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Abstract. The notion of Poisson Lie group (sometimes called Poisson Drinfel’d group) was
first introduced by Drinfel’d [1] and studied by Semenov-Tian-Shansky [7] to understand the
Hamiltonian structure of the group of dressing transformations of a completely integrable system.
The Poisson Lie groups play an important role in the mathematical theories of quantization and
in nonlinear integrable equations.

The aim of our lecture is to point out the naturality of this notion and to present basic facts
about Poisson Lie groups together with some relations to the recent work on quantum groups.

1. Poisson structures on manifolds. The basic mathematical structures of
classical mechanics are the algebra C∞(N) of all smooth functions on the phase
space N under ordinary multiplication and the Lie structure on C∞(N) induced
by the Poisson bracket {·, ·} defined by the symplectic form on N . The Poisson
bracket is a biderivation of the associative algebra, i.e.

(1.1) {f, gh} = {f, g}h+ g{f, h}
and in so called canonical coordinates (q,p) = (q1, ..., qn, p1, ..., pn) has the form

(1.2) {f, g} =
n∑
i=1

∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi
,

so the Hamilton equations

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
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may be written in the “Lax form”:

Ḟ = {H,F}.

We can forget about the symplectic form and consider a Lie bracket on C∞(N)
with the property (1.1).

(1.3) Definition. A Poisson bracket on an associative algebra is a Lie bracket
which is a biderivation. A Poisson structure on a smooth manifold N is a bivector
field P ∈ Γ(Λ2(TN)) such that {f, g} := P (df, dg) is a Poisson bracket on C∞(N).

(1.4) R e m a r k. There is a one-one correspondence between Poisson brackets on
C∞(N) and Poisson structures on N (which are those bivector fields P which
satisfy the equation [P, P ] = 0, where [·, ·] stands for the Schouten bracket of
multivector fields).

For any f ∈ C∞(N) the vector field Xf := idfP = {f, ·} is called the Hamilto-
nian vector field with Hamiltonian f and the mapping f 7→ Xf is a homomorphism
of the Lie algebra C∞(N) with the Poisson bracket into the Lie algebra of vector
fields.

(1.5) Example. Every symplectic form induces a “classical” Poisson bracket with
local form as described in (1.2). The corresponding Poisson structure has in the
canonical coordinates the form

P =
n∑
i=1

∂

∂pi
∧ ∂

∂qi
.

The “symplectic” Poisson brackets are exactly those which are non-degenerate in
the sense that the mapping ω 7→ P (ω, ·) induces an isomorphism of the cotangent
and tangent bundles. In particular, N has to be even dimensional. One can show
that every Poisson manifold admits a partition into symplectic submanifolds —
the orbits of Hamiltonian vector fields.

(1.6) Example. Let V be a Lie algebra over R with a basis {x1, ...xn} and the
bracket [·, ·]. Set N = V ∗ to be the dual space, so x1, ..., xn can be regarded as
smooth (in fact linear) functions on N which form a coordinate system. It is easy
to see that

{f, g} :=
n∑

i,j=1

[xi, xj ]
∂f

∂xi

∂g

∂xj
=

n∑
i,j,k=1

ckijxk
∂f

∂xi

∂g

∂xj
,

where ckij are the structure constants, is a Poisson bracket on C∞(V ∗) called
Kostant-Souriau-Kirillov bracket. Linear functionals form a Lie subalgebra natu-
rally identified with (V, [·, ·]). The corresponding Kostant-Souriau-Kirillov Poisson
structure is given by

P =
∑
i<j

[xi, xj ]
∂

∂xi
∧ ∂

∂xj
.
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The symplectic leaves of this structure are exactly the orbits of the coadjoint
representation of the corresponding Lie group.

Consider in particular the Lie algebra su(2) with the basis (X,Y,H) and
commutation relations

[X,Y ] = 2H, [Y,H] = 2X, [H,X] = 2Y.

The Kostant-Souriau-Kirillov Poisson structure on the dual su(2)∗ in chosen co-
ordinates reads:

P = 2
(
H

∂

∂X
∧ ∂

∂Y
+X

∂

∂Y
∧ ∂

∂H
+ Y

∂

∂H
∧ ∂

∂X

)
and symplectic leaves are 2-dimensional spheres in su(2)∗ ' R3 centred at 0.

(1.7) Example. Let N be the unit sphere in R4 with “global coordinates”
(a, b, x, y), a2+b2+x2+y2 = 1. There is a unique Poisson bracket on N satisfying

{x, a} = −xb, {x, b} = xa, {x, y} = 0,

{y, a} = −yb, {y, b} = ya, {b, a} = x2 + y2.

