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Reymonta 4, 30-059 Kraków, Poland

E-mail: lojasiew@im.uj.edu.pl

I. Introduction
1. The geometry discussed here takes its origin in analysing some method of

solving the so called division problem.
Namely, taking into account the role which the Fourier transformation plays in

the theory of linear differential operators with constant coefficients, the following
question seems natural:

Let P be a non-zero polynomial in Rn and let P (D) denote a differential oper-
ator corresponding to it in the sense of Fourier transformation. Does there exist,
for every tempered distribution T (on Rn), a tempered distribution S fulfilling
the equation

P (D)S = T ?

This question is obviously equivalent to the analogous one concerning the equation

PS = T.

As L. Schwartz has noticed, when we transfer, by some natural mapping, the
structure of C∞ manifold from n-dimensional sphere onto the set Σ = Rn ∪∞,
then the tempered distributions on Rn are simply exactly those ones which can
be extended as distributions on Σ. Due to this elegant observation the problem
proves local: it can be reduced to an analogous question about distributions on
any open subset G of the space Rn. Moreover, we need only consider it in the case
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of distributions extendible on Rn, i.e. in the space P ′G of such distributions1).
One can get a natural generalization of the above question substituting for a

polynomial P any analytic function F 6≡ 0 on the set G (if F is only of class C∞,
the answer is evidently negative)—and in this very form was the question asked
by L. Schwartz in his Theorie de distributions ([36]). The question is known under
the name of division problem and has an affirmative answer, given simultaneously
and independently by L. Hörmander ([14])—for polynomials, and by the author
of this paper ([16] and [17])—for analytic functions.

Now we shall give the idea of the proof of this conjecture—the division theorem
—based on a decomposition of the set

Z = {x ∈ Q: F (x) = 0}
of zeros of function F in a suitably chosen neighbourhood Q ⊂ G of some arbi-
trarily fixed point a ∈ G:

(∗) Z =
n−1⋃
k=0

⋃
i

Γki

into analytic submanifolds Γki of dimensions k = n−1, . . . , 1, 0. The decomposition
is required to fulfil a series of conditions, including the stratification condition:
for each stratum Γki its “boundary” should be the union of strata of dimension
< k of this decomposition.

A fundamental role here is played by the following inequality

(#) |F (x)| ≥ cρ(x, Z)N

considered in a neighbourhood of point a, with some constants N > 0 and c > 0
(here ρ(x, Z) is the distance of x from Z. The inequality holds for any analytic
function and is a consequence of the more general fact, so called regular separation
inequality:

ρ(x,B) ≥ cρ(x,A ∩B)N , where x ∈ A
for (closed) sets A, B (this inequality is true locally in the case of semi-analytic
sets2)). The latter inequality is fulfilled for the closures of strata Γki of decompo-
sition (∗), and this fact also plays a fundamental role in the proof of the theorem.

Thus, let T ∈ P ′Q. We have to find a solution S ∈ P ′Q of the equation

(�) FS = T.

First, it is shown that, as a consequence of inequality (#), we have

(1/F )T ∈ P ′Q\Z .
This implies that it suffices to solve equation (�) for distributions T whose sup-
ports are contained in Z. Hence, one can prove by induction that equation (�)

1) This is important by technical reasons (see the idea of proof of the division theorem given
later).
2) These are defined later on.
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has a solution for distributions T of support contained in the set

Zk =
k⋃
j=0

⋃
i

Γji ,

k = 0, . . . , n− 1. If k = 0, then, since any distribution of support 0 has the form∑
apD

pδ,

solving of equation (�) reduces to proving an algebraic lemma. Suppose now that
we can solve equation (�) when the support of the right-hand side is contained
in Zk−1, and let T ∈ P ′Q be a distribution with support in Zk. Due to the regular
separation property, it can be proved that there exists a distribution T ki ∈ P ′Q
with support in Γki which is equal to T in a neighbourhood of a stratum Γki , and
then a distribution Ski ∈ P ′Q can be constructed, fulfilling the equation

FSki = T ki

in a neighbourhood of this stratum. We conclude from the above that it suffices
to solve equation (�) in the case when it has as its right-hand side a distribution

T − F (
∑
i

Ski ),

whose support is already contained in Zk−1.

