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Abstract. This is a short description of some results obtained by Ewa Damek, Andrzej
Hulanicki, Richard Penney and Jacek Zienkiewicz. They belong to harmonic analysis on a class
of solvable Lie groups called NA. We apply our results to analysis on classical Siegel domains.

1. NA groups. Let s be a solvable Lie algebra. We assume that s as a linear
space is the direct sum of two subalgebras

s = n⊕ a,

where n is nilpotent and a Abelian. We assume that there exists a basis
E1, . . . , En of n such that for every H in a

[H,Ej ] = 〈λj , H〉Ej , λj ∈ a∗, j = 1, . . . , n.

We call λj ’s the roots. For λ ∈ {λ1, ...λn} = Λ let

nλ = {Y ∈ n : adHY = 〈λ,H〉Y } for all H ∈ a.

We say that a subspace n′ of n is homogeneous, if for every H in a

adHn′ ⊂ n′.

Let

S = exp s, N = exp n and A = exp a.
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Then
S = NA

is a semidirect product of the groups N and A, A acting on N by

(1.1) a exp{
∑

xjEj}a−1 = exp{
∑

xje
〈λj ,log a〉Ej}.

In general, A is multidimensional, hence for a ∈ A log a is a vector. We say that
a → 0 with respect to a subset Λ1 of Λ, if 〈λ, log a〉 → −∞ for λ ∈ Λ1. Then, of
course,

a exp{
∑

xjEj}a−1 → e,

if a→ 0 with respect to Λ1.

The name NA comes from the main source of examples of such groups: the
NA part of the Iwasawa decomposition of a semisimple (non-compact, finite cen-
ter) group: NAK. We note that the symmetric space NAK/K admits a simply
transitive group of isometries of the form NA acting on the left.

But also every proper homogeneous cone Ω in Rn admits a simply transitive
group of linear transformations which is of the form NA, [V].

Every bounded homogeneous domain D ⊂ Cn admits a simply transitive
group of biholomorphic transformations of the form NA, [V].

All known examples of non-compact Riemannian harmonic spaces, also the
non-symmetric ones produced by E. Damek and F. Ricci, have the form NA, N
being a so called group of the Heisenberg type, [DR1], [DR2].

Let us look at the following four examples:

Example 1. Let
D = {z ∈ C : =z > 0}.

We consider the following two groups of biholomorphic maps of D onto itself:

N = R and A = R+.

N acts on D by translations parallel to the real axis:

x0 · z = x0 + z,

A acts by dilations:
a · z = az.

The group generated by these two groups of transformations is denoted by NA.
Of course

NA = N ×A as a manifold
and the group multiplication is

xa · yb = (x+ ay)ab.

We also see that the action of NA on D is simply transitive:

xa · i = x+ ia.



POISSON KERNELS AND FATOU TYPE THEOREM 67

We note that our group NA acts also on the boundary B = {z : =z = 0} of
D by affine transformations.

Example 2. Let

D = {(w′, w) ∈ C×Cn : =w′ −
∑
|wj |2 > 0}.

As the upper half-plane is biholomorphic with the unit disc, the corresponding
Cayley transformation maps the unit ball B ⊂ C×Cn biholomorphically onto D:

C×Cn 3 (w′, w)→
(
w′ + i

1 + iw′
,

w

1 + iw′

)
∈ C×Cn.

Again there is a group N of transformations acting on D “parallel to the
boundary”

B = {(w′, w) ∈ C×Cn : =w′ −
∑
|wj |2 = 0}.

HereN is Hn the Heisenberg group. As a manifoldN = R×Cn, the multiplication
is defined by (x, z)(y, w) = (x + y + 2=

∑
w′jw̄j , w

′ + w). The action of N on D
is given by the formula

N ×D 3 ((x, u), (w′, w))→ (w′ + x+ 2iΦ(w, u) + iΦ(u, u), w + u) ∈ D,
where Φ(u,w) =

∑
ujw̄j . A simple calculation shows that in fact the action of

N on Cn+1 preserves the form

ρ(w′, w) = =w′ −
∑
|wj |2,

thus it maps D onto D and also B onto B.
The group A is again equal to R+. A acts on D by non-isotropic dilations:

a · (w′, w)→ (aw′, a
1
2w).

