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1. Introduction. Let

Γ = (L1, 0)Z⊕ (0, L2)Z L1, L2 6= 0.

For q in L2(R2/Γ), let

H + q =
∂

∂x1
− ∂2

∂x2
2

+ q(x1, x2)

be the corresponding heat operator. Set

Ĥ(q) = {(k1, k2) ∈ C2| there is a nontrivial ψ ∈ H2
k(R2),

such that (H + q)ψ = 0},
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where

H2
k(R2) = {ψ ∈ H2

loc(R
2)| such that ψ(x+ γ) = ei<k,γ>ψ(x) for all γ ∈ Γ}.

The dual lattice
Γ] =

(
2π
L1
, 0
)

Z⊕
(

0,
2π
L2

)
Z

acts by translation on Ĥ. The heat curve associated to q is, by definition,

H(q) = Ĥ(q)/Γ].

In [7] it is shown that H is a complex analytic subvariety of C2.
In [10] it is shown that for generic q the heat curve H(q) is smooth and of infi-

nite genus. In [7] a normalized basis of L2-holomorphic one forms is constructed,
the Riemann operator and associated theta function are analyzed, a vanishing
theorem is proved and a Torelli theorem is obtained. Using these results we ex-
pect to solve the periodic Kadomtsev-Petviashvili (KP) equation with initial data
q and to show that the solution is almost periodic in the time whenever H(q) is
smooth. In [10] it is shown that for any T the solution of KP can be arbitrary
well approximated on 0 ≤ t ≤ T by a finite (but large) gap solution of KP. This
is done by approximating H(q) with curves of finite genus.

The results mentioned above suggest that heat curves are a very natural class
of transcendental curves. In this paper we further substantiate this suggestion, by
proving that every compact Riemann surface can be arbitrarily well approximated
by the normalisations of heat curves.

Recall that the normalisation H̃(q) of H(q) is obtained by constructing the
analytic configuration [12] (in the sense of Weyl) associated to any smooth germ
of H(q). It is a Riemann surface. One can imagine that H̃(q) is the affine part of
a finite genus curve when there are enough singularities.

Theorem 1. For each g ≥ 1, the set of Riemann surfaces of genus g that
are normalisations H̃(q) of heat curves H(q), where q ∈ L2(R2/Γ) for some
rectangular lattice Γ, is dense in the moduli space Mg of all Riemann surfaces of
genus g.

Let C be any compact Riemann surface, p a point on C and ζ a local coordinate
centered at p. Also, let

u(x, y, t) = 2
∂2

∂x2
log Θ(xU + yV + tW +D) + 2c (1)

be the solution of the Kadomtsev-Petviashvili equation

uyy =
4
3

(
ut −

1
4

(uux + uxxx)
)
x
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generated by C (see [9]). If this solution is periodic in x and y, then C − {p} is
isomorphic to H̃(u(x1, x2, t)) for any t,D.

Denote by M the space of triples (C, p, ζ). Here, C is a compact Riemann sur-
face, p a point on C and ζ the 3-jet of a local coordinate centered at p. Theorem 1
is a direct consequence of

Theorem 2. Let Mper be the set of points (C, p, ζ) for which there are L1, L2 6= 0
such that the solution of KP given above satisfies

u(x+ L1, y, t) = u(x, y + L2, t) = u(x, y, t).

Then, Mper is dense in Mg.

The technique of Schottky uniformisation used to prove Theorem 2 also yields
similar results for curves that generate real solutions of the KP-equation and the
KdV-equation. To formulate them, let MR be the set of all quadruples (C, p, ζ, σ)
with (C, p, ζ) ∈ M and σ an antiholomorphic involution on C whose fixed point
set consists of g+1 ovals, contains p and satisfies σ∗(ζ) = ζ̄. For these quadruples,
the solution (1) is real whenever D is real. We have

Theorem 3. Let MR,per be the set of points (C, p, ζ, σ) in MR for which there
are L1, L2, T 6= 0 such that the corresponding solution (1) satisfies

u(x+ L1, y, t) = u(x, Y + L2, t) = u(x, y, t), u(x, y, t+ T ) = u(x, y, t).