The corresponding Poisson structure can be written in the form P = A∧B, where

A = aC − ∂

∂a
, B = −bC +

∂

∂b
,

C = a
∂

∂a
+ b

∂

∂b
+ x

∂

∂x
+ y

∂

∂y
.and

Note that the vector fields A,B are really tangent to the sphere and that [B,A] =
aB + bA.

If we identify this sphere with the group SU(2) by

(a, b, x, y) 7→
(
α −ν̄
ν ᾱ

)
,

where α = a+ ib, ν = x+ iy, then P can also be written in the form

(1.8) P = (x2 + y2)X̂ ∧ Ŷ + (by + ax)X̂ ∧ Ĥ + (ay − bx)Ŷ ∧ Ĥ,
where X̂, Ŷ , Ĥ are the right-invariant vector fields on SU(2) corresponding to the
elements

X =
(

0 −1
1 0

)
, Y =

(
0 i
i 0

)
, H =

(
i 0
0 i

)
of the Lie algebra su(2) of SU(2).

(1.9) Definition. Let (M,PM ) and (N,PN ) be Poisson manifolds with Poisson
brackets {·, ·}M and {·, ·}N . A smooth mapping φ : N −→M is called the Poisson
mapping if the induced φ∗ : C∞(M) −→ C∞(N) is a homomorphism of Poisson
brackets:

{u ◦ φ, v ◦ φ}N = {u, v}N ◦ φ, u, v ∈ C∞(M).
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The product Poisson bracket {·, ·}M×N on M ×N is defined by

{u, v}M×N (x, y) = {ux, vx}N (y) + {uy, vy}M (x),

where clearly ux (resp. uy) is the smooth function of y ∈ N (resp. x ∈ M)
obtained from u ∈ C∞(M ×N) by keeping x (resp. y) constant.

(1.10) R e m a r k. Note that the product Poisson structure is a bivector field PM×N
on M×N which under the projections of M×N onto M and N gives respectively
PM and PN . If we identify C∞(M × N) with an appropriate tensor product
C∞(M)⊗ C∞(N), we may also write the product Poisson bracket in the form:

{u1 ⊗ u2, v1 ⊗ v2}M×N = {u1, v1}M ⊗ u2v2 + u1v1 ⊗ {u2, v2}N .

2. Quantum spaces. Roughly speaking, we obtain quantum spaces deform-
ing corresponding “dual” algebraic objects as for example the commutative al-
gebras of a given class functions on the space (cf. Gel’fand-Najmark functor)
can be deformed into noncommutative ones. This class may be arbitrarily cho-
sen; Woronowicz [9] prefers to work with C∗-algebras what is more difficult, but
fruitful, while Drinfel’d [2] works with purely algebraic version only.

To make the whole thing transparent, let us consider the very classical example
of Woronowicz [9] for the group SU(2) which topologically is a three dimensional
sphere. We shall keep the notation of (1.7). The *-algebra A generated by matrix
elements is dense in C(SU(2)) and can be characterized as the “maximal” unital
commutative *-algebra generated by elements α, ν (cf. (1.7)) and satisfying α∗α+
ν∗ν = I. Dropping the assumption about commutativity, Woronowicz proposed
to consider the algebra Aq as the unital non-commutative *-algebra generated by
α, ν satisfying α∗α+ ν∗ν = I and additionally the commutation relations

(2.1)
αα∗ − α∗α = (2q − q2)ν∗ν, ν∗ν − νν∗ = 0
να− αν = qνα, ν∗α− αν∗ = qν∗α.

It is clear that for q = 0 we get the previous commutative algebra, so Aq is a
one-parameter deformation of A = A0. The crucial point here is that the algebras
Aq do not “collapse” for 1 > q ≥ 0, i.e. the basis remains the same (for example
{ν∗mνnαk, ν∗mνnα∗l : k,m, n = 0, 1, 2, ... and l = 1, 2, ...} is a basis in Aq for
all 1 > q ≥ 0), and we may consider the algebras Aq not as different objects, but
as different multiplications ◦q on the same object, namely the algebra A. This
way we get so called formal deformation of A, since the ◦q-product of elements
u, v ∈ A reads

(2.2) u ◦q v = uv +
∞∑
n=1

qnPn(u, v).