Conclusion. Analysis of construction of decomposition (∗) brings us to a na-
tural supposition that strata Γki are sets “described” by analytical inequalities. At
the same time, possibility of “detachment” from a distribution T of support in Zk

its “part” of support in the set Γki is provided due to the regular separation pro-
perty for the sets of this type which will be defined later as semi-analytic sets.
Therefore we would like to have the geometry of such sets, i.e. the semi-analytic
geometry, with decompositions of type (∗) and with the regular separation pro-
perty.

2. Now we shall describe another situation which naturally involves applying
the notion of semi-analytic sets.

In complex analytic geometry3) the following two beautiful theorems are true:

Theorem I. (See e.g. [25] or [26], IV.2.7.) The closure of a topological com-
ponent of the set V 0 of regular points4) of an analytic set V is always an analytic
set.

3) Complex (resp. real) analytic geometry—understood in the most elementary sense—deals
with the properties of analytic sets, i.e. the subsets of the complex (resp. real analytic) manifold,
which are locally determined by holomorphic (resp. real analytic) functions; we mean here the
sets of the form {f1 = · · · = fk = 0}, where f1, . . . , fk are holomorphic (resp. real analytic)
functions.
4) A point of an analytic set V is called a regular one, if some its neighbourhood in V is a

submanifold. The set of such points is denoted by V 0.
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Theorem II. (See e.g. [25] or [26], IV.2.4.) The set V ∗ of singular points5) of
an analytic set V is always an analytic set.

In contrast to the complex case, in real analytic geometry none of these facts
takes place. The following analytic6) set, known under the name of Whitney’s
umbrella may serve as a counterexample:

V = {(x, y, z) ∈ R3: x2z = y2}.
The set V 0 of regular points of V consists of three components having the

closures:

V ∩ {x ≥ 0, z ≥ 0} , V ∩ {x ≤ 0, z ≥ 0} and 0× 0× (−∞, 0] .

It can be easily shown, that these closures are not analytic. Neither is analytic
the set

V ∗ = 0× 0× [0,∞)
of singular points of V .

On the other hand, for any analytic set V both the connected components of
the set V 0 and the set V ∗ are semi-analytic.

Moreover, let us notice that the set of singular points may even be a segment,
e.g. for the set

V = {(x, y, z) ∈ R3: x3z = y3 − 3x2y}
we have

V ∗ = 0× 0× [−2, 2].

II. Semi-analytic geometry
1. Let M be a real analytic manifold. We say that a subset E ⊂ M is semi-

analytic if every point of M has a neighbourhood U , such that the set E ∩ U
is determined by a finite alternative of finite systems of analytical inequalities
having the form f > 0 or f ≥ 0, where by f we mean functions analytic in U .

Of course, the class of semi-analytic sets is closed with respect to the opera-
tions of complement, finite product and locally finite union. The counterimage of a
semi-analytic set under the analytic map of analytic manifolds is semi-analytic7).

When N ⊂ M is an analytic submanifold and E ⊂ N , then semi-analyticity
of the set E in N is not in general equivalent to its semi-analyticity in M , but the
equivalence holds in the case when N is a closed subset of the submanifold M .

2. To penetrate deeper the structure of semi-analytic sets, the technique of
normal stratifications is applied.

5) A point of an analytic set V is called a singular one, if it is not regular: a set V ∗ of singular
points is thus equal V \ V 0.
6) Even algebraic, i.e. defined by polynomials.
7) On the other hand, the operation of image (under an analytic map, under some reasonable

conditions) does not in general keep semi-analyticity, but leads to a wider class of subanalytic
sets (see chapter III).
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A normal stratification in Rn is a finite decomposition of a cube Q = {|xi| <
δi} into semi-analytic strata, i.e. into subsets being both submanifolds and semi-
analytic sets; this decomposition is defined by some matrix of discriminant poly-
nomials. This decomposition has many useful properties, most important of which
is the following stratification condition: when Γ is a stratum of dimension k of
this decomposition, then its “border” (Γ \ Γ) ∩ Q is a union of some strata of
dimension < k of this decomposition (see [20] pp. 26–38 and [28] II.§2).

A normal stratification at a point a ∈ M is defined to be an image of a
stratification in Rn under an inverse chart ϕ such that a = ϕ(0).