Then, MR,per is dense in MR.

Theorem 3 has been proved in [8] by a different method. A stronger version of
Theorem 2 has been announced by I. Krichever in [11].

To formulate the last result, let N be the set of points (C, p, ζ, σ) in MR for
which C is hyperelliptic and p is Weierstrass point on C. In this case, (1) is
independent of y and is a solution of the Korteweg-de Vries equation

4ut = 6uux + uxxx.

Theorem 4. Let Nper be the set of points in N for which there are L, T 6= 0
such that the corresponding solution of the Korteweg-de Vries equation satisfies

u(x+ L, t) = u(x, t+ T ) = u(x, t).

Then, Nper is dense in N .

Again, a stronger version of Theorem 4, namely that the differential of the
map (7) below has a maximal rank everywhere, has been proven by I. Krichever
(see [3]).
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2. Proofs. To begin the proofs we first specify the constants in (1). Let
(C, p, ζ) ∈ M and a1, . . . , ag, b1, . . . , bg be a normalized basis of H1(C,Z) and
w = (w1, . . . , wg) the vector of differentials on C normalized so that∫

an

wm = 2πiδmn, m, n = 1, . . . , g.

Furthermore, let

R(C)nm =
∫
bm

wn

be the Riemann period matrix of C. Observe that the theta function of C depends
on the choice of the basis of homology, but the second logarithmic derivative in
(1) does not and that u(x, y, t) only depends on the point xU + yU + tW +D in
Jac(C) = C2g/{2πZg ⊕R(C)Zg}.

The constants U, V,W of (1) are characterized by

w = Udζ + V ζdζ +Wζ2dζ

near p. We first prove Theorem 2. Write

U = 2πi∆1 +R(C)∆2

V = 2πi∆3 +R(C)∆4 (2)

with vectors ∆i ∈ Qg. Clearly (1) has the required periodicity if ∆i ∈ Qg. Observe
that this property is independent of the choice of the basis of homology. Let M̃
be the covering of M consisting of points (C, p, ζ) of M together with a choice of
a basis of homology. Associating to each element of M̃ the vector (∆1, . . . ,∆4) ∈
R4g as above we get a real analytic mapping

∆ : M̃ → R4g.

To prove Theorem 2 it suffices to show that ∆ has maximal rank almost
everywhere. As this map is analytic it is enough to show that ∆ has maximal
rank at one point of M̃ . For this purpose and also for the proofs of Theorems 3, 4
we use the technique of Schottky uniformization [2], [4], [5], which we now briefly
review.

For (A,B, µ) ∈ Cg ×Cg ×C∗g let σn be the linear transformations defined by

σzz −Bn
σnz −An

= µn
z −Bn
z −An

(z ∈ C), n = 1, . . . , g.

The map σn maps the outside of the circle of radius

|An −Bn|
|√µn − 1√

µn
|
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and centered at
Bn
√
µn −An 1√

µn√
µn − 1√

µn

to the inside of the circle of the same radius and center at

An
√
µn −Bn 1√

µn√
µn − 1√

µn

.

Let S be the set of all (A,B, µ) ∈ Cg ×Cg ×C∗g for which all the discs bounded
by these circles are disjoint. Clearly S is an open subset of Cg ×Cg ×C∗g and
contains the full-dimensional subset of all points for which all A’s, B’s are mutu-
ally different and µ’s are sufficiently small. For (A,B, µ) ∈ S the complement of
the discs mentioned above is a fundamental domain for the Schottky group G gen-
erated by σ1, . . . , σg. Let Ω be the region of discontinuity for G. Then C = Ω/G
is a compact Riemann surface of genus g. It has a distinguished local coordinate
ζ = z−1. Further the images of the circles above define a-cycles on C, so that C
is extended with a marking of homology. Thus we get a map Y : S → M̃ whose
image is an open subset of M̃ .