Under this action the form ρ transforms as follows:

ρ(aw′, a
1
2w) = aρ(w′, w),

hence A also preserves both D and B.
We see that the group NA of transformations of D generated by N and A is

the group which contains N as a normal subgroup of codimension 1 and the group
A acts as a group of automorphisms of N by non-isotropic dilations. Moreover, the
group NA acts simply transitively on the domain D as a group of biholomorphic
transformations.

Example 3. Let M be the space of symmetric real n × n matrices and let Ω
be the open cone in M consisting of positive definite matrices. Let

D = M + iΩ ⊂ Cd, d =
(n+ 1)n

2
.

To relate a NA group to this example we proceed as follows. Let Eij be an
elementary n× n matrix. We put

a = lin{E11, ..., Enn}
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n0 = lin{Eij : i < j}
n1 = lin{Ekl + Elk : l ≤ k} = M.

Then
s = n1 ⊕ n0 ⊕ a = n1 + s0

is a Lie algebra, the Lie bracket being defined as follows:

[E,F ] = EF − FE for E,F ∈ s0

[X,Y ] = 0 for X,Y ∈ n1

[E,X] = EtX +XE for E ∈ s0, X ∈ n1.

We see that the group

S = exp s = N1N0A = N1S0

acts on D simply transitively :

g(Y +iH) = gtY g+igtHg for g ∈ S0 and Y0(Y +iH) = Y0 +Y +iH for Y0 ∈ N1.

We notice that N = N1N0 is a nilpotent group on which A acts diagonally, n0

and n1 are homogeneous subalgebras, and the basis {Eij : i < j} ∪ {Ekl + Elk :
k ≤ l} defines roots on a.

Example 4. Let C2 be the space of complex s × t matrices, C1 — of complex
s× s matrices. We have

C1 = H+ iH,
where H is the real space of Hermitian s × s matrices and for a matrix E ∈ C1
we write

E = <E + i=E,
where <E,=E ∈ H.

Let Ω be the open cone in H consisting of positive definite matrices, the non-
negative definite matrices being its closure.

If we define a Hermitian bilinear form

Φ : C2 × C2 3 E,F → EF ? ∈ C1,
then we see that Φ(E,E) ∈ Ω̄ for all E ∈ C2 and Φ(E,E) = 0 implies E = 0.

Let
D = {(E,F ) ∈ C1 × C2 : =E − Φ(F, F ) ∈ Ω},
B = {(E,F ) ∈ C1 × C2 : =E − Φ(F, F ) = 0}.

Let A be the group of s × s diagonal matrices with non-zero entries, N0 the
group of unipotent upper triangular s × s matrices, S0 = N0A. For g ∈ S0 we
define the action on D by

g(E,F ) = (g∗Eg, gF ).

It is clear that
Φ(gF1, gF2) = g · Φ(F1, F2).
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The group N1 = H× C2 is defined as N(Φ) below.
The group N1N0A acts simply transitively on D.
Example 4 shows all the main features of the so called homogeneous Siegel

domains. The importance of the homogeneous Siegel domains is stressed by the
fact, proved by Piateckij-Shapiro in 1960 [P], that these are precisely all the
domains which are biholomorphic with the bounded homogenous domains.

As we see in Examples 3 and 4 above, our boundary B of D is much smaller
than the topological boundary of D as embedded in Cn. However, it has the
property that for every holomorphic bounded function F on D which extends
continuously to B we have

sup{|F (z)| : z ∈ D} = sup{|F (x)| : x ∈ B}.
Abusing slightly, the terminology we call B the Shilov boundary of D while in
fact it is only a dense subset of the compact Shilov boundary in the bounded
realization of D.

A Siegel domain (not necessarily homogeneous) is defined as follows:

Let Ω ⊂ Rn1 be a regular cone, i.e. a nonempty open convex cone Ω with
vertex at 0 and containing no entire straight line.