Theorem on normal stratification claims that for arbitrarily given semi-
analytic sets E1, . . . , Ek and a point a ∈M there exists a normal at a stratification
of its arbitrarily small neighbourhood U which is consistent with those sets. We
mean that each of the sets Ei ∩ U is a union of some strata of this stratification.

The proof of this fundamental theorem consists in constructing the matrix of
discriminant polynomials, defining the desired stratification. The polynomials are
obtained recursively, by means of applying to the functions describing the sets Ei
a series of operations, defined on the ground of the symmetric functions theorem.

We conclude from the above theorem that the elementary topological ope-
rations, as those of closure, interior or boundary, do preserve semi-analyticity.
It should be noticed that these facts do not follow easily from the definition of
semi-analyticity.

We have the following

Theorem on connected components stating that all connected compo-
nents of a semi-analytic set are semi-analytic, moreover they form a locally finite
family of sets.

The proof of this theorem is not quite easy. It is based on the technique of
normal stratifications, where the fundamental role is played by the following

Thom Lemma. Let P : R→ R be a polynomial of degree ≤ k. The set{
t ∈ R:

dνP

dtν
∈ Θν , ν = 0, . . . , k

}
,

where each Θν is one of the sets

(−∞, 0), {0} or (0,∞),

is an open interval, an empty set or a point.

3. A very useful tool (especially for reasoning by contradiction) appears to
be the “Curve Sellecting Lemma”, whose analytic version comes from Bruhat,
Cartan and Wallace (see e.g. [30] p. 25, where the algebraic version is given).
The proper place for this lemma seems to be in semi-analytic (and subanalytic)
geometry.
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Thus, under the term of semi-analytic arc we shall mean the image of the
analytic embedding of the interval (0, 1), which is also a relatively compact semi-
analytic subset of different limits in 0 and 18)—its end-points. The closure of the
arc so defined is always a simple arc of class C1—this is an essential property of
semi-analytic arcs.

One can prove9) the very useful

Theorem on the parametrization of a semi-analytic arc, stating
that the germ of a semi-analytic arc at its end-point is the germ of the image of
the interval (0, ε) under a non-constant analytic mapping of the interval (−ε, ε),
and conversely with a possibly smaller ε.

Curve Selecting Lemma. If E ⊂ M is a semi-analytic set and a is a
non-isolated point of its closure E, then the set E contains a semi-analytic arc of
the end-point a.

(See [20] pp. 103 and [28], II.6.2.)

4. We call a point of a semi-analytic set E a regular point of dimension k (of
the set E) when some neighbourhood of this point in E is an analytic submanifold
of dimension k. It follows from the stratification theorem that the set of regular
points of semi-analytic set E is always dense (in E).

The dimension of the set E is defined as the maximum dimension of its regular
points. We shall quote here two important properties of dimension.

1) When E 6= ∅, then dim(E \E) < dimE. In particular, for the border ∂Γ of
the (non-empty) semi-analytic stratum Γ we have the inequality dim ∂Γ < dim Γ.

2) When f : M → N is an analytic mapping of analytic manifolds and the
sets E and f(E) are semi-analytic, then the inequality dim f(E) < dimE holds.

Theorem on regular points asserts that the set of regular points of a
semi-analytic set E is semi-analytic.

The proof of this theorem is one of the most subtle proofs in semi-analytic
geometry and requires applying the complexification technique (see [20] pp. 38–54
and 77–79, and [28], II.§8).

5. A semi-analytic stratification of an analytic manifold M is, by definition, a
locally finite decomposition T of this manifold into semi-analytic strata, fulfilling
the following condition: for every stratum Γ ∈ T , its boundary ∂Γ = Γ \ Γ is a
finite union of strata of family T having dimensions < dim Γ.

Let us consider triples (Λ,Γ, a), where Λ, Γ are (semi-analytic) strata of a
manifold M , such that Λ ⊂ ∂Γ and a ∈ Λ. By an incidence condition we shall
mean any condition imposed on such triple, which depends only on the germs of
the strata Λ, Γ at the point a.

8) Which always exist by the theorem on connected components.
9) By the Puiseux Theorem (see [25] or [26], II.6.2)
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We call an incidence condition the semi-analytic one, if for every pair Λ,Γ
defined above, the points a ∈ Λ for which the condition is fulfilled form a semi-
analytic set.

