆ GRic(Y, π), then ∪ζ ∈ GRic(Y, π),
if the mapping Φ is perfect and Z ∈ GRic(Y, π), then Φ̃(Z) ∈ GRic(Y1, π1).

Consider now the problem of the uniqueness of solutions. Let

(5.2) X, Y0 be locally compact metric spaces, Y = R× Y0,
(5.3) y0 ∈ Y0, π1 : Y → R be the projection, π : X → R be a continuous mapping,
(5.4) Z ∈ GRi(X,π), z0 ∈ Z, 0 ∈ π(z0),
(5.5) {Uj | j = 1, 2, . . .} be a base of neighborhoods of the set Im(z0) in the subspace

X ∩ π−1(z0), let continuous mappings ψj : [Uj ] → Y , j = 1, 2, . . ., be extendable to
the space Z, and let

(∗) Im(z0) ⊆ ψ−1
j (R× {y0}),

(∗∗) for every neighborhood Oy0 of the point y0 in the space Y , beginning with
some j, ψj(∂Uj) ⊆ R× (Y0 \Oy0),

(∗∗∗) if π(x1) ≤ 0 = π(x2) ≤ π(x3), then π(x1) ≤ π1(ψj(x1)) ≤ 0 = π1(ψj(x2)) ≤
π1(ψj(x3)) ≤ π(x3),

(5.6) γ be a family of open subsets V of the space Y which does not contain the point
(0, y0) and satisfies the condition

(∗) for each compact set K ⊆ V every sequence zj ∈ (ψ̃j(Z))K , j = 1, 2, . . . is
equicontinuous,

(5.7) a set H ⊆ Y contains the set

lim sup
ε→0, j→∞

{Im(z
∣∣
[s1,s2]

) | z ∈ ψ̃j(Z), [s1, s2] ⊆ ]− ε, ε[ ∩π(z), (0, y0) ∈ z([s1, s2])}.

Theorem 5.1. Let conditions (5.2)–(5.7) hold and the component of the point (0, y0)
in the set H \∪γ be trivial , z ∈ Z, 0 ∈ π(z), and z(0) = z0(0). Then z

∣∣
[−ε,ε]∩π(z)∩π(z0)

=

z0

∣∣
[−ε,ε]∩π(z)∩π(z0)

for some ε > 0.

Theorem 5.1 is ready for applications in the investigation of the uniqueness of solutions
but the situation is described there in words which are unusual for the TODE. So note
its corollaries where the description of the situation is closer to applications.

Theorem 5.2. Let z ∈ Z ∈ Ri(U), 0 ∈ π(z), z(0) = 0, conditions (5.5)–(5.6) hold , the
component of the point (0, y0) in the set ({0}×Rk) \∪γ be trivial. Then z

∣∣
[−ε,ε]∩π(z)

≡ 0
for some ε > 0.

Theorem 5.3. Let z ∈ Z ∈ Rc(U), 0 ∈ π(z), z(0) = 0, ψj = ϕ0λj for some sequence
λj → 0, the sequence of spaces {ψ̃j(Z) | j = 1, 2, . . .} have a limit in the space Rc(U).
Then z

∣∣
[−ε,ε]∩π(z)

≡ 0 for some ε > 0.

R e m a r k 5.1. The classical uniqueness theorem with the Lipschitz condition is a
trivial corollary of our last theorem.

Example 5.1. Consider the scalar equation y′ = y|t|sin(ln |y|) (= 0 for y = 0). Aiming
to prove the uniqueness of the solution z = 0 for the Cauchy problem y(t0) = 0, let us
consider the mappings ψi(t, y) = (t, y exp(2πi)), i = 1, 2, . . .. This changes of variables
keep the solution space of the equation in question.
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6. General concepts. The basic properties of solution spaces noted above may be
taken as axioms for some geometric chapters of the TODE. This allows us to introduce
most general concepts of some notions related to properties of equations and their so-
lutions and use them in real investigation of equations. The tools prepared in previous
sections make this approach working in situations not covered by the classical theory.