For example, using the identification of Aq with A via the basis as above, we get

α ◦q ν = ν ◦q α− (ν ◦q α− α ◦q ν) = να− qνα
α ◦q α∗ = α∗ ◦q α + (α ◦q α∗ − α∗ ◦q α) = (I − ν∗ν) + 2qν∗ν − q2ν∗ν.and
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Since the commutator bracket [u, v]q = u ◦q v − v ◦q u, as for any associative
algebra, is a biderivation, we get easily that

{u, v} := P1(u, v)− P1(v, u)

is a Poisson bracket. Thus the first non-trivial term of a formal deformation gives
us, after antisymmetrization, a Poisson bracket. Assuming that the term P1 is
given by a bidifferential operator, we always can, after a reparametrization, obtain
P1 antisymmetric. Indeed, consider a formal automorphism u 7→ B(u) = u +
qB1(u) + o(q). A new but isomorphic product ◦̃q defined by u◦̃qv := B−1(B(u)◦q
B(v)) has the form

u◦̃qv = uv + q(P1(u, v) + δB(u, v)) + o(q),

where δB(u, v) = uB(v)−B(uv) +B(u)v is the Hochschild coboundary of B. It
is well known (cf. [8]) that the differentiable Hochschild cohomology of C∞(N)
is the space of multivector fields, so P1(u, v) = {u, v}+ δB for some B ∈ End(A)
and we can obtain P1 being a Poisson bracket choosing the corresponding formal
automorphism.

The idea of deformational quantization is now the following: the commutative
associative algebra structure of C∞(N) is only a room for the physics, a Pois-
son bracket (the first non-commutative term) gives us the classical mechanics,
but what we really need is the quantum mechanics given by the “true” non-
commutative product ◦q whose infinitesimal part delivers the Poisson bracket,
i.e. classical mechanics (cf. [4]).

(2.3) Example. From the commutation relations (2.1) defining the Woronowicz’
quantum sphere we get easily the corresponding Poisson bracket which on matrix
elements of SU(2) has the form

{α, ᾱ} = 2ν̄ν, {ν, ν̄} = 0,
{ν, α} = να, {ν̄, α} = ν̄α.

Passing to real functions α = a + ib, ν = x + iy, we get a purely imaginary
bracket with the imaginary part being exactly the Poisson bracket described in
(1.7) (cf. also [3]).

3. Quantum groups. To get a quantum group, we must equip a quantum
space, i.e. an associative algebra A, with additional structures: a coproduct ∆ :
A −→ A ⊗ A and so called counit and antipode. The tensor product (in an
appropriate sense) A⊗A represents clearly functions on the product group G×G.
All objects, maps and properties are dual to those of the category of groups. For
example, the coproduct is the dual of the group multiplication G × G −→ G,
counit to the embedding of the neutral element e ↪→ G, etc. The coproduct is
not only coassociative, but it is an algebra homomorphism (with the obvious
associative algebra structure on A⊗A) as the mapping between quantum spaces.
What we get is usually called a Hopf algebra, so quantum groups are nothing
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but Hopf algebras which are deformations of Hopf algebras associated with group
structures (e.g. the C∗-Hopf algebras of continuous functions on compact groups
in Woronowicz’ and the universal enveloping Hopf algebras of Lie algebras in
Drinfel’d’s approach). The obvious *-coproduct for the algebra A generated by
matrix elements of the group SU(2) is given by

∆(α) = α⊗ α− ν∗ ⊗ ν, ∆(ν) = ν ⊗ α+ α∗ ⊗ ν.
Woronowicz obtained his famous quantum SU(2) group deforming this coproduct
to ∆q = ∆ + qD, where D(α) = ν∗ ⊗ ν, D(ν) = 0. This new coproduct is
compatible with the deformed multiplication ◦q, so we get a quantum group (if
we do not care at the moment about counit and antipode). The compatibility
means that

∆q(u ◦q v) = ∆q(u) ◦A⊗Aq ∆q(v)
and hence

(3.1) ∆q([u, v]q) = [∆q(u),∆q(v)]A⊗Aq ,

where ◦A⊗Aq and [·, ·]A⊗Aq are the product and commutator bracket in A⊗A. The
identity (3.1) implies in particular

(3.2) ∆({u, v}) = {∆(u),∆(v)}A⊗A,
where {·, ·}A⊗A is the product Poisson bracket on A⊗A (cf. (1.10)). Of course,
all this works not only in the particular SU(2) case, but in the general scheme
as well. Writing (3.2) on the level of the group G, we get that the corresponding
Poisson structure P ∈ Γ(Λ2(TG)) satisfies

(3.3) P (g1g2) = (Lg1)∗P (g2) + (Rg2)∗P (g1),

where (Lg1)∗ and (Rg2)∗ are the left and right actions of G on multivector fields.
A multivector field P satisfying (3.3) is called multiplicative.