Given a regular cone in Ω in Rn1 , we say that a Hermitian bilinear map

Φ : Cn2 ×Cn2 → Cn1

is Ω-positive if Φ(z2, z2) ∈ Ω̄ for all z2 ∈ Cn2 and Φ(z2, z2) = 0 implies z2 = 0.
The domain

D = {(z1, z2) ∈ Cn1 ×Cn2 : =z1 − Φ(z2, z2) ∈ Ω}
is called a generalized half-plane or a Siegel domain determined by Φ, Ω. This
definition includes also the case where n2 = 0. Then D is a tube domain over Ω,
as in Examples 1 and 3.

What we call the Shilov boundary of D is the set

B = {(z1, z2) ∈ Cn1 ×Cn2 : =z1 − Φ(z2, z2) = 0}.
As in Example 2, the group

N(Φ) = Rn1 ×Cn2

with multiplication

(h1, w1)(h2, w2) = (h1 + h2 + 2=Φ(w1, w2), w1 + w2)

acts on D:

(x, u)(z1, z2) = (z1 + x+ 2iΦ(z2, u) + iΦ(u, u), z2 + u).

Therefore D = {(x, u)(it, 0) : (x, u) ∈ N(Φ), t ∈ Ω} and the decomposition
z = (x, u)(it, 0) of a point z ∈ D is unique. The orbits of N(Φ) are parametrized
by the elements it, t ∈ Ω. N(Φ) acts also simply transitively on B.

The Hardy spaces Hp(D) are defined as follows.
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Hp(D) is the set of all holomorphic F : D → C such that

‖F‖pHp(D) = sup
t∈Ω

∫
N(Φ)

|F ((x, z)(it, 0))|p dxdz <∞.

Let

F ((x, z)(it, 0)) = Ft(x, z).

Since for F ∈ Hp(D) the norms ‖Ft‖Lp(N(Φ)) are bounded, for p > 1 there exists
a function F0 such that

lim
t→0
‖Ft − F0‖Lp(N(Φ)) = 0.

It follows that the map F → F0 is one-to-one from H2(D) onto a closed subspace
of L2(F ). Thus H2(D) is a Hilbert space, the inner product being defined by

〈F,G〉 = lim
t→0

∫
F

Ft(ξ)Ḡt(ξ)dξ = 〈F0, G0〉L2(B).

H2(D) has a reproducing kernel S(z, w) defined on D × D called the Szegö
kernel [H]. S(z, w) is holomorphic with respect to z = (z1, z2) and for fixed w,
S(·, w) ∈ H2(D). A formula for S(z, w) proved in [KS2] gives S(z, w) in terms of
a “Fourier transform” over the dual cone Ω∗.

(1.2) Sw(z) = S(z, w) =
∫

Ω∗
e−2π〈λ,ρ(z,w)〉 det Φ

1
2
λ dλ,

where

ρ(z, w) = i(w̄1 − z1)− 2Φ(z2, w2).

If n2 = 0 then

Sw(z) =
∫

Ω∗
e−2π〈λ,ρ(z,w)〉 dλ.

For given w, let Sw0 be the limit of Swt in L2(B). Then Sw(x) = S0(x,w) and S0

is a function on D×B, holomorphic with respect to z and square integrable with
respect to x, such that for every F in H2(D)

F (z) =
∫
B

S0(z, x)f(x)dx

for some f ∈ L2(B). The Poisson kernel for D, introduced by Hua, is the function
P (x, z) on B ×D defined by

P (x, z) =
|S0(x, z)|2

S(z, z)
, x ∈ B, z ∈ D.

For every z ∫
B

P (x, z)dx = 1.
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Every F ∈ Hp, 1 ≤ p ≤ ∞, is a Hua-Poisson integral of a function f ∈ Lp,
i.e.

F (z) =
∫
B

f(x)P (x, z)dx.

Also for every f ∈ Lp(B) the function F above is a function on D. It is called
the Hua-Poisson integral of F .