Well known incidence conditions are the Whitney’s (a) and (b) conditions and
Verdier’s (w) condition. In the case of M = Rn, they are formulated as follows:

(a) δ(TaΛ, TxΓ)→ 0 when Γ 3 x→ a,

(b) δ(R(x− z), TxΓ)→ 0 when Γ 3 x→ a and Λ 3 z → a,

(w) δ(TzΛ, TxΓ) = O(|x− z|) when Γ 3 x→ a and Λ 3 z → a,

where δ(S, T ) denotes the supremum of the sinus of the angle between the straight
line contained in the subspace S and the subspace T . Since all those conditions
are invariant with respect to diffeomorphisms, hence they are well defined (via
charts) in the case of an arbitrary analytic manifold M10).

It is proved that each of the above conditions is semi-analytic.

Theorem on semianalytic stratification. Let (γ) be a semi-analytic
incidence condition. For every locally finite family of semi-analytic subsets of a
manifold M there exists a semi-analytic stratification, consistent with this family
and such, that for every pair Λ, Γ of strata of this stratification, such that Λ ⊂ ∂Γ,
the condition (γ) is fulfilled at every point of the stratum Λ.

See [20], [41], [27] and [7].

Theorem on semianalytic triangulation. Let F be a locally finite fa-
mily of semi-analytic subsets of a manifold M . Then there exists a semi-analytic
stratification of M , which has as its strata the homeomorphic images of simplexes
of a locally finite geometrical complex K in the space Rn (under a homeomorphism
h: |K| → M)11), where all the restrictions hS : S → h(S), S ∈ K, are analytic
isomorphisms.

See [19].
An incomparably more subtle notion is the Lipschitzian stratification condi-

tion formulated by T. Mostowski. By means of a theorem on existence of Lipschit-
zian stratifications, which he had proved earlier (for the complex case), T. Mo-
stowski solved the old, very difficult problem of Lipschitzian equisingularization
(see [31]).

The investigation of the problem in real (semi-analytic) case was continued
by a student of T. Mostowski, A. Parusiński (see [32] and [33]), who proved the
Theorem on Lipschitzian semi-analytic stratifications.

10) We have: (w) =⇒ (b) =⇒ (a); the first implication (in which semi-analyticity is relevant!) is
known as the Kuiper–Kuo theorem.
11) See later III.1.
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III. Semi-algebraic geometry
1. A subset of the space Rn is called semi-algebraic, when it is defined by a

finite alternative of finite systems of inequalities P > 0 or P ≥ 0, where P are
polynomials on Rn.

It is evident that the semi-algebraic sets form an algebra of sets. The following
theorem is very important.

Tarski–Seidenberg theorem. The image of any semi-algebraic set in Rn×
Rn under the natural projection Rn × Rn is semi-algebraic.

This implies that the operation of image under a polynomial mapping, and
more generally—under a mapping having a semi-algebraic graph, preserves semi-
algebraicity.

A simple example of a consequence of this theorem is the property that the
closure of a semi-algebraic set is a semi-algebraic set. Namely, it suffices to write
out the definition of closure of a set and eliminate the quantifiers from it, according
to the Tarski–Seidenberg theorem.

This theorem implies rather easily the following generalization. Let M be an
analytic manifold. A subset of the cartesian product Rn×M is said to be partially
semi-algebraic, if every point of the manifold M has an open neighbourhood U
such that this subset is defined in Rn ×U by a finite alternative of finite systems
of inequalities F > 0 or F ≥ 0, where F are polynomials of n real variables with
coefficients analytic in U . Thus:

If the graph of a mapping of a subset of Rn into a manifold M is partially
semi-algebraic, then the image of every semi-analytic set (under this mapping) is
semi-analytic.

R e m a r k. In the triangulation theorem of II.5 the homeomorphism h is par-
tially semi-algebraic. In particular, this is the reason why the image of every
simplex is semi-analytic.

Another important theorem is

Theorem on connected components. A semi-algebraic set has always a
finite number of connected components and each of them is semi-algebraic.

See [20] pp. 105–112, [2] chap. 2 and [28], II.10.

2. A Nash function is defined to be a function ϕ, analytic in an open set of
the space Rn and such that every point of this set has a neighbourhood in which
W (x, ϕ(x)) ≡ 0 for certain polynomial W 6≡ 0 on Rn+1. A k-tuple (φ1, . . . , φk) of
Nash functions φi is called a Nash mapping.