(3.4) Definition. A Poisson Lie group is a Lie group G equipped with a multi-
plicative Poisson structure.

We may say equivalently that a Poisson Lie group is a Lie group G equipped
with a Poisson structure such that the group multiplication G × G −→ G is a
Poisson map (with the product Poisson structure on G×G). It can be regarded
as “infinitesimal” part of the quantum group being the deformation of G (in the
category of Hopf algebras, of course). Note also that Poisson Lie structures are
never “symplectic”, since they vanish at the neutral element.

(3.5) Another example. Consider a Lie algebra V with a basis (x1, ..., xn) (cf.
(1.6)) and the universal enveloping algebra U which is a Hopf algebra with the
coproduct of the form x 7→ I ⊗ x + x ⊗ I for x ∈ V. Due to the Campbell-
Baker-Hausdorff theorem, U is isomorphic as a vector space with the symmetric
algebra over V , or in other words, with the algebra A = Pol(V ∗) of polynomials
on the dual space V ∗. A is therefore a quantum group being a deformation of the
Abelian group V ∗ (with respect to addition). The corresponding Poisson bracket
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{·, ·} on V ∗ being the infinitesimal part of this deformation restricted to linear
functionals from V ⊂ U ' Pol(V ∗) coincides with the original bracket [·, ·] on
V , so {xi, xj} = [xi, xj ] and we get the Poisson structure P as in (1.6). It is
clearly multiplicative, since V ∗ acts trivially on tensor fields and P is linear:
P (x∗+ y∗) = P (x∗) +P (y∗). The universal enveloping algebra of a Lie algebra V
may be therefore regarded as a quantum group being the quantization of the dual
space V ∗ and the Kostant-Souriau-Kirillov bracket on it. The universal enveloping
Hopf algebra can be deformed once more. For example the Drinfel’d-Jimbo’s
quantum SL(2,C) group is the formal deformation of the universal enveloping of
the Lie algebra sl(2,C) given by deformed commutators

[H,X±] = ±2X±, [X+, X−] =
2
q
sh
(qH

2
)

and deformed coproduct

∆(X±) = X± ⊗ exp
(qH

4
)

+ exp
(−qH

4
)
⊗X±, ∆(H) = H ⊗ I + I ⊗H,

where (X+, X−, H) is the standard basis of sl(2,C). For q = 0 we get clearly the
non-deformed universal enveloping Hopf algebra.

4. Poisson Lie groups, Lie bialgebras and dressing transformations.
The standard references for this section are papers [1], [2], [5], [6], [7].

Since the tangent bundle of a Lie group G can be canonically trivialized, we
can regard any Poisson structure P on G as the mapping P̃ : G −→ G ∧ G, for G
being the Lie algebra of G, putting

P̃ (g) = (Rg−1)∗P (g).

In other words, every Poisson structure may be written in the form
P =

∑
i,j rijX̂i ∧ X̂j , where X̂i are the right-invariant vector fields on G as-

sociated with xi ∈ G and rij are smooth functions on G, so P̃ =
∑
i,j rijxi ∧ xj .

The multiplicativity of P means that

P̃ (g1g2) = (Adg1)P̃ (g2) + P̃ (g1),

i.e. P̃ is a 1-cocycle of G relative to the adjoint representation of G in G ∧ G.
Passing to the intrinsic derivative p = de(P̃ ), we get p : G −→ G ∧ G, which is a
1-cocycle of the Lie algebra G with coefficients in the adjoint representation of G
in G ∧ G, i.e.

p([x, y]) = adx(p(y))− ady(p(x)).
The dual mapping is p∗ : G∗ ∧ G∗ −→ G∗. It is easy to see that for any smooth
functions u, v on G, we have

p∗(du(e), dv(e)) = (d{u, v})(e)
(the right hand term does not depend on the choice of u and v, since the Lie
Poisson bracket {·, ·} vanishes at e !) and the Jacobi identity for the Poisson
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bracket implies now that p∗ is a Lie bracket itself.

(4.1) Definition. A Lie bialgebra is a Lie algebra G equipped with a 1-cocycle
p : G −→ G ∧ G relative to the adjoint representation of G in G ∧ G such that
the dual mapping p∗ : G∗ ∧ G∗ −→ G∗ is a Lie bracket (i.e. satisfies the Jacobi
identity).

Note that the notion of Lie bialgebra is self-dual, since if (G, p) is a Lie
bialgebra then (G∗, q), where q : G∗ −→ G∗ ∧ G∗ is dual to the Lie bracket
[·, ·] : G ∧ G −→ G, is a Lie bialgebra (called the dual Lie bialgebra) as well.