Let V be an open subset of the space Rn. A space Z ⊆ Cs(R × V ) will be called
autonomous if Ψτ (Z) = Z for every τ ∈ R.

It is well known that the space of solutions of an autonomous equation y′ = f(y) is
autonomous.

The set of all autonomous spaces Z ∈ R(R×V ) will be denoted by A(V ). Let ∗ be an
arbitrary set of conditions from our list of conditions on elements of R(U) in Section 2.
Let A∗(V ) = A(V ) ∩R∗(R× V ).

The study of geometrical properties of solutions of autonomous equations (systems)
with continuous right-hand sides is often simplified by the fact that in a neighborhood
of a non-stationary point the moving along the trajectories is rather directed. Under our
assumptions we have no such strong directness but there are still possibilities of weaker
estimates.

For Z ∈ A(V ) and M ⊆ V let diamZM = sup{b − a | [a, b] = π(z), z ∈ Z, Im(z) ⊆
M} (the diameter of the set M with respect to the space Z).

Proposition 6.1. Let Z ∈ Ace(V ), K ∈ expc(V ) and diamZ K = ∞ . Then there
exists a function z ∈ Z+ for which Im(z) ⊆ K and π(z) = [0,∞[.

Proposition 6.2. Let Z ∈ Ac(V ), {Ki | i = 1, 2, . . .} ⊆ expc(V ), K1 ⊇ K2 ⊇ K3 ⊇
. . ., a ≥ 0 and diamZ Ki ≥ a for every i = 1, 2, . . .. Then diamZ ∩{Ki | i = 1, 2, . . .} ≥ a.

A point y ∈ V will be called a stationary point of a space Z ∈ A(V ) if the function
z ≡ y defined on R belongs to Z−+.

It is clear that the diameter of a stationary point equals ∞ , the diameter of a non-
stationary one equals 0. It follows from Proposition 6.2 that for every stationary point
y ∈ V and ε > 0 there exists a neighborhood Oy having diameter less than ε. In a
neighborhood of small diameter the moving along trajectories is directed not so strictly
as in the case of an equation with continuous right-hand side but sufficiently for some
observations.

Let G be an open subset of the plane R2.

Theorem 6.1. Let z ∈ Z ∈ Ace(G), π(z) = [a, b], a < b, z(a) = z(b) and z(t1) 6= z(t2)
for a ≤ t1 < t2 < b, the domain H ⊆ G is bounded by the curve z(t), t ∈ π(z). Then there
exists a stationary point y ∈ [G] of the space Z.

Let Z ∈ Acek(G).
Let x ∈ G, ε > 0, K = [Oεx] ⊆ G, diamZ K < ∞. Let S be a circle bounding the

disk K.
Let M = {z | z ∈ Z, 0 ∈ π(z), z(0) = x, Im(z) ⊆ K, α(z), β(z) ∈ S}, where

α(z) = z(inf π(z)), β(z) = z(supπ(z)). Our assumptions imply that α(M) ∩ β(M) = ∅.
Fix any function z0 ∈ M and denote by γ1 (resp. by γ2) the set of all segments of the
circle S with ends from α(M) (resp. β(M)), containing the point α(z0) (resp. β(z0)).
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Segments pi = ∪γi (i = 1, 2) are defined independently of our choice of the function z0.
Let P (x, ε) = {(u− x)ε−1 | u ∈ p2} and GP = {(x, δ) | x ∈ G, δ > 0, diamZ Oδx <∞}.
So P is a multivalued mapping from GP to the circle S1 = {u | u ∈ R2, ‖u‖ = 1}
with proper connected compact subsets of S1 as values. The degree theory is well known
for such mappings. So we get the possibility to develop the index theory for the space
Z ∈ Acek(G).

One of real meanings of this possibility is related with situation when we can calculate
the index using a way lying in a domain without singularities. So classical propositions suit
to do it. But the result of the calculation is applicable to the equation under consideration
which may have singularities.

Let now V be an open subset of the plane R2, a ∈ R ∪ {−∞}, U =]a,∞[×V .

We shall say that a space X converges to a space Z ∈ R(U) as t → ∞ if for every
sequence δi → ∞ the sequence of the spaces {Ψ̃δi(X) | i = 1, 2, . . .} has a subsequence
converging to the space Z. .