Nash functions and mappings have a series of properties (analogous to the
properties of analytic functions and mappings, among the others the implicit
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function theorem), needed to define a Nash manifold12).
We shall mention here an interesting and useful13) property of the Nash sub-

manifold:

A connected Nash submanifold Γ ⊂ Rn is a semi-analytic set exactly then
when its boundary ∂Γ is a semi-analytic set.

For Nash functions we have tools (e.g. the Weierstrass preparation theorem
and some techniques connected with the theorem on symmetric functions) needed
for adapting in general the semi-analytic geometry, i.e.—to establish the geometry
of the “semi-Nash” sets. It appears that

The “semi-Nash” subsets of an open set in Rn are exactly those ones which can
be defined locally by finite alternatives of finite systems of polynomial inequalities.

Therefore those sets are called locally semi-algebraic sets.

3. The structure of Nash semi-algebraic manifold is determined14) by the
Nash semi-algebraic atlas, i.e. a Nash atlas {ϕi}, which is finite and such that the
compositions are semi-algebraic, i.e. have the semi-algebraic graphs.

On the Nash semi-algebraic manifold the semi-algebraic sets can be defined
as those ones whose images under all charts of the semi-algebraic Nash atlas are
semi-algebraic15).

It is easy to show that on the Nash manifold the structure of Nash semi-
algebraic manifold is determined uniquely by the class of semi-algebraic sets.

It is proved that on a compact Nash manifold there exists the unique structure
of the semi-algebraic Nash manifold16).

Therefore on every compact Nash manifold we have a natural notion of semi-
algebraic set.

It refers in particular to projective spaces Pn and more generally—to the
Grassman space Gn

k .
It appears that under the natural interpretation of Pn as the projective closure

of Rn (compare e.g. [24] or [25], VII.3): A subset of the space Rn is semi-algebraic
exactly when it is locally semi-algebraic as a subset of the space Pn.

This allows us to apply the methods of semi-analytic geometry in semi-
algebraic geometry.

12) Remark: M. Shiota in his monograph [37] uses the term “Nash manifold” to denote the
notion which will be defined in n. 3 under the name of “semi-algebraic Nash manifold”.
13) It plays an important role in the proof of the semi-analytic cone theorem (see later n. 5).
14) Including the equivalence of atlases.
15) This condition is independent of the atlas (for the equivalent atlases).
16) Consistent with the structure of this Nash manifold (i.e. such one, whose atlas would be the
atlas of that manifold).
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4. Let Γ ⊂ Rn be a semi-analytic stratum of dimension k. Consider the follo-
wing tangential mapping:

τ : Γ 3 x→ TxΓ ∈ Gn
k .

In the fundamentals of subanalytic geometry (see later IV.2) the essential role is
played by the following

Theorem on tangential mapping. A counterimage under τ of an arbi-
trary semi-algebraic subset of the space Gn

k is semi-analytic.

See [21] and [28], II prop. 10.18.

5. The Chow theorem, known in complex analytic geometry, stating that any
analytic subset of complex projective space must be algebraic, is proved on the
grounds of Cartan–Remmert–Stein lemma, which claims that any analytic cone
in Cn is algebraic (see e.g. [24] or [25], VII.6 and II.3.3). As a real analogue of
this lemma we have

Theorem on semi-analytic cone. Any semi-analytic cone in Rn is semi-
algebraic.

(See [23] and [28], II.11.)
The above theorem implies that a projection of a semi-analytic set, even

of a compact one, need not be semi-analytic. Indeed, consider the following
Example. The set

F = {x = 1, z = ey, 0 ≤ y ≤ x} ⊂ R3

is not semi-algebraic (this follows easily from the fact that ey is not a Nash
function). Consequently—in view of semi-algebraic cone theorem—neither the
cone [0,∞)F nor the set

E = [0,∞)F ∩ {0 ≤ x ≤ 1} = 0 ∪ {z = xey/x, 0 < x ≤ 1, 0 ≤ y ≤ x},
which is an image under the projection map (x, y, z, u)→ (x, y, z) of the compact
semi-analytic set

{y = xu, z = xeu, 0 ≤ x ≤ 1, 0 ≤ u ≤ 1} ⊂ R4,

can be semi-analytic sets.
(See also [20] pp. 133–135.)