We see that the definitions given above are modeled on the case of one complex
variable (Example 1). We have

S(z, x) =
1

2πi
1

x− z
=

1
2πi

1
x− y − ia

, if z = y + ia

P (z, x) =
1
π

a

(y − x)2 + a2
,

in which we recognize the Cauchy kernel and the ordinary Poisson kernel.
We also note that both are convolution kernels on the group N(Φ) and rewrite

the formula above as∫
N

f(x)P (y · t, x)dx =
∫
N

f(y−1x)Pt(y)dy = f ? Pt(x), t ∈ Ω.

This is true in general, the Hua-Poisson kernel can be rewritten as a family of
convolution kernels Pt, t ∈ Ω on N(Φ).

Except for the very classical cases, there are no explicite formulas neither for
the Szegö nor for the Hua-Poisson kernel. However much is known about both of
them. The main tool here is formula (1.2) for the Szegö kernel.

Here are some estimates of the Hua-Poisson kernels which we were able to
obtain for general Siegel domains, [DHP1].

Let ‖ · ‖ be a norm in N(Φ). For a fixed t ∈ Ω we have

(1.3) There exists η > 0 such that
∫
N(Φ)

‖y‖ηPt(y)dy <∞.

For every multiindex I there are constants c, M such that
(1.4) |∂IPt(y)| ≤ c(1 + ‖y‖)M .

(1.5) There exist c, ε > 0 such that Pt(y) ≤ c(1 + ‖y‖)−ε.

Properties (1.3)—(1.5) are the only pointwise estimates for P which we can
prove in the case of the general Siegel domains. However we have proved that they
are sufficient to obtain a satisfactory Fatou type theorem about almost everywhere
convergence of the Hua-Poisson integrals of functions in Lp, 1 < p ≤ ∞, to their
boundary values, [DHP1].

Another thing which is of importance here is that due to a version of the
Harnack inequality for the Hua-Poisson integrals, a consequence of the mean
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value theorem for holomorphic functions, the maximal function

Mf(x) = sup
t∈AK

Pt ? f(x), where K is a compact subset in Ω

is dominated by
M ′f(x) = sup

t∈ΛK
Py ? f(x),

where Λ = {(em1e1, ..., e
mnen) : mj ∈ Z}, e1, ..., en form an appropriate basis in

the vector group A.

Theorem 1 (E. Damek, A. Hulanicki, R. Penney [DHP1]). For f ∈ Lp(B),
1 < p ≤ ∞, the Hua-Poisson integral∫

P (x · (it, 0), y)f(y)dy → f(x) almost everywhere

as t→ 0 in an appropriate way inside the cone Ω.

The Hua-Poisson integrals are functions on D which are called Hua-harmonic,
Hua-harmonic functions are annihilated by the Laplace-Beltrami operator ∆
(with respect to the Bergman metric on D) in the case of the symmetric domains.
However, the class of ∆-harmonic functions on D is much larger, in general. In
1975 A. Korányi and P. Malliavin [KM] presented two elliptic operators L1 and
L2 on the Siegel domain of 2 × 2 symmetric matrices as in Example 2, n = 2,
such that the set of bounded functions annihilated by both L1 and L2 are the
Hua-Poisson integrals of L∞ functions on B. In 1980 K. Johnson and A. Korányi
[JK] found for symmetric tube domains an elliptic system whose zeros are preci-
sely the Hua-harmonic functions.

Theorem 2 (E. Damek, A. Hulanicki, R. Penney [DHP2]). For the domain
of our Example 2 (general n × n matrices) there exists an elliptic real second
order differential operator L on D such that bounded Hua-harmonic functions are
precisely the bounded functions F such that LF = 0.

2. Harmonic functions. Let L be a second order left-invariant degenerate
elliptic operator without a constant term on S:

(2.1) L = X2
1 + . . .+X2

m +X0.

We shall assume that X0, X1, . . . , Xm satisfy the Hörmander condition, i.e. the
smallest Lie subalgebra which contains X0, . . . , Xm is equal to s . We write

X0 = Y0 + Z0, Y0 ∈ n, Z0 ∈ a.