In order to describe the map ∆ ◦ Y we give formulas for the relevant data in
terms of A,B, µ. Denote by Gn the cyclic subgroup of G generated by σn. The
series

wn =
∑

σ∈G/Gn

(
1

z − σBn
− 1
z − σAn

)
dz, n = 1, . . . , g,

(where G/Gn is the right coset space) define the normalized holomorphic diffe-
rentials on G. The period matrix is given by

R(C)nm =
∑

σ∈Gm\G/Gn

log{Bm, Am, σBn, σAn}, m 6= n, (3)

R(C)nn = log µn +
∑

σ∈Gn\G/Gn,σ 6=I
log{Bn, An, σBn, σAn},

where the curly brackets indicate the cross-ratio

{z1, z2, z3, z4} =
(z1 − z3)(z2 − z4)
(z1 − z4)(z2 − z3)

.

These are (−2)-dimensional Poincaré theta-series and they converge absolutely,
if µ is sufficiently small [1], [6]. Furthermore

Un =
∑

σ∈G/Gn

(σAn − σBn) ,



24 A. BOBENKO ET AL.

Vn =
∑

σ∈G/Gn

(
(σAn)2 − (σBn)2

)
, (4)

Wn =
∑

σ∈G/Gn

(
(σAn)3 − (σBn)3

)
.

Lemma 1. The asymptotics of the series (3), (4) as µ→ 0 are

Un = An −Bn +O(|√µ|), Vn = A2
n −B2

n +O(|√µ|),
Rnm = O(1), n 6= m, Rnn = logµn +O(1).

These O-estimates are uniform in derivatives in A and B.

We postpone the proof of this Lemma and continue with the proof of The-
orem 2. From (2) one deduces that(

∆1 ∆3

∆2 ∆4

)
=

(
1
2π − 1

2π (ImR)(ReR)−1

0 (ReR)−1

)(
ImU ImV
ReU ReV

)
.

Using the Lemma this gives

(∆1)n =
1

2π
Im(An −Bn) +O

(
1

log |µ|

)
,

(∆2)n =
1

log |µn|
Re(An −Bn) +O

(
1

(log |µ|)2
)
,

(∆3)n =
1

2π
Im(A2

n −B2
n) +O

(
1

log |µ|

)
,

(∆4)n =
1

log |µn|
Re(A2

n −B2
n) +O

(
1

(log |µ|)2
)
.

So if we choose (Â, B̂, µ̂) ∈ S with Âi, B̂i all different and µ̂ sufficiently small then
the derivative of ∆ ◦ Y with respect to A and B is invertible at this point, since
the map C2g → R4g,

(A,B) 7→
(
Re(An −Bn); Im(An −Bn); Re(A2

n −B2
n); Im(A2

n −B2
n)
)

is invertible at Â, B̂.
For the proof of Theorem 3 we need a more detailed expansion of (U, V ) than

in Lemma 1.

Lemma 2.

Un = An −Bn +
∑
k 6=n

µkunk +O(|µ|2),

Vn = A2
n −B2

n +
∑
k 6=n

µkvnk +O(|µ|2),

Wn = A3
n −B3

n +
∑
k 6=n

µkwnk +O(|µ|2),
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where

unk = (An −Bn)(Ak −Bk)2
[

1
(Ak −An)(Ak −Bk)

+
1

(Bk −An)(Bk −Bn)

]
,

vnk = (An −Bn)(Ak −Bk)2
[

2Bk
(Ak −An)(Ak −Bk)

+
2Ak

(Bk −An)(Bk −Bn)

]
, (5)

wnk = (An −Bn)(Ak −Bk)2
[

3B2
k

(Ak −An)(Ak −Bk)
+

3A2
k

(Bk −An)(Bk −Bn)

]
,

Proof of Lemma 2 and Lemma 1: We only discuss the formula for U ,
the other cases being similar. Every element σ of Schottky group is a loxodromic
linear transformation and is represented by a matrix in PSL(2,C) of the form