IV. Subanalytic geometry
As we have noticed in III.5 (Example), the operation of taking image does

not preserve semi-analiticity (of course, we mean here the situation where some
reasonable assumptions are taken concerning the semi-analytic mapping, e.g. the
assumption that its restriction to the closure of the set is a proper map). This lack
of an analogue of the Tarski–Seidenberg theorem, noticed as a material inconve-
nience in semi-analytic geometry, leads to a rather natural idea of replacing the
class of semi-analytic sets with a wider one—namely with the class of sets beeing
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locally proper projections of semi-analytic sets, in hope that it will be possible to
adopt our geometry for the new class.

The first obstacle encountered on this way is connected with a quite elemen-
tary question: is the class closed with respect to the operation of completion?
Though the question appears not easy to answer, the difficulty was overcome by
A. M. Gabrielov in [8]. The further steps, made on the grounds of methods similar
to those used in semi-analytic geometry, are rather standard.

Some years later H. Hironaka [11], who was examining the new class of sets
and gave it an adequate name of “subanalytic sets”, transferred on this class the
results of semi-analytic geometry by means of his great desingularization theo-
rem17). Simultaneously R. H. Hardt in [9] introduced and investigated “analytic
shadows”, which later turned out to be subanalytic sets.

Since the proof of desingularization theorem is extremely difficult, it was jus-
tified to develop in subanalytic geometry indirect methods, analogous to those of
semi-analytic geometry, having fulfilled thus our primary programme. Our pre-
sentation here is based upon those methods.

Let us notice that E. Bierston and P. D. Milman presented in [1] an interesting
approach to this geometry, in which they obtained an indirect and not too difficult
proof of uniformization and rectilinearization theorems, that form the basis for
Hironaka’s technique (see also H. J. Sussmann [39]).

***

1. Let M be a real analytic manifold. Its subset E is called subanalytic when
its trace E ∩ U on an (open) neighbourhood U of any point x ∈ M is an image
under the projection map M × Rk → M of a semi-analytic relatively compact
subset of the manifold M × Rk (where k depends on x).

Of course, the notion of subanaliticity is of the local nature, moreover any
subanalytic relatively compact set is a projection of some semi-analytic relatively
compact set (the converse also is true).

It is evident that the class of subanalytic sets is closed relative to the operations
of finite intersection and locally finite union of sets18). The Cartesian product of
subanalytic sets is subanalytic.

2. When considering subanalytic graphs, i.e. those of subanalytic diagrams19),
theorems on composing the mappings and on images and counterimages of sub-
analytic sets under such mappings require additional assumptions e.g. of relative
compactness. Thus, for a subanalytic mapping f : A → N , where A ⊂ M , and
for a subanalytic set E ⊂ M , the image f(E) is subanalytic whenever the set

17) It is recognised as one of the deepest theorems in mathematical analysis, whose existing
proof—after Dieudonné—takes the second place in mathematics with regard to proof length.
18) Also relative to the operation of completion—according to the Gabrielov theorem (see later
n. 4).
19) Of course, the mappings may be, in particular, analytic.
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E is relatively compact or the mapping f is “horizontally” relatively compact,
i.e. f−1(W ) is relatively compact for some neighbourhood W of an arbitrary point
of manifold N .

3. From the definition of subanalyticity there follows a series of theorems on
subanalytic sets (of statements bearing a close analogy with the semi-analytic
case):

Theorem on completion20). (See II.2.)

Theorem on connected components. (See II.2.)

Curve Selecting Lemma21).

In the analogous Tangential Mapping Theorem (see III.4), graph of the
mapping is simply subanalytic. The proof is easier; it suffices to write out suitably
the definition of the graph22).

4. In the sequel, some lemmas of technical character are involved which
enable representing subanalytic compact sets as finite unions of semi-analytic
strata projections, such that the projection maps have constant rank or even are
immersions—moreover, some restrictions are fulfilled relative to tangents varia-
tions for those strata.

Having got a series of properties of dimension, analogous to the semi-analytic
case (see II.4), we can prove the

Gabrielov Theorem on complement. The complement of any subanalytic
set is subanalytic.