Theorem 6.2. Let a space X ∈ R(U) converge to a space Z ∈ Ace(V ) as t → ∞,
z ∈ Z+, π(z) = [b,∞[, z(s) 6= z(t) for s > t > b. Suppose that the set Ω+(z) ⊆ V is
non-empty and compact and does not contain stationary points of the space Z∞. Then
there exists a function z0 ∈ ∪Z∞ for which Ω+(z) = Im(z0), z0(inf π(z0)) = z0(supπ(z0))
and z0(s) 6= z0(t) for inf π(z0) ≤ s < t < supπ(z0).

In the case Z∞ = Z Theorem 6.2 gives us a version of the Poincaré-Bendixson theorem
(see Theorem VII.4.1 in [33]) which is applicable to equations with discontinuous right-
hand sides. See also [35] and [41].

Another situation when we can propose a new very general notion is investigation
of stationary points “in first approximation”. Common approach uses the language re-
lated to o-small terms. Those are estimates in the metric of uniform convergence. Our
topological structure offers us a possibility of using stronger tools in description of the
corresponding situations.

The general idea here is easy to explain. When we want to study the behavior of
solutions of the equation y′ = f(t, y) near the stationary point y = 0 we consider the
changes of variables ϕ0λ (see Section 5) and we prove then that the solution spaces
of equations obtained under this change of variables (y′ = λf(t, y/λ)) converge to the
solution space of an equation y′ = g(t, y) as λ→ 0. In this case asymptotic properties of
solutions of the equation y′ = f(t, y) near the point y = 0 are similar to the properties
of solutions of the equation y′ = g(t, y). If we prove the mentioned convergence using
classical theorems on the continuity of the dependence of solutions on parameters of the
equations, we obtain the classical theory of “first approximation” asymptotic integration.
Our new methods give us a possibility to investigate various other situations.

Following this approach we can consider the system{
x′ = −2x− y
y′ = x− 2y
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as the “first approximation” of the system{
x′ = −2x− y

y′ = x− 2y + x−1e−|y|/x
2

although the right-hand side of the second equation is far away from usual assumptions
of the “first approximation”. If y = 0 and x → 0, the additional term tends to ∞. We
can prove the stability and obtain estimates of asymptotic integration in such situations.

The same ideas may be used to estimate the behavior of solutions at infinity. As in
the generalization of the “first approximation” we consider changes of variables (t, y)→
(t, λy) but now we prove the corresponding convergence or make other observation as
λ→ 0. In particular, we have

Theorem 6.3. Let r ≥ 0, Vr = {u | u ∈ Rn, ‖u‖ > r}, Ur =]a, b[×Vr, Z ∈ Ri(Ur),
λ1 > λ2 > . . ., λi → 0 as i→∞, ψi(t, y) = (t, λiy), γ be a family of open subsets of the
set U and

{(ψ̃i(Zi))V | i = 1, 2, . . .} ∈ s(V )
for each V ∈ γ, [t0, t1] ⊆]a, b[ and for every point t ∈ [t0, t1] all components of the set
({t} × Vr) \ ∪γ be bounded. Then every function from the set M = {z | z ∈ Z− ∪
Z+, π(z) ⊆ [t0, t1]} is bounded.

The meaning of this theorem is a possibility to estimate the length of the interval of
existence of a solution. We get

Corollary. Let r ≥ 0, Vr = {u | u ∈ Rn, ‖u‖ > r}, Ur =]a, b[×Vr, U =]a, b[×Rn,
Z ∈ Ri(U), Z∞ ∈ Ri(Ur), λ1 > λ2 > . . ., λi → 0 as i → ∞, ψi(t, y) = (t, λiy),
(ψ̃i(Z))Ur → Z∞. If the domain of definition π(z) of a function z ∈ Z−+ intersects the
segment [t0, t1], then [t0, t1] ⊆ π(z).