1
F1 − F2

(
rF1 − r−1F2 F1F2(r−1 − r)
r − r−1 r−1F1 − rF2

)
,

where F1, F2 are the fixed points of σ. If ` is the length of σ represented as a
word in σ1, . . . , σg (i.e. ` = |m1| + . . . + |mk| if σ = σm1

n1
. . . σmk

nk
is a reduced

representation), then r = O(|µ|`). In particular

σz1 − σz2 = r
(z1 − z2)(F1 − F2)

(−z1 + F1)(−z2 + F1)
+O(|µ|`+1). (6)

If we take σ = I in the series (4) for Un we get the term An − Bn. If we take
σ = σk and σ = σ−1

k we get the terms µkunk + O(|µ|2). Because of (6) all other
terms in this series are of order |µ|2.

Proof of Theorem 3: Let

SR :=
{
(A,B, µ) ∈ S | B = Ā, µ ∈ Rg} .

The image of SR under the map from S to M described above is MR [2], [5]. In
this case the vectors U , V , W are purely imaginary. The associated solution of
the KP equation is triply periodic if ( 1

2πiU,
1

2πiV,
1

2πiW ) ∈ Q3g. Therefore it is
enough to show that the map given by

(U, V,W ) : SR → iR3g

has maximal rank at one point. The determinant of the Jacobian of this map with
respect to A,B, µ at µ = 0 is∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Un
∂Ak

∂Un
∂Bk

∂Un
∂µk

∂Vn
∂Ak

∂Vn
∂Bk

∂Vn
∂µk

∂Wn

∂Ak

∂Wn

∂Bk

∂Wn

∂µk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
µ=0

=
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=

∣∣∣∣∣∣∣∣
I −I unk

2 diag(A1, . . . , Ag) −2 diag(B1, . . . , Bg) vnk

3 diag(A2
1, . . . , A

2
g) −3 diag(B2

1 , . . . , B
2
g) wnk

∣∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
2 diag(A1 −B1, . . . , Ag −Bg) vnk − 2Anunk

3 diag(A2
1 −B2

1 , . . . , A
2
g −B2

g) wnk − 3A2
nunk

∣∣∣∣∣∣ =

= 2g
g∏

n=1
(An −Bn) det F̃ ,

F̃nk = wnk −
3
2

(An +Bn)vnk + 3AnBnunk,

To calculate det F̃ we note that

det F̃ = 3g
g∏

n=1

(An −Bn)3 detF,

Fnk =
(Bk −An)(Bk −Bn)
(Ak −An)(Ak −Bn)

+
(Ak −An)(Ak −Bn)
(Bk −An)(Bk −Bn)

, k 6= n,

Fnn = 0.

If we set
An = n+ α, Bn = Ān,

then in the limit Imα→∞ we have

Fnk → −2, k 6= n, Fnn = 0

and finally detF 6= 0.

Proof of Theorem 4: Let

Shyp :=
{
(A,B, µ) ∈ S | A ∈ iRg, B = Ā, µ ∈ Rg} .

The image of SR under the map from S to M described above is N [2], [4]. As
before it suffices to show that the map

(U,W ) : Shyp → iR2g (7)

has maximal rank at one point. For Un and Wn we have the following series

Un = 2An +
∑
k 6=n

µnunk +O(|µ|2),

Wn = 2A3
n +

∑
k 6=n

µnwnk +O(|µ|2),
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where in unk and wnk given by (5) we should substitute B = −A. After this
substitution the determinant of the Jacobian of the map (7) with respect to A
and µ at µ = 0 is∣∣∣∣∣∣∣∣∣∣

∂Un
∂Ak

∂Un
∂µk

∂Wn

∂Ak

∂Wn

∂µk

∣∣∣∣∣∣∣∣∣∣
µ=0

=

∣∣∣∣∣∣
2I unk

6 diag(A2
1, . . . , A

2
g) wnk

∣∣∣∣∣∣ = 2g det F̃ ,

F̃nk = Wnk − 3A2
nUnk,

det F̃ = (24)g
g∏

k=1

A3
k detF,

Fnk = 2, k 6= n, Fnn = 0.

Again, detF 6= 0 proves the nondegeneracy.
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