Now let
Λ0 = {λ ∈ Λ : 〈λ, Z0〉 ≥ 0},

We define a subalgebra
n0(L) = ⊕λ∈Λ0n

λ
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and the corresponding subgroup

N0(L) = exp n0(L).

Let n0 be an arbitrary homogeneous subalgebra of n containing n0(L) and let

N0 = exp n0.

Let {µt}t>0 be a semigroup of probability measures generated by L. Let
{St(ω)} be the diffusion process defined by the semigroup {µt}t>0 on S.

Definition of the Furstenberg boundary. Let X be a locally compact
space with a probability measure σ. Assume that S acts transitively on X. X is
called a boundary for the pair S,L if

(2.2) for every t > 0 µ̆t ? σ = σ

and

lim
t→∞

∫
f(St(ω)x)dσ(x) = f(x(ω))

for almost every trajectory St(ω) , where x(ω) is a point of X depending only
on ω. A Poisson boundary for L is the maximal Furstenberg boundary X.

Formula (2.2) implies that for every f ∈ L∞(σ) the function F on S defined
by

(2.3) F (s) =
∫
X

f(sx)dσ(x)

is L-harmonic.

If X is the Poisson boundary, then every bounded harmonic function F on S
is of the form (2.3).

In [DH1] we have shown that the boundaries of the pair S,L are precisely the
S-spaces

X = S/N0A = N/N0.

Let us elaborate this fact. We write S ×X 3 (s, u) 7→ su ∈ X for the natural
action of S on the quotient space X. We select a point e in X and define the map

p : S 3 s 7→ se ∈ X.

For a measure ν on X and a bounded measure or a distribution with compact
support µ on S we write µ ∗ ν for the natural convolution corresponding to this
action. We have, cf. [DH1]:

σ is a *-weak limit of p(µ̆t) as t→∞.

We see that in our case X = Rχ as a manifold. Moreover,

(2.4) σ has a smooth density dσ(x) = P (x)dx,
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where dx is the Lebesgue measure. Let f be a function on X and suppose f ∈
Lp(Rχ) for some p, 1 ≤ p ≤ ∞ . Then (2.3) becomes

(2.5) F (s) =
∫
X

f(s · x)P (x)dx,

we call it the Poisson integral of f and

P (s, x) =
ds−1 · x
dx

P (s−1 · x)

the Poisson kernel.

In our Example 3 the domain D is identified with NA where N = N0N1,
N0 ⊂ Ω consists of matrices with ones on the diagonal and A are the diagonal
matrices in Ω.

For the proof of Theorem 1 we exhibit an operator of the form (2.1) such that
the roots defined by the homogenous basis of M are negative on Z0, cf. (2.2), and
the ones defined by the homogeneous basis of n0 are non-negative. Of course the
operator has also to annihilate Hua-harmonic functions on D.

3. Estimates for the Poisson kernel. The examples discussed above point
to the importance of the Poisson kernels on the Furstenberg boundaries which in
the case of non-symmetric Siegel domains do not coincide with the Hua-Poisson
kernel (i.e. normalized square of the modulus of the Szegö kernel).

The first thing we can tell about them for general NA groups is that they
satisfy estimates (1.3)—(1.5).

Properties (1.3)—(1.5) are the only estimates for P we can prove in the case
of general NA groups. However, we have proved that they suffices to prove a
satisfactory Fatou type theorem on almost everywhere convergence of the Poisson
integrals of functions in Lp, 1 < p ≤ ∞, to their boundary values.

We note that in general a boundary is only a homogeneous space N/N0, not
necessarily a subgroup of N which is the case for the Poisson boundary. This is
the reason why in the general case the proof of the Fatou theorem is much more
complicated, cf. [DH3]. In fact, to estimate the maximal functions involved we
have to consider maximal functions along surfaces. Here the ideas and techniques
of M. Christ [Ch1], [Ch2], are extremely useful.