7. On homological properties of solution spaces. Applications of the Leray-
Schauder theory in the theory of ordinary differential equations are based on estimates
of homological properties of the corresponding integral operators. But if the right-hand
side of the equation under consideration is discontinuous, the integral operator need not
exist. Our possibility of description of topological properties at the level of solution spaces
allows us to construct an equivalent of the Leray-Schauder theory which can be applied
to equations with discontinuous right-hand sides.

Note first that some notions introduced before keep their value for our topological
structures. In particular, the theory from Sections 1–6 of [8] can be rather easily trans-
lated to the level of topology of the space of solution spaces, and its enriched version
can be applied to investigation of equations and inclusions with right-hand sides with
complicated discontinuities. For instance, in this way we can obtain the following

Theorem 7.1. Let U = R × Rn, ω > 0, A be a constant matrix of the order n and
the equation y′ = Ay have no nontrivial ω-periodic solutions, Z be the solution space
of the equation y′ = Ay, a space Y ∈ Rceh(U) be ω-periodic, λ1 > λ2 > . . ., λi → 0,
ψi(t, y) = (t, λiy) and ψ̃i(Y ) → Z as i → ∞. Then there exists a y ∈ Y such that
π(y) = [0, 1] and y(0) = y(ω).
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Example 7.1. Theorem 7.1 can be applied for instance in the following situation.
Let A be a constant matrix of the order n and the equation y′ = Ay have no nontrivial
ω-periodic solutions, a function f : R × Rn → Rn be measurable and ω-periodic in
the first argument (in “the time” t ∈ R), be continuous in the second argument (in
“the space variable” y ∈ Rn), ϕ(t) be non negative Lebesgue locally integrable function
and ‖f(t, y)‖ ≤ ϕ(t) for every t ∈ R and y ∈ Rn. Let u ∈ Rn, 0 ≤ α < 1 and for
y = (y1, . . . , yn)

g(t, y) = ‖y‖α| sin t|sin(ln |y1|)+1− |y1|
‖y‖ ,

(g(t, y) = 0 in all cases where the previous formula does not define the corresponding
value). Using Theorem 7.1 with λi = 2πi we can prove that the equation

y′ = Ay + f(t, y) + ug(t, y)

has a 2π-periodic solution (attract the reader’s attention to singularities of the function
g when ( 3π

2 + 2πi, 0, . . . , 0) and sin t→ 0).

Now we pass to remarks about an equivalent of the Leray-Schauder theory. Here we
will not give a large account of a perfect theory and we will point only a possibility to
create it. We start with the Dirichlet problem. Let

U = ]a, b[ ×R2, where −∞ < a < b <∞,(7.1)

Z ∈ Rce(U)(7.2)

(below we will use stronger conditions). The boundary conditions for the Dirichlet prob-
lem we will write as

(7.3) x(0) = x(1) = 0, where z = (x, y) ∈ Z and π(z) = [0, 1].

Applications of the Leray-Schauder theory use homotopies and a priori estimates. We
will start from the same positions. Let

(7.4) −∞ < c < d < ∞, Zλ ∈ Rcek(U) for every λ ∈ [c, d] and the mapping ϕ : [c, d] →
Rcek(U), defined by the formula ϕ(λ) = Zλ, be continuous,

(we introduce here a homotopy in the same way as in applications of the Leray-Schauder
theory. In classical situations the continuity of the mapping ϕ follows from standard
theorems on the continuity of the dependence of solutions on parameters in right-hand
side. In more complicated situation we can apply tools of our approach),

(7.5) −∞ < B < C < ∞ and for every λ ∈ [c, d] each solution of problem for the space
Z = Zλ satisfies the condition y(0), y(1) ∈ [B,C].

We shall formulate three results in this direction.

Theorem 7.2. Let conditions (7.1), (7.4) and (7.5) hold ,

(7.6) A ∈ ]−∞, B] and D ∈ [A,∞[ ,

(7.7) for every λ ∈ [c, d] every solution of the Cauchy problem

z = (x, y) ∈ Z+
λ , x(0) = 0, y(0) ∈ [A,D]

satisfies the condition [0, 1] ⊆ π(z),
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(7.8) the axis of ordinates separates the sets {z(1) | z ∈ Z+
c , z(0) = (0, A)} and {z(1) |

z ∈ Z+
c , z(0) = (0, D)}.