(4.2) Theorem. Given a simple connected Lie group G, there is a one-one cor-
respondence between Poisson Lie structures on G and Lie bialgebra structures on
G as described above.

(4.3) Definition. Let (G,P ) be a Poisson Lie group, (G, p) be the tangent Lie
bialgebra, and (G∗, q) be the dual Lie bialgebra. The simple connected Poisson
Lie group (G∗, Q) whose tangent Lie bialgebra is (G∗, q) is called the dual Poisson
Lie group.

(4.4) Definition. Let (G,Q) be a Poisson Lie group, (N,P ) be a Poisson man-
ifold, and let Φ : G × N −→ N be an action of G on N . We call this action
a Poisson action if Φ is a Poisson map (with respect to the product Poisson
structure on the product, of course).

(4.5) R e m a r k. Note that if the Poisson structure on the group is trivial the
Poisson action simply preserves the Poisson bracket on N . The major advantage
of the above notion is that we allow also actions which do not preserve the Poisson
structure, but describe a “hidden symmetry” and admit a reduction method.

(4.6) Theorem. Let (G,P ) be a Poisson Lie group, (G, p) be the tangent Lie
bialgebra, (G∗, q) be the dual Lie bialgebra, and (G∗, Q) be the dual Poisson Lie
group. Then the mappings

λ : G∗ 3 ω 7→ iω̂λ
P ∈ Γ(TG)

ρ : G∗ 3 ω 7→ iω̂ρ
P ∈ Γ(TG),and

where ω̂λ and ω̂ρ are respectively the left- and right-invariant 1-forms on G gene-
rated by ω, are Lie algebra homomorphisms of G∗ into the Lie algebra of vector
fields on G.

(4.7) Definition. Integrating λ (resp. ρ) gives rise to a local (and global if the
corresponding vector fields are complete) left (resp. right) dressing action of G∗ on
G and we say that this actions consist of left (resp. right) dressing transformations.

(4.8) Theorem. For a Poisson Lie group (G,P ), both the left and right dressing
actions of G∗ on G are Poisson actions.

Note that the dressing actions are in general really only Poisson and not
preserving the Poisson structure on G.
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(4.9) R e m a r k. There is a way to understand the dressing actions of G∗ on G
(and vice versa) in the language of so called double groups (and Manin triples on
the level of Lie algebras). One can namely construct (at least locally) a Lie group
H with G∗ and G as closed subgroups such that the multiplication

G×G∗ 3 (g, g∗) 7→ gg∗ ∈ H

is a diffeomorphism. Having the projections πG : H −→ G and πG∗ : H −→ G∗,
we get for example the right dressing action of G∗ on G in the form

G×G∗ 3 (g, g∗) 7→ πG(gg∗) ∈ G.

Unfortunately, we have no place here to go into details.

(4.10) Example. Differentiating (1.8) we get the Lie bialgebra structure on su(2)
corresponding to the Poisson Lie structure of the Woronowicz’ quantum SU(2)-
group:

p(H) = 0, p(X) = H ∧X, p(Y ) = H ∧ Y.

The dual Lie bialgebra is therefore the Lie algebra spanned by (H∗, X∗, Y ∗), with
the commutation relations

[X∗, Y ∗] = 0, [H∗, X∗] = X∗, [H∗, Y ∗] = Y ∗,

i.e. the Lie algebra sb(2, C) of all 2×2 traceless upper triangular complex matrices
with real diagonal elements, and the cobracket defined by:

q(H∗) = 2X∗ ∧ Y ∗, q(X∗) = 2Y ∗ ∧H∗, q(Y ∗) = 2X∗ ∧H∗.

The corresponding double group H is the group SL(2, C) with the decomposition
into subgroups SU(2) and SB(2, C) being the group of upper triangular matrices
of SL(2, C) with real positive diagonal elements.

(4.11) Example. The analogous procedure for the Kostant-Souriau-Kirillov Po-
isson structure (cf. (1.6)) yields the Lie bialgebra structure on the commutative
Lie algebra V ∗ of the form:

p(x∗k) =
∑
i<j

ckijx
∗
i ∧ x∗j .

The dual Lie bialgebra is therefore the Lie algebra V itself with the trivial co-
bracket and the dual Poisson Lie group is the simple connected Lie group G with
the Lie algebra V and the trivial Poisson structure. The double Lie group is in
this case the cotangent bundle T ∗G with G and V ∗ as closed subgroups.
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