On the other hand, for the case when NA is a harmonic space and L is the
Laplace-Beltrami operator, E. Damek and F. Ricci have proved a formula for P
very similar to the corresponding one for symmetric spaces of rank one.

Their result is

(3.1) P (x, z) = c
1

(1 + 1
4 |x|2)2 + |z|2)Q

' c‖x, z‖−2Q,

where |·| is a specific homogenous gauge on N and Q is the homogenous dimension
of N .
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Formula (3.1) has been a starting point for a search of better estimates on P
and their derivatives first in the case of one-dimensional A.

In this case we identify A with R+, N becomes a homogeneous group on which
A acts by dilations, i.e. there is a

homogeneous basis Y1, ..., Yn of n

and positive numbers 1 = d1 ≤ · · · ≤ dn such that

δa(exp
n∑
j=1

yjYj) = exp(
n∑
j=1

yja
djYj), a ∈ A

are automorphisms of N . Let Q = d1 + ... + dn be the homogeneous dimension
of N .

In this case operator (2.1) can be written in the form

(3.2) Lf(xa) =
(
(a∂a)2 − αa∂a +

n∑
i,j=1

αi,ja
di+djYiYj +

n∑
i=1

αia
diYi

)
f(xa),

where the matrix [αij ] is non-negative definite.

(3.3) If L is the Laplace-Beltrami operator on NA then α = Q.

Recently, using the method by which Alano Ancona [A] described the minimal po-
sitive harmonic functions on Riemannian spaces of negative curvature, E. Damek
has proved the following

Theorem 3 (E. Damek [D2]). If an operator L is of the form (3.2), then

(3.4) c−1(1 + |x|)−α−Q ≤ P (x) ≤ c(1 + |x|)−α−Q

for some constant c.

The proof of the theorem is based on a boundary Harnack inequality for
positive harmonic functions on NA and cannot be used to derive estimates for
the derivatives. Therefore Ewa Damek, Andrzej Hulanicki and Jacek Zienkiewicz
revised a probabilistic approach to the Poisson kernel used earlier by E. Damek
and A. Hulanicki [DH2].

Let

Lt =
n∑

i,j=1

αi,ja(t)di+djYiYj +
n∑
i=1

αia(t)diYi),

where a(t) is a trajectory with a(0) = 1 of the Brownian motion on R+ generated
by

(a∂a)2 − αa∂a.
Then the following holds:
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Let p(·; s, t), s < t, be a non-negative function on N such that for every
f ∈ C∞c (N) the function u(x; s, t) = f ∗ p(x; s, t) solves

Ltu(x; s, t) = ∂tu(x; s, t), lim
t↗s

u(x; s, t) = f(x).

Of course p(·; s, t) depends on the trajectory a(·). Then taking the expected value
with respect to the Wiener measure we obtain

Ep(x; 0,∞) = P (x).

We have been able to obtain good estimates for the kernels p(·; 0,∞) in terms of
the numbers

Aj =
∫ ∞

0

a(t)djdt

and the explicit formula for the distribution of the Brownian random variables
Aj . By this method we have proved the upper bound of (3.4) and

Theorem 4 (E. Damek, A. Hulanicki, J. Zienkiewicz). For every multiindex I
there is a constant CI such that

|Y IP (x)| ≤ CI(1 + |x|)−α−Q−|I|.

The problem of finding precise pointwise estimates for the Poisson kernel in
the case when A is multidimensional is still wide open, cf. also [St].
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[KS2] A. Kor ány i, E. M. Ste in, H2-spaces of generalized half-planes, Studia Math. 44
(1972), 379–388.

[NS] A. Nage l and E. M. Ste in, On certain maximal functions and approach regions,
Adv. Math. 54 (1984), 83–106.

[P] I. I. Pjateck i -Shapiro, Geometry and classification of homogeneous bounded do-
mains in Cn, Uspekhi Mat. Nauk 2 (1965), 3–51; Russian Math. Surv. 20 (1966),
1–48.

[R] F. Ricc i, Singular integrals on Rn, Tempus lectures held at the Institute of Math-
ematics of Wroc law University, 1991.
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