Then

(7.9) there exists a function z = (x, y) ∈ Zd for which x(0) = x(1) = 0.

Theorem 7.3. Let condition (7.1) hold ,

(7.10) −∞ < c < d <∞, Zλ ∈ Rceu(U) for every λ ∈ [c, d], and the mapping ϕ : [c, d]→
Rceu(U) defined by the formula ϕ(λ) = Zλ, be continuous,

conditions (7.5), (7.6), (7.8) hold and

(7.11) every solution of the Cauchy problem

z = (x, y) ∈ Z+
c , x(0) = 0, y(0) ∈ [A,D]

satisfies the condition [0, 1] ⊆ π(z),

(7.12) there exists a number R > 0, such that for every λ ∈ [c, d] every solution of the
Dirichlet problem

z = (x, y) ∈ Z+
λ , x(0) = x(1) = 0,

satisfies the condition ‖z‖ < R.

Then condition (7.9) is satisfied.

We proceed now to the main results of this section. Theorem 7.3 is an easy particular
case of the following

Theorem 7.4. Let condition (1) of Section 2 hold ,

(7.13) −∞ < c < d < ∞, Zλ ∈ Rceh(U) for every λ ∈ [c, d] and the mapping ϕ :
[c, d] → Rceh(U), defined by formula ϕ(λ) = Zλ be continuous, conditions (7.5),
(7.6), (7.8), (7.11) and (7.12) hold.

Then condition (7.9) is satisfied.

Now we shall consider the problem of existence of periodic solutions. Let

U = R× Rn,(7.14)

Z ∈ Rceh(U).(7.15)

We can understand the problem of the existence of a periodic solution as the problem of
the existence of a function

(7.16) z ∈ Z,

such that

(7.17) π(z) = [0, 1] and z(0) = z(1).

Let also

(7.18) r > 0, S = {u | u ∈ Rn, ‖u‖ = r}, K = {u | u ∈ Rn, ‖u‖ ≤ r},

(7.19) every function z ∈ Z+, for which inf π(z) = 0 and z(0) ∈ K, satisfies the condition
π(z) ⊇ [0, 1],
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(7.20) every function z ∈ Z+, for which inf π(z) = 0 and z(0) ∈ S, satisfies the condition
z(0) 6= z(1).

It is easy to recognize in the last condition a version of an a priori estimate usually
used in applications of the Leray-Schauder method.

Under hypotheses (7.14)–(7.15), (7.18)–(7.20) we can define in a standard manner an
index of the solution space Z in the segment [0, 1] with respect to the sphere S. We
shall denote it by k(Z, S). If k(Z, S) 6= 0, problem (7.16)–(7.17) has a solution (here the
situation is completely analogous to the one of §6 in [8]).

Theorem 7.5. Let conditions (7.14), (7.18), (7.13) hold ,

(7.21) the space Z = Zc satisfy conditions (7.19)–(7.20) and k(Z, S) 6= 0,

(7.22) for every λ ∈ [c, d] every solution of the problem z ∈ Zλ, (7.17) satisfy the condition
z(0) ∈ K \ S.

Then the problem z ∈ Zd, (7.17) has a solution.

Theorem 7.6. Let conditions (7.14), (7.18), (7.13), (7.21) hold ,

(7.23) every solution of the problem z ∈ Zc, (7.17) satisfy the condition z(0) ∈ K \ S,

(7.24) the set Σ = {(λ, z) | λ ∈ [c, d], z ∈ Zλ, π(z) = [0, 1], z(0) = z(1)} ⊆ [c, d] ×
C([0, 1],Rn) can be represented as the union of a discrete family of compacts.

Then the problem z ∈ Zd, (7.17) has a solution.

A natural first impression of some artificiality of condition (7.24) disappears when
we observe that if periodic trajectories of an equation under consideration are related
to revolving around any fixed set, the function s(z), defined as the number of rotations
accomplished by the periodic solution z, is locally constant. When we have corresponding
a priori estimates, this gives the needed representation.
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