Very useful, from the technical point of view, is the

Stasica Lemma [38], according to which any relatively compact subanalytic
stratum

Γ ⊂M ×N,
such that the restriction πΓ : Γ→M of natural projection map π : M ×N →M
is an immersion, admits the decomposition

Γ = Γ1 ∪ · · · ∪ Γm ∪ F,
in which F is a subanalytic set of dimension < dim Γ, and every Γi is an open
subanalytic (in M ×N) subset of the stratum Γ, whose projection ∆i = π(Γi) is
a subanalytic stratum, where Γi is the graph of the analytic mapping ∆i → N .

5. Analogously, there holds the Theorem on Regular Points (comp. II.4),
which is not easy to prove. This theorem has been proved by M. Tamm [40], who

20) And on other elementary topological operations.
21) It deals with semi-analytic arcs: “subanalytic arc” must also be semi-analytic (see later n. 8).
22) The same holds in the semi-analytic case.
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used Hironaka’s desingularization theorem, and by K. Kurdyka [15], who found
a direct proof.

6. Undoubtly, the most difficult of the facts proved by now in subanalytic
geometry (some tens pages of proof!) is very natural Paw lucki’s Theorem
(see. [35]), of simple and elementary statement. Namely, for a subanalytic set
E ⊂ M , let us call a point x ∈ M essentially subanalytic, if the trace E ∩ U is
not semi-analytic for any neighbourhood of this point. Thus,

Paw lucki’s theorem states that for an arbitrary subanalytic set E, the set
of its essentially subanalytic points is subanalytic.

7. We have the important

Gabrielov Theorem on components of a fibre. Namely: if E ⊂M×N
is a relatively compact subanalytic set, then the number of components of the fibre
Ex = {y: (x, y) ∈ E} remains bounded for x ∈M .

The proof of this theorem is not easy. It suffices however to prove it for the
semi-analytic case, which can be done by induction with respect to

k = max dimEx

on the grounds of normal stratification properties (see II.2).

8. Theorem on subanalytic sets of small dimension states that any
subanalytic set of dimension ≤ 1, as well as any subanalytic subset of a manifold
of dimension ≤ 2, is necessarily semi-analytic.

This theorem rather easily follows from the properties of semi-analytic arcs
(see II.2) and from the conclusion of Tarski–Seidenberg theorem on projecting
semi-algebraic sets (see III.1).

9. Basing on the theorem from n. 8 one can relatively easily prove theorems
on the so called Regular Separation:

I. Let A and B be subanalytic compact subsets of the space Rn. Then

ρ(x,B) ≥ dρ(x,A ∩B)N for x ∈ A

with some constant d > 0 and some exponent N > 0.

II. Let f : A → R be a subanalytic function continuous on a compact set
A ⊂ Rn. Then

|f(x)| ≥ dρ(x, Z)N for x ∈ A
with some constant d > 0 and some exponent N > 0, where

Z = {x: f(x) = 0}.

The latter theorem is in fact a particular case of the former.
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One can relatively easily notice that the second theorem for analytic functions
is equivalent to the following

Inequality.

| grad g(x)| ≥ |g(x)|Θ in the neighbourhood of zero,

for any analytic function g 6≡ 0 in the neighbourhood of 0 in Rn, with some
exponent Θ such that

0 < Θ < 1.

This inequality is used in the proof of the

Theorem on limits of trajectories of a dynamical system

ẋ = − grad f(x),

where f ≥ 0 is analytic in a neighbourhood of zero of the Rn space. Namely, each
of the trajectories x(t), starting from the points sufficiently near to zero, has a
limit when t→∞.

The following tangent problem, formulated by Thom more than twenty
years ago, remains unsolved until nowadays:

Do the trajectories also have tangent limits?

10. We will complete this paper with the remark that there remain true, both
in subanalytic an in semi-algebraic case, the Theorems on stratification and
triangulation (see II.5).

Proofs of the stratification theorems with incidence conditions (e.g. with Whit-
ney’s and Verdier’s conditions; see II.5) are valid unchanged. Much more subtle
Theorem on Lipschitzian subanalytic stratification was recently proved
by A. Parusiński (see [34]).

The proof of the triangulation theorem in the subanalytic and semi-algebraic
cases is much easier (see [13] and [24]), because when reasoning by induction
relative to space dimension, we do not need to choose the directions of projecting,
unlike in the semi-analytic case where we face with lack of the Tarski–Seidenberg
theorem (see [19]).
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[21] , Sur la semi-analycité des images inverse par l’application-tangente, Bull.

Acad. Sci. Pol. 17 (1979), pp. 525–